
TECHNICAL PAPER

On the torsional vibrations of restrained nanotubes embedded
in an elastic medium
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Abstract
In this paper, torsional dynamics of nanotubes embedded in an elastic medium with arbitrary elastic boundary conditions is

studied. The proposed mathematical model in this study developed based on the nonlocal elasticity theory gives us

opportunity to include small-scale parameter. Two springs in torsional direction are attached to a nanotube at both

boundaries. Angular rotation function based on the nonlocal elasticity theory is represented by a Fourier sine series. A

coefficient matrix including torsional effects is obtained by using Stoke transformation and nonlocal boundary conditions.

This coefficient matrix can be used to obtain the torsional vibration frequencies with restrained or rigid (fixed-free)

boundary conditions. In order to validate the performance of the present analytical method, results calculated for rigid

boundary cases (fixed-free) are presented for a comparison with those given in the literature, and the results agree with each

other exactly. It is shown that nonlocal parameter, torsional spring coefficients and elastic medium have a notable impact

on the torsional dynamics of carbon nanotubes.

Keywords Stokes’ transformation � Fourier sine series � Torsional vibration � Torsional spring � Elastic medium

1 Introduction

Single-walled carbon nanotubes (SWCNTs) have attracted

much attention due to their superior optical, mechanical,

electrical and thermal properties and several applications in

the development of micro- or nanoscale devices. Numerous

studies into the mechanical, electric and physical properties

of SWCNTs in engineering applications have been pre-

sented [1–3]. SWCNTs have different application fields as

higher stiffness and stronger composite fibers, micro-me-

chanical high-frequency oscillators, good electronic ele-

ments, nanosized actuators and nanosized sensors [4–8].

Various methods for investigating the mechanical and

dynamical characteristics of SWCNTs have been proposed

along with experimental and theoretical studies.

Development of SWCNT-based machines requires a

good understanding of their mechanical properties such as

shear modulus, elasticity modulus (Young’s modulus),

maximum compressive and tensile strengths, and Poisson’s

ratio has been examined rigorously. Extensive experi-

mental and theoretical studies have been conducted on their

electronic and mechanical properties. On the other hand,

experimentation with nanosized devices and nanoscale

structures is both expensive and difficult. Research of

appropriate atomic simulation, such as classical molecular

dynamics and mathematical theories for SWCNTs, conse-

quently, is essential.

Developing appropriate physics of nanoscale structures is

parted into three categories: hybrid atomistic [9, 10], con-

tinuum [11, 12] and atomistic continuum mechanics

[13, 14]. The classical continuum mechanics is not compu-

tationally expensive, and calculated mechanical properties

are in good agreement with those of the other approaches.

Various elastic continuum theories such as modified

couple stress theory [15, 16], nonlocal elasticity [17–20],

couple stress theory of elasticity [21], strain gradient

elasticity [22], surface elasticity [23] and nonlocal strain

gradient elasticity that can capture small-sized effects have

been used to study the electrical, mechanical and physical
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properties of nanosized components of structures. Yang

et al. [16] have recently proposed a higher-order elasticity

theory which known as modified couple stress theory. After

this theory, the nonlocal strain gradient elasticity, strain

gradient elasticity and the modified couple stress theories

have been widely used to investigate the static, stability

and dynamical analysis of small-sized structures [24–70].

Recently, numerous nanomachines have been developed

which use SWCNTs as torsional components of structures

[71]. Consequently, it is important to understand the

mechanical properties of twisting SWCNTs such as the

angular rotation and torsional frequencies for reliable

design of torsional components.

In contrast to the rigid supports in which known as

fixed–fixed and fixed-free supports which are used to

describe the boundary conditions, the present analytical

method possesses torsional elastic spring parameters for a

better description of real boundary conditions. Idealized

supporting conditions (clamped–clamped, clamped-free)

are nothing but special cases of more complex boundary

conditions involving elastic restraints located at the ends of

a nanotube. For instance, a clamped–clamped nanotube is a

special case of a nanotube with linear elastic springs of

infinite stiffness which provide the torsional constraints.

The main objective of present paper is to propose a general

analytical method for the torsional vibration analysis of

nanotubes with arbitrary elastic boundary conditions (re-

strained or rigid). It is planned to construct to a semi-

continuum analytical model for torsional vibration analysis

of SWCNTs, and the small-scale effects are also taken into

account for direct comparisons. The angular rotation about

the center of twist is represented by a Fourier sine series. A

coefficient matrix is obtained by applying a mathematical

procedure known as Stokes transformation to the nonlocal

boundary conditions. The determinant of this coefficient

matrix gives the torsional vibration frequencies for the

SWCNTs with general elastic boundary conditions. The

present model is expected to be very efficient in the design

and analysis of SWCNTs, nanocones, nanobeams and

nanobars under various boundary conditions (rigid or

restrained). Free torsional frequencies presented herein

should serve as references for torsional dynamic analysis of

carbon nanotubes (CNTs) with any desired supporting

conditions (elastic or rigid).

2 Background theory

2.1 Nonlocal elasticity theory

The dynamical properties of SWCNTs have been rigor-

ously investigated based on nonlocal elasticity theory.

Motivated by these ideas, SWCNTs can be taken as a rod

of circular cross section with surrounding elastic matrix

which is considered as a torsional springs, as shown in

Fig. 1.

For homogenous and isotropic elastic materials, the

following relations are defined based on nonlocal elasticity

theory [46]:

rkl;l þ q fl �
o2ul

ot2

� �
¼ 0; ð1Þ

rklðxÞ ¼
Z
V

að x� x0j j; vÞsklðx0ÞdVðx0Þ; ð2Þ

sklðx0Þ ¼ k�mmðx0Þdkl þ 2l�klðx0Þ; ð3Þ

�klðx0Þ ¼
1

2

oukðx0Þ
ox0l

þ oulðx0Þ
ox0k

� �
; ð4Þ

in which, sklðx0Þ denotes the Cauchy stress tensor at any

point x0, q denotes the mass density of the body, ul is the

displacement vector, fl is the applied force density, �klðx0Þ is
the strain tensor, rkl is the nonlocal stress tensor, V is the

volume occupied by the body, t denotes the time, l and k
express Lame constants, A coordinate system is taken in

the SWCNTs, where x is the longitudinal direction of

carbon nanotube. a x� x0j j denotes the distance form of

Euclidean. a xj j can be displayed by a differential operator,

which can be shown as the following compact form [46]:

Rað x� x0j jÞ ¼ dð x� x0j jÞ; ð5Þ

and the following equation can be deduced from equation

(2):

Rrkl ¼ skl: ð6Þ

Moreover, the following partial differential equation can be

expressed by Eq. (1) as follows:

skl;l þRðfl � q€ukÞ ¼ 0: ð7Þ

According to the Eringens’ nonlocal elasticity and con-

sidering the small-sized effect of nanomaterials, the linear

differential operator is given by

Fig. 1 A single-walled carbon nanotube embedded in an elastic

medium with torsional springs at both ends
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R ¼ ð1� ðe0aÞ2r2 ¼ 0; ð8Þ

in which a expresses internal characteristic length and e0
denotes a material constant for adjusting the nonlocal

model in matching with experimental test results; this

parameter is estimated the relations of the model could

provide satisfied approximation of atomic lattice dynamics.

The value of 0.39 is used by Eringen [19] for e0. A cali-

bration of the small-scale parameter e0 has been made

using MDS results at room-temperature conditions. r2

expresses the Laplacian. Then constitutive equation could

be rewritten in terms of small-scale (nonlocal) parameter:

1� ðe0aÞ2r2
h i

rkl ¼ skl: ð9Þ

For nonlocal elasticity problems formulated in unbounded

domains (elastic boundaries), Eringen differential law

model can be considered equivalent to a strain-driven

model, due to the tacit fulfillment of nonlocal boundary

conditions of vanishing at infinity. So, Eringen differential

law model is effectively exploited by Eringen to explored

Rayleigh surface waves and screw dislocations. Utilizing

equation (9), the equation of the motion in terms of the

angular rotation function as follows [72]:

GJp
o2Uðx; tÞ

ox2
þ ðe0aÞ2qJ2p

o4Uðx; tÞ
ox2ot2

� qJp
o2Uðx; tÞ

ot2
þ ktUðx; tÞ � ktðe0aÞ2

o2Uðx; tÞ
ox2

¼ 0;

ð10Þ

in which Uðx; tÞ expresses the angular rotation about the

center of twist, kt is the elastic medium coefficient, G ex-

presses the shear modulus of elasticity and Jp denotes the

polar moment of inertia and the shear modulus can be

expressed as

G ¼ E

2ð1þ mÞ : ð11Þ

In the above formula, m is the Poisson’s ratio, E is the

Young’s modulus. Equation (10) is the partial differential

equation for the free torsional vibration of single-walled

carbon nanotube embedded in an elastic medium [72].

3 Free torsional vibration with general
elastic boundary conditions

In this section, a restrained carbon nanotube embedded in

an elastic medium (see Fig. 1) for a torsional vibration is

studied based on Eringens’ nonlocal elasticity theory. The

main idea of the proposed analytical method is to derive an

eigenvalue problem including elastic medium parameter

and the torsional spring coefficients. In addition, results of

the classical boundary conditions (fixed-free), which have

been existing extensively in the literature, are also pre-

sented for the comparison purpose.

3.1 Angular rotation function about the center
of twist

Utilizing the separation of variables method, Uðx; tÞ in

equation (10) can be written in the following form:

Uðx; tÞ ¼ hðxÞeixt; ð12Þ

where hðxÞ expresses the rotation function about the center

of twist and x expresses the angular frequency. By sub-

stituting Eq. (12) into Eq. (10) as

GJp
d2hðxÞ
dx2

� ðe0aÞ2x2qJ2p
d2hðxÞ
dx2

þ qJpx
2hðxÞ

þ kthðxÞ � ktðe0aÞ2
d2hðxÞ
dx2

¼ 0;

ð13Þ

the rotation function hðxÞ can be written as

hðxÞ ¼
h0 x ¼ 0

hL x ¼ LP1
n¼1 An sinðbnxÞ 0\x\L

2
64

3
75; ð14Þ

where

bn ¼
np
L
: ð15Þ

3.2 Stokes’ transformation

Because few detailed reports on the torsional vibration

analysis of CNTs with elastic boundary conditions are

available, in this study, a mathematical transformation

known as ‘‘Stokes’ transformation’’ is applied to the non-

local boundary conditions and the governing equation

[56, 57]. Present mathematical model bridges the gap

between deformable and the rigid supporting conditions,

which is of great significance for the application of the

nonlocal elasticity theory to CNTs. The coefficients (An) in

equation (14) read as:

An ¼
2

L

Z L

0

hðxÞ sinðbnxÞdx: ð16Þ

On the other hand, the first derivative of Eq. (14) with

respect to x gives:

h0ðxÞ ¼
X1
n¼1

anAn cosðbnxÞ: ð17Þ

Utilizing the Fourier cosine series and Eq. (17), the fol-

lowing equation can be derived as:
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h0ðxÞ ¼ f0

L
þ
X1
n¼1

fn cosðbnxÞ: ð18Þ

Fourier constants (f0, fn) in Eq. (18) read as:

f0 ¼
2

L

Z L

0

h0ðxÞdx ¼ 2

L
hðLÞ � hð0Þ½ �; ð19Þ

fn ¼
2

L

Z L

0

h0ðxÞ cosðbnxÞdx ðn ¼ 1; 2. . .Þ; ð20Þ

by integrating parts of above equation, the following

relations are obtained:

fn ¼
2

L
hðxÞ cosðbnxÞ½ �L0þ

2

L
bn

Z L

0

hðxÞ sinðbnxÞdx
� �

;

ð21Þ

fn ¼
2

L
ð�1ÞnhðLÞ � hð0Þ½ � þ bnAn: ð22Þ

The present analytical approach (Stokes’ transformation to

gather with Fourier series) will be useful when dealing with

deformable boundary conditions [56, 57]. Similarly, the

first two derivatives of angular rotation function hðxÞ can

be calculated as:

dhðxÞ
dx

¼ hL � h0
L

þ
X1
n¼1

cos bnxð Þ 2 ð�1ÞnhL � h0ð Þ
L

þ bnAn

� �
;

ð23Þ

d2hðxÞ
dx2

¼ �
X1
n¼1

bn sin bnxð Þ

� 2 ð�1ÞnhL � h0ð Þ
L

þ bnAn

� �
:

ð24Þ

Substituting Eqs. (14) and (24) into Eqs. (13) yields the

following equation.

An ¼
2 ð�1Þnþ1hL þ h0
� �

ðe0aÞ2Jpqx2 � bnsp
� �

L �b2nsp þ ðe0aÞ2Jpqx2bn þ Jpqx2 � kt

� � ; ð25Þ

where,

sp ¼ GJp þ ðe0aÞ2kt
� �

: ð26Þ

By using the above equation, the rotation function /ðx; tÞ
can be written in terms of h0 and hL as follows:

Uðx; tÞ ¼
X1
n¼1

An � sinðbnxÞeixt: ð27Þ

4 Nonlocal boundary conditions

4.1 General case

By using the relations for rigid boundary conditions in

reference [53], the nonlocal boundary conditions for

deformable boundary conditions can be written as:

GJp
dh
dx

� ðe0aÞ2Jpqx2 dh
dx

¼ /0h0; x ¼ 0; ð28Þ

GJp
dh
dx

� ðe0aÞ2Jpqx2 dh
dx

¼ /LhL; x ¼ L; ð29Þ

in which, /0 and /L are the torsional spring coefficients,

and the following nondimensional parameters are defined

as:

d0 ¼
/0L

GJP
; ð30Þ

dL ¼/LL

GJP
; ð31Þ

c2 ¼ðe0aÞ2

L2
; ð32Þ

Kt ¼
L2kt

GJp
; ð33Þ

X2 ¼ L2qx2

G
: ð34Þ

The following generalized eigenvalue problem is obtained

by using Eqs. (23), (25), (28) and (29)

X2c2 � d0 � 1þ
X1
n¼1

2Zn

Yn

 !
h0

þ 1� X2c2 �
X1
n¼1

2ð�1ÞnZn
Yn

 !
hL ¼ 0;

ð35Þ

1� X2c2 �
X1
n¼1

2ð�1ÞnZn
Yn

 !
h0

þ X2c2 � dL � 1þ
X1
n¼1

2Zn

Yn

 !
hL ¼ 0;

ð36Þ

where

Zn ¼� Kt þ KtX
2c2 � X4c2 þ X2; ð37Þ

Yn ¼Kt þ p2Ktn
2c2 � X2p2n2c2 þ p2n2 � X2: ð38Þ

4.2 Without elastic medium

When the elastic medium parameter in Eqs. (35) and (36) is

equal to zero, the systems of linear equations for without

elastic medium case are written as
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X2c2 � d0 � 1þ
X1
n¼1

2jn
#n

 !
h0

þ 1� X2c2 �
X1
n¼1

2ð�1Þnjn
#n

 !
hL ¼ 0;

ð39Þ

1� X2c2 �
X1
n¼1

2ð�1Þnjn
#n

 !
h0

þ X2c2 � dL � 1þ
X1
n¼1

2jn
#n

 !
hL ¼ 0;

ð40Þ

where

jn ¼� X4c2 þ X2; ð41Þ

#n ¼� X2p2n2c2 þ p2n2 � X2: ð42Þ

4.3 Torsional vibration analysis in classical
elasticity theory

If both the nonlocal parameter e0a and the elastic medium

parameter Kt equal zero (e0a ¼ 0 and Kt ¼ 0), the systems

of equations in (35) and (36) can be reduced to the classical

torsional frequencies of prismatic bar theory (xn ¼ pn
L

ffiffiffi
G
q

q
),

(n ¼ 1; 2; 3; 4; . . .) where the index n indicates the mode

number,

�d0 � 1þ
X1
n¼1

2X2

p2n2 � X2

 !
h0

þ 1�
X1
n¼1

2ð�1ÞnX2

p2n2 � X2

 !
hL ¼ 0;

ð43Þ

1�
X1
n¼1

2ð�1ÞnX2

p2n2 � X2

 !
h0

þ �dL � 1þ
X1
n¼1

2X2

p2n2 � X2

 !
hL ¼ 0:

ð44Þ

The torsional vibration model constructed here is valid for

general elastic boundary conditions. From Eqs. (35) and

(36), one yields:

g11 g12
g21 g22

� �
h0
hL

� �
¼ 0; ð45Þ

where

g11 ¼ X2c2 � d0 � 1þ
X1
n¼1

2Zn

Yn
; ð46Þ

g12 ¼ 1� X2c2 �
X1
n¼1

2ð�1ÞnZn
Yn

; ð47Þ

g21 ¼ 1� X2c2 �
X1
n¼1

2ð�1ÞnZn
Yn

; ð48Þ

g22 ¼ X2c2 � dL � 1þ
X1
n¼1

2Zn

Yn
: ð49Þ

To obtain a nontrivial solution of Eq. (45), the coefficient

determinant of the matrix should be zero, or;

gij
		 		 ¼ 0 ði; j ¼ 1; 2Þ: ð50Þ

It is remarkable that if the nonlocal parameter in Eq. (50) is

neglected, namely e0a ¼ 0, then the torsional eigenvalue

solution of carbon nanotube embedded in elastic medium

based on the local (classical) elasticity theory is deduced.

Assuming elastic medium parameter is neglected, the

solution of present model is reduced to that of nonlocal

elasticity theory without elastic matrix case. Furthermore,

if the elastic medium and nonlocal parameter are all

neglected, (i.e., Kt ¼ 0, e0a ¼ 0), the conventional tor-

sional vibration eigenvalue problem can be obtained.

5 Results and discussion

The following subsections are devoted to study the effect

of the torsional spring parameters, nonlocal parameter

(e0a), length of the carbon nanotube and the influence of

elastic medium on the torsional frequencies of the carbon

nanotube, with different elastic boundary conditions. Dur-

ing all numerical calculations, length of carbon nanotube is

taken as 10 nm. It can be noted that the classical rigid

boundary conditions are derived by setting the values of

specific stiffness parameters of the elastic springs.

5.1 Model validation

To ensure about the exactness of the analytical computa-

tions and the convergence potentialities of the presented

method (Stokes’ transformation), the calculated numerical

results are compared with those of available studies in the

literature. Because few detailed reports on the torsional

vibration analysis of SWCNTs with deformable boundary

conditions are available in the literature, an exact valida-

tion of the obtained results with existed results is difficult.

5.1.1 Clamped–clamped nanotube with surrounding
elastic medium

The first validation gives a comparison between the present

results with those calculated by Arda and Aydogdu [72] for
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a clamped–clamped nonlocal nanotube with surrounding

elastic medium. Clamped–clamped supports are special

case of a single-walled carbon nanotube with torsional

springs of infinite stiffness. In order to obtain the solution

of fixed–fixed supports, torsional spring parameters are

taken as d0 ¼ 10� 106 and dL ¼ 10� 106. It should be

pointed out that small-sized parameter (nonlocal parame-

ter) e0a must be smaller than 2 nm for SWCNTs [73].

Consequently, the small-sized parameter e0a is selected in

the range of 0–2 nm [74].

In Table 1, the comparative analysis of the first two

nondimensional frequencies obtained by two methods is

carried out. The numerical results have been presented for

constant value of the elastic medium parameter (Kt ¼ 1:50)

as well as different values of the nonlocal parameter (e0a).

As it is seen from Table 1, the predicted results of the

proposed method (Stokes’ transformation) are in excellent

agreement with those given in Ref. [72] by using Eq. (51):

Xn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kt

p2ðe0aÞ2n2
L2

þ 1
� �

þ p2n2

p2ðe0aÞ2n2
L2

þ 1

vuuut : ð51Þ

5.1.2 Clamped-free nanotube with surrounding elastic
medium

In the second validation, the clamped-free nanotube is

considered. To obtain the results of clamped-free supports,

torsional spring parameters are taken as d0 ¼ 10� 106 and

dL ¼ 0. The numerical results have been derived for con-

stant value of elastic medium parameter (Kt ¼ 5:00) as

well as different values of the nonlocal parameter (e0a). As

it can be seen from Table 2, the obtained results agree very

well with those given in Ref. [72] by using Eq. (52):

Xn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

p2ðe0aÞ2ð2n�1Þ2
4L2

þ 1
� �

þ 1
4
p2ð2n� 1Þ2

p2ðe0aÞ2ð2n�1Þ2
4L2

þ 1

vuuut : ð52Þ

5.2 Numerical examples

In the following, a few numerical examples will be con-

sidered to highlight the effects of the torsional restraints,

elastic medium and nonlocal parameter.

5.2.1 Effects of the nonlocal parameter

The effect of nonlocal parameter and length change on the

dimensionless vibration frequencies is illustrated in

Fig. 2a–d. The following relation is used to give a better

illustration of the nonlocal effects in torsional vibration

response of nanotubes,

Ck ¼ XNL
k =XL

k ; ð53Þ

in which Ck is introduced as the dimensionless frequencies.

The index (NL) denotes the nonlocal elasticity theory

(e0a 6¼ 0) and (L) denotes the local elasticity (e0a ¼ 0).

This numerical example points out to the possibility of

enhancing the torsional vibration frequencies of CNTs. It

also shows the effectiveness of the presented approach to

capture significance of the torsional spring coefficients,

nonlocal effect, and elastic medium parameter on the

dynamical response of CNTs. As observed in these figures,

increasing nonlocal parameter causes lower vibration

Table 1 Comparisons of the first two dimensionless angular fre-

quencies for a clamped–clamped nanotube embedded in an elastic

medium (Kt ¼ 1:50)

e0a k1 k2

Ref. [72] Present Ref. [72] Present

0.00 3.1416 3.1415 6.36227 6.36225

0.20 3.1664 3.1663 6.13102 6.13101

0.40 3.1803 3.1801 5.92406 5.92405

0.60 3.1970 3.1969 5.73742 5.73741

0.80 3.2169 3.2166 5.56801 5.56800

1.00 3.2395 3.2392 5.41335 5.41335

1.20 3.2649 3.2647 5.27142 5.27142

1.40 3.2931 3.2929 5.14059 5.14058

1.60 3.3239 3.3238 5.01949 5.01948

1.80 3.3577 3.3574 4.90699 4.90698

2.00 3.3938 3.3935 4.80211 4.80210

Table 2 Comparisons of the first two dimensionless angular fre-

quencies for a cantilever nanotube embedded in an elastic medium

(Kt ¼ 5:00)

e0a k1 k2

Ref. [72] Present Ref. [72] Present

0.00 2.73265 2.73387 5.21600 5.22173

0.20 2.73044 2.73164 5.12467 5.13003

0.40 2.72824 2.72943 5.03934 5.04435

0.60 2.72606 2.72727 4.95940 4.96410

0.80 2.72390 2.72508 4.88433 4.88875

1.00 2.72176 2.72293 4.81366 4.81783

1.20 2.71964 2.72079 4.74701 4.75094

1.40 2.71754 2.71868 4.68402 4.68774

1.60 2.71545 2.71659 4.62439 4.62791

1.80 2.71339 2.71451 4.56783 4.57117

2.00 2.71134 2.71245 4.51410 4.51728
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frequencies, or equivalently, the presence of small-sized

effect induces a weaker carbon nanotube subject to vibra-

tion. One can observe from these figures that for increasing

values of nonlocal parameter e0a, the torsional vibration

frequencies decrease, especially for higher-order modes.

This is because size effects are significant in small size and

these higher-order effects are associated with the more

dense arrangement of repulsive particles. Therefore, the

classical elasticity theory underestimates the vibration

response of a nanotube.

It is also seen from this example that the torsional

vibration frequencies under an oscillation are not only

dependent on the nonlocal parameter, the length of nan-

otube and the elastic medium parameter, but also depen-

dent on the elastic torsional restraints at the ends. Thus, for

the applications of SWCNTs, the study on the torsional

vibration characteristics of nanotubes embedded in an

elastic medium considering the supporting condition effect

of nanosized materials is of special interest. Figure 3a–d

shows the variation of the first four dimensionless fre-

quencies (Ck ¼ XNL
k =XL

k ) versus the nonlocal parameter

(e0a) for various values of the torsional spring parameters.

It is worthy to know that, in the presence of the lower

values of symmetrical torsional spring parameters, the

second, third and fourth nondimensional natural frequen-

cies increase, as shown in Fig. 3b–d. As it can be observed

from Fig. 3a, first mode exhibits a different behavior than

the other modes for the lower values of symmetrical tor-

sional spring parameters and the influence of the nonlocal

parameter is less noticeable. This exception has been also

well pointed out for lower values elastic spring parameters

in the literature. The relationships between nonlocal

parameter and second dimensionless frequencies

(C2 ¼ XNL
2 =XL

2) and the rotational spring parameter under a

constant elastic medium are demonstrated in Fig. 3b. The

change in nonlocal parameter increases as C2 decreases for

different elastic spring parameters which is in accordance

with the literature. The ratio (Ck) indicated in Fig. 3c, d has

the same trend as that in Fig. 3b. The effect on mode

number on the vibration frequency of restrained carbon

nanotube is illustrated in Fig. 4a–d. Fixing the elastic

medium parameter Kt and varying the nonlocal parameter

e0a result in a significant change of the mode shapes. For

the case in hand, changing the symmetrical spring param-

eters d0 ¼ dL from 1 to 10 results in an increase in the

vibration frequencies of about 20 percent when e0a ¼ 0, as

can be noted from Fig. 4a–d. This enhancement of the

vibration frequencies is not observed for the presence of

(a) (b)

(c) (d)

Fig. 2 Effect of nonlocal parameter on the first six frequencies with Kt ¼ 1:5
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nonlocal parameter (e0a 6¼ 0) as presented in Fig. 4a–d.

The relationship between the torsional frequency parameter

and the mode number appears to be linearly increasing at

the zero value of the small-scale parameter, whereas it

become gradually quadratic as the small-scale parameter

increased further. According to these figures, the difference

between nonlocal and classical frequencies decreases with

increasing nonlocal parameter. Difference between nonlo-

cal and classical theories increases with increasing value of

mode number since higher-order modes are more affected

from small wave length.

5.2.2 Effects of elastic medium

The frequency response curves of SWCNTs for several

elastic spring parameters Kt and torsional spring constants

are shown in Fig. 5. It is seen that the torsional frequencies

of the nanotubes under consideration increase with the

increase in elastic medium parameter. It is further seen that

the influence of elastic medium becomes more pronounced

when the spring constants change and the vibration fre-

quencies increase. This parametric study points out to the

possibility of enhancing the vibration frequencies of

SWCNTs. It is also shown that the effectiveness of the

proposed method captures the significance of the elastic

medium effect on the dynamical behavior of CNTs.

5.2.3 Effects of asymmetrical springs

Finally, variation of torsional frequencies with mode

number is shown for first six modes of vibration. Figure 6

shows the variation of the vibrational frequencies of a

restrained nanotube for asymmetrical spring parameters.

The results have been calculated for three different values

of the elastic medium parameter (Kt ¼ 0, Kt ¼ 5, Kt ¼ 10)

and three different values of the nonlocal parameter

(e0a ¼ 0:0, e0a ¼ 1:0, e0a ¼ 1:5) as well as three different

combination of asymmetrical spring constants

(d0 ¼ 2; dL ¼ 10, d0 ¼ 4; dL ¼ 6, d0 ¼ 5; dL ¼ 15). The

influence of the combined variation of the nonlocal

parameter e0a, the elastic medium parameter Kt and the

torsional springs at the ends on the torsional frequency of a

restrained nanotube is considered. It can be seen that the

effectiveness of the presented approach captures the sig-

nificance of the nonlocal parameter and elastic medium

effect on the dynamical behavior of restrained nanotubes.

Further, it is shown that nonlocal parameter, torsional

spring coefficients and elastic medium have a notable im-

pact on the torsional dynamics of CNTs.

(a) (b)

(c) (d)

Fig. 3 Effect of nonlocal parameter on the first six frequencies with Kt ¼ 1:5
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In the presented examples, the restrained SWCNTs are

considered. Due to the outstanding electronical, dynamical

and mechanical properties of CNTs, their usage in the

different field of applications in nanoscience and nan-

otechnology has greatly increased. In this regard, CNTs

with different boundary conditions have attracted sub-

stantial interest due to their suitability for a broad range of

applications, such as nanoactuators, nanosensors and

microelectronic devices; therefore, obtaining their torsional

frequencies for different elastic boundary conditions is of

particular interest using the presented approach. The pre-

sent method does not need an admissible function that

satisfies nonlocal boundary conditions. Stokes’ transfor-

mation is applied to get the relevant matrix. Stokes trans-

formation with Fourier sine series is chosen for its freedom

from supporting conditions when compared to other stan-

dard techniques.

(a) (b)

(c) (d)

Fig. 4 Effect of mode number for different nonlocal parameters on the vibration frequencies with Kt ¼ 1:5

Fig. 5 Effect of elastic medium

parameter on the vibration

frequencies
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6 Conclusions

Free torsional vibration analysis of restrained CNTs with a

continuous elastic restraint is investigated by both the

Fourier sine series and Stoke transformation. It is aimed to

construct to a semi-continuum analytical method for tor-

sional vibration analysis of retrained nanotubes. This new

analytical method including elastic medium parameter is

virtually different from all previous analytical and

numerical methods where, instead of rigid supporting

conditions (free-fixed), elastic constraints are used by

considering the torsional spring coefficients. Such theo-

retical modeling has not been reported in previous studies.

A coefficient matrix including torsional spring coefficients,

nonlocal parameter and elastic medium is presented for the

first time. The validity and accuracy of the present method,

in obtaining the torsional vibration frequencies, have been

examined by means of numerical example problems. The

calculated results for the first two dimensionless torsional

frequencies of the carbon nanotube by Fourier series to

gather with Stokes transform have been compared with

those of other works available in the literature, and a good

agreement has been achieved. It is expected that this new

analytical method will find a wide range of applications in

more complex nanosystems with general elastic boundary

conditions. The developed nonlocal elasticity model can

also degenerate into classical elasticity theory if nonlocal

parameter is set to be equal to zero.

Normalized frequencies of CNTs are calculated corre-

sponding to various torsional spring coefficients, dimen-

sionless nonlocal parameters and elastic medium

coefficient. It is found that the value of nonlocal parameter

plays more important role in the torsional vibrational

response of SWCNTs with higher torsional spring param-

eters. Also, it is revealed that the difference between

torsional frequencies calculated by classical and nonlocal

elasticity theory is more significant for CNTs with higher

values of nonlocal parameter.
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