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Mônica F. Naccache1 • Himer A. Mieles Pinto1 • Aline Abdu1

Received: 28 March 2018 / Accepted: 5 August 2018 / Published online: 14 August 2018
� The Brazilian Society of Mechanical Sciences and Engineering 2018

Abstract
This work presents a numerical study of the displacement of two fluids through vertical annular ducts with an enlargement

in the cross section. This flow is found in cementation operations in the oil industry. A successful cementing operation is

obtained when the cement slurry is able to effectively displace the drilling fluid from the annular space between the

wellbore and the casing. The process is very complex, since both fluids can have non-Newtonian behaviour, and the flow is

time-dependent. In addition, in many situations the wells have some eroded regions, where the cross-sectional area is larger

than the regular well annular cross section. The optimization of the displacement efficiency is important not only because

of the cost of the process, but also due to security problems, since a unsuccessful operation may result in the collapse of the

oil well. The displacement efficiency is a function of the fluids rheology, the density ratio, the flow rate, and the geometry.

This work presents an analysis of the influence of rheology, flow rate and geometry on the displacement process inside

annular ducts with an eroded region. The governing conservation equations are solved for an axisymmetric flow using the

finite volume method. The multiphase problem is dealt using the volume of fluid method. Flow pattern along the eroded

region and the displacement efficiency are presented and discussed for different pairs of fluids. The results show that the

displacement through the eroded region is better for larger aspect ratios (or longer eroded regions). It is also observed that

inertia tends to shift the interface towards the exit wall of the eroded region, leading to lower displacement efficiencies.
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List of symbols
A2 Area occupied by fluid 2 in the eroded region

Ac Total area of the eroded region

Ar2 Area occupied by fluid 2 in the half downstream zone

of the eroded region

D Outer tube diameter in the eroded region

Dh Hydraulic diameter of the annular duct

Di Inner tube diameter

Do Outer tube diameter

D Rate-of-strain tensor

f Friction factor

g Gravity vector

j Phase number

k Consistency index

L Length of the eroded region

La Length of the entrance and exit tube

Ld Length of the developed region of the entrance/exit

tube

Lt Length of the tube

n Power law index

p Pressure

Re Reynolds number

t Flow time

vc Characteristic velocity

vin Inlet velocity

v Velocity vector

8j Volume occupied by phase j in the cell control

volume 8

Greek symbols
a Symmetry factor

b Displacement efficiency

Dp Pressure drop in the developed region of the tube

_c Intensity of the rate-of-strain tensor

_cc Characteristic shear rate

_ccr Critical rate-of-strain modulus

gc Characteristic viscosity

gr Viscosity ratio
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q Mixture density

s Deviatoric stress tensor

sy Yield stress

s�y Yield stress ratio

1 Introduction

The cementation process of oil wells is one of the most

important processes in the oil industry, and it is directly

related to the well lifetime. It is responsible to avoid the

collapse of the oil well, and also it has to protect the

reservoir from the invasion of undesirable fluids and the

casing from corrosion. The design and success of the

cementation operation depend on several parameters such

as the well geometry, the properties of drilling and spacing

fluids, the preparation and properties of the cement slurry,

the flow rate and the density ratio. A good displacement

process of the drilling fluid by the cement slurry is a critical

activity to guarantee the success of the cementing opera-

tion. The focus of this work is in the displacement process

in situations of variable cross-sectional area, to simulate

the cementing operation in eroded wells. The problem is

analysed numerically to better understand the role of non-

Newtonian fluids properties, flow rate and geometry in the

efficiency of the cleaning and removal process of the

drilling fluids by the cement. The multiphase flow is

modelled using the volume of fluid method, and the solu-

tion of the governing conservation equations of mass and

momentum is obtained using the finite volume method and

the commercial software ANSYS Fluent �.

Previous studies show that the displacement process

through vertical wells are ruled primarily by the viscosity

and density ratios of the fluids, the eccentricity of the

annulus, and the flow rate (e.g. [1–6]). In addition, other

variables such as the casing rotation and well geometry can

influence the displacement efficiency ([4, 7, 8]). Deaw-

wanich et al. [9] analysed experimentally the displacement

of miscible viscoplastic fluids inside an annular space. The

flow vizualization results show the effect of rheology on

flow displacement. The annular eccentricity and the rota-

tion of the inner cylinder also affect the flow displacement

in a significant way, but the rotation of the cylinder results

in a significant improvement of the displacement effi-

ciency. The work of Savery et al. [10] shows that in the

case of eccentric annular the displacement in the smaller

gap tends to be very poor. Chin and Zhuang [11] present

numerical solutions of displacement of yield stress fluids

through eccentric annuli, considering drillpipe translation

and rotation. A parametric analysis of plug cementing

process in deepwater wells is presented by Aranha et al.

[12], to understand the role of rheology, flow rate and

string rotation in plug cementing operations. The authors

observed that eccentricity leads to instabilities that impairs

the displacement process. Dutra et al. [13] have performed

a numerical simulation of the displacement process of three

fluids, cement, spacer fluid and drilling fluid, through the

annular space between the well and the casing. The results

show that as the spacer viscosity increases, the displace-

ment efficiency improves.

There are not many works available in the literature

regarding the study of flow displacement of non-Newtonian

fluids through ducts of variable cross-sectional area. The

flow of Bingham fluids through a narrow channel with one

locally uneven wall was analysed in [14]. The computa-

tional analysis neglects the inertial effects and focused on

the viscous and yield stress effects. The results have shown

that the flowing (yielded) region is independent of the

geometry’s cavity for fluids with high yield stress and deep

cavities. Later on, the authors presented results for the

same problem, but with inertia [15]. The authors analysed

the effect of Reynolds number keeping the Bingham

number constant or keeping the product of Reynolds and

Bingham numbers fixed (i.e. varying flow rate for fixed

geometry and fluid properties). They observed that in this

case the flowing region depends non-monotonically on

Reynolds number, but again the yielded region seems to be

independent of the geometry for deep cavities. A numerical

and experimental study of the displacement of viscoplastic

fluids through a tube with an expansion followed by a

contraction was done in [16]. The authors analysed the

effects of rheology and flow rate on the amount of the

remaining fluid at the central tube, between the expansion

and the contraction. The results show that as yield stress

increases, the amount of remaining liquid at the central

tube decreases, since stress levels increase. The effect of

geometry and other rheological parameters, such as the

power law index, are also discussed. It is observed that

increasing the length of the central tube or decreasing the

tube radius ratio, the amount of remaining liquid decreases.

Dos Santos et al. [17] have performed a parametric

numerical study of the flow of an elasto-viscoplastic fluid

through a planar expansion followed by a contraction. The

role of elasticity, yield stress and inertia on the shape of

yielded/unyielded regions are analysed and discussed. The

unyielded regions are the ones where the stresses levels are

below the yield stress. The unyielded regions close to the

walls of the larger cross section channel represent the

amount of fluid that remains stagnant in this region.

Roustaei and Frigaard [18] analysed numerically the for-

mation of fouling layers in the slow flows of Bingham

fluids through wavy-walled channels. The fouling shape is

obtained for different geometries and rheology. The
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authors observed that the onset of fouling is a result of the

effect of the geometry on the extensional stresses.

It is noted that there are few works on the literature

analysing the flow displacement that occurs in the

cementation process of eroded wells. Therefore, this work

aims to contribute to understand the phenomena and dis-

cuss about the role of governing parameters as a means of

improving the displacement efficiency.

2 Modelling

The geometry under analysis is shown in Fig. 1. At the

beginning of the simulation, the geometry is filled with

fluid 1, and fluid 2 enters the vertical annular duct with

inner diameter Di and outer diameter Do. Fluid 2 displaces

fluid 1 through the entrance duct and the eroded region

(outer diameter equal to D), and then flows into the exit

annular duct, which has the same geometry as the entrance

duct. The following hypothesis is considered: the flow is

laminar, transient, and axisymmetric. Then, the simulation

is bi-dimensional. The fluids are considered incompressible

and immiscible (Dij ¼ 0) and the surface tension was

neglected. Initially, the vertical duct and the eroded area

are filled with fluid 1. At the beginning of the simulation,

t ¼ 0, fluid 2 is injected at a constant velocity.

The volume of fluid (VoF) method ([19, 20]) is used to

model the multiphase flow. This method tracks the inter-

face between two or more phases, calculating the volume

fraction of each phase j, aj ¼ 8j=8 (j ¼ 1; 2:::; n), where n

is the number of phases, 8j is the volume occupied by

phase j in the cell control volume 8. The volume fraction is

obtained solving n� 1 mass conservation equations for

each phase, plus a restriction equation:

o

ot
aj þ v � raj ¼ 0 ð1Þ

Xn

j¼1

aj ¼ 1 ð2Þ

where v is the velocity vector. In all simulations, only two

phases are considered, so n ¼ 2. The volume fraction is

equal to one or zero when a control volume is entirely filled

with one of the phases and is equal to a value between one

and zero if the interface is in the control volume. The

properties at each control volume are obtained by:

/ ¼ a1/1 þ ð1� a1Þ/2 ð3Þ

The velocity and pressure are equal for both phases,

defined for each control volume. Therefore, the mass and

momentum conservation equations are given by:

r � v ¼ 0 ð4Þ

q
ov

ot
þ v � rð Þv� ¼ �rpþr � sþ qg

�
ð5Þ

where q is the mixture density, p is the pressure, g is the

gravity vector, and s is the deviatoric stress tensor. The

Generalized Newtonian Fluid constitutive equation is used

to model the non-Newtonian fluid behaviour; then, the

stress tensor is given by:

s ¼ 2gð _cÞD ð6Þ

where D � 1=2 rvþrvT½ � is the rate-of-strain tensor, and

_c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 tr D2

p
is the intensity of the rate-of-strain tensor.

The viscosity function is given by a regularized version of

the Herschel–Bulkley equation for viscoplastic fluids,

given by the following equation:

gð _cÞ ¼ sy
_c
þ k _cð Þn�1

if _c� _ccr

gð _cÞ ¼ sy
_ccr

2� _c
_ccr

� �
þ kcn�1

cr ð2� nÞ þ ðn� 1Þ _c
_ccr

� �
if _c\ _ccr

ð7Þ

Fig. 1 The geometry
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In the equations above, sy is the yield stress, k is the

consistency index, _ccr is the critical rate-of-strain modulus,

and n is the power law index.

The initial and boundary conditions are:

• At t ¼ 0, the domain is filled with fluid 1, so a1 ¼ 1 and

a2 ¼ 0; and the velocity is zero, v ¼ 0.

• At the entrance, x ¼ 0, fluid 2 is injected with constant

axial velocity, a2 ¼ 1 and vx ¼ vin.

• At the outlet, x ¼ Lt, the flow is considered fully

developed, o=ox ¼ 0.

• At the walls, r ¼ D=2; Di;o=2, no slip and imperme-

ability conditions are applied, v ¼ 0.

2.1 Dimensionless equations

The governing equations are scaled using the following

dimensionless variables:

r� ¼ r

Dh

x� ¼ x

Dh

v� ¼ v

Dh _cc
p� ¼ p

q1v2c

t� ¼ t _cc q� ¼ q
q2

s� ¼ s

sy
_c� ¼ _c

_cc
g� ¼ g

gc

ð8Þ

where the characteristic velocity is equal to the inlet

velocity of fluid 2, vc ¼ vin, the characteristic shear rate is

_cc ¼ 8ðvin=DhÞð3nþ 1Þ=4n, Dh ¼Do �Di is the hydraulic

diameter of the annular duct, and the characteristic vis-

cosity is the viscosity of fluid 2 evaluated at _cc, gc ¼ g2ð _ccÞ.
It is clear that, if fluid 2 is Newtonian, gc ¼ l, otherwise it

is given by eq. 7. The resulting non-dimensional equations

are given by:

r � v� ¼ 0 ð9Þ

q�
ov�

ot�
þ v� � r�ð Þv�

� �
¼ �r�p� þ 1

Re
r � g� _c�ð Þ ð10Þ

The non-dimensional governing parameters are depicted

below:

Re � q2vcDh

gc
qr ¼

q2
q1

gr ¼
g2
g1

ð11Þ

where qi, i ¼ 1; 2 are the densities of fluids 1 and 2, gi,
i ¼ 1; 2 are the viscosities of fluids 1 and 2, and Re is the

Reynolds number. Moreover, the non-dimensional geo-

metric parameters are given by the aspect ratio of the

eroded region, L / D, and the diameter ratios, D=Di and

Di=Do, where L is the length of the eroded region, D is the

outer tube diameter in the eroded region, Do is the outer

diameter of the well, and Di is the inner tube diameter.

3 Numerical solution

The governing conservation equations of mass and

momentum are solved using the finite volume method, with

Fluent � software (Ansys Inc.). To model the multiphase

flow, we use the volume of fluid method. The pressure-

based solver is used for the transient axisymmetric model,

and the PISO algorithm is employed for the pressure–ve-

locity coupling. The mass conservation equation is dis-

cretized with the power law method, and the upwind

discretization method is used to solve the momentum

equation [19].

The structured meshes used in the numerical solution

were generated in ICEM CFD � software (Ansys Inc.).

Mesh tests were performed for the geometry with

L=D ¼ 0:5. Four different meshes were analysed and the

results for a typical case were compared. The meshes are

detailed in Table 1, where Dx and Dr are the minimum cell

size in axial and radial directions, respectively. The meshes

were tested for a laminar flow of a Newtonian fluid. Fig-

ure 2 shows the velocity profile at the centre of the eroded

region for the four different meshes. The friction factor in

the developed flow region of the exit tube and its error with

respect to the exact value of 95.15 are shown in Table 1.

The friction factor is defined as f ¼ ðDp=LdÞ2Dh=ðqU2Þ,
where Dp=Ld is the pressure drop in the developed region.

Based on these results, mesh 3 was the mesh chosen for the

case of L=D ¼ 0:5. The other two geometries analysed are

equal to this one, except for the length of the eroded region.

Therefore, the meshes used were proportionally increased

in the axial direction of the eroded region, so that the

element sizes are similar. The mesh used for L=D ¼ 1 has

29,250 elements, and for L=D ¼ 1:5, 34,750 elements.

4 Results and discussion

The effects of geometry, yield stress, and Reynolds number

on the fluids displacement through the eroded region of a

model oil well are evaluated for three different combina-

tions of fluids:

• Case 1 Viscoplastic fluid displacing a Newtonian one.

• Case 2 Newtonian fluid displacing a viscoplastic one.

• Case 3 Viscoplastic fluid displacing an other viscoplas-

tic fluid.

For all three geometries analysed, the following quantities

are kept constants, according to Fig. 1: entrance and exit

tube length La ¼ 0:110 m; inner and outer diameters of the

entrance and exit tubes, Di ¼ 0:016 m and Do ¼ 0:024 m,

respectively; diameter of the eroded region, D ¼ 0:032 m.

The dimensionless geometric parameters are: Do=Di ¼ 1:5,

and D=Di ¼ 2. In addition, the length of the eroded region
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for the three geometries is equal to 0.016 m (L=D ¼ 0:5),

0.032 m (L=D ¼ 1), and 0.048 m (L=D ¼ 1:5), and the

Reynolds number ranges from 0.001 to 50. The properties

of the fluids used in the simulations are given in Table 2. In

the simulations, the transient process begins with the tube

full of the displaced fluid (fluid 1). Then, fluid 2 (displacing

fluid) is injected at constant velocity during a certain time,

ti, when the injected volume equals the tube volume. All

the results shown below are obtained at this time, except

for Fig. 7, that shows the time evolution of the volume

fraction for a particular case.

The viscoplastic fluids are modelled by the modified

Herschel–Bulkley equation (eq. (7)). The values used for

the rheological parameters of fluids V1 and V2 are based

on the properties of typical drilling fluids, while the

properties used for fluid V3 are based on characteristic

values for cement slurries. The rheological parameters are

given by:

• Fluids V1 k ¼ 0:557 Pa.sn, n ¼ 0:446, and sy ¼
0:30; 0:91 and 2.0 Pa.

• Fluids V2 k ¼ 1:062 Pa.sn, n ¼ 0:605, and sy ¼ 0:4 and

0.8 Pa.

• Fluids V3 k ¼ 0:365 Pa.sn, n ¼ 0:657, and sy ¼ 12 and

24 Pa.

The regularization parameter used, namely the critical

shear rate _ccr, is always equal to _cc � 10�3, where _cc ¼
8ðvin=DhÞð3nþ 1Þ=4n is the characteristic shear rate. This

value was chosen based on tests performed in the flow

through a tube, and on discussions in the literature,

regarding the range of the regularization parameters of

similar regularized versions of the Herschel–Bulkely

equation (e.g. [21–25]).

The viscosity ratio is defined as the ratio of the viscosity

of fluid 2 by the viscosity of fluid 1, gr ¼ g2=g1. When the

fluid is non-Newtonian, we use a characteristic viscosity,

obtained at the characteristic shear rate _cc.
The displacement efficiency at the eroded region is

obtained by:

b ¼ A2

Ac

ð12Þ

where A2 is the area occupied by fluid 2 in the eroded

region, and Ac is the total area of the eroded region,

Ac ¼ ðD� DiÞL. Another important parameter to evaluate

the displacement process is the symmetry factor a that

quantifies the fore-aft symmetry of the flow inside the

eroded region, defined as:

a ¼ 2Ar2 � A2

Ac

ð13Þ

In the equation above, Ar2 is the area occupied by fluid 2 in

the half downstream zone of the eroded region. Therefore,

the flow is fore-aft symmetric if a ¼ 0, if a[ 0 there is a

larger amount of fluid 2 in the half zone close to the exit of

the eroded region, and if a\0 fluid 2 concentrates at the

half zone near the entrance of the eroded region.

Table 1 Meshes detail and

friction factor
Mesh Number of cells Dx (m) Dr (m) f Error of f %

Name Axial Radial Total

M1 646 44 11546 0.36532 0.18181 95.1376 0.0130

M2 710 55 15860 0.33239 0.14545 95.1448 0.0055

M3 785 102 23755 0.30064 0.07843 95.1496 0.0004

M4 865 141 33402 0.27283 0.05674 95.1499 0.0001

Fig. 2 Axial velocity profile at x� ¼ Lt=ð2DÞ, for meshes 1 (11,546

elements), 2 (15,860 elements), 3 (23,755 elements), and 4 (33,402

elements)

Table 2 Fluids properties

Fluid Mechanical behaviour Viscosity (Pa s) Density (kg/m3)

N1 Newtonian 0.001 998.2

V1 Viscoplastic – 1000

N2 Newtonian 0.799 1259.9

V2 Viscoplastic – 1529.7

V3 Viscoplastic – 1980
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4.1 Viscoplastic fluid displacing Newtonian fluid

This section presents the results of the viscoplastic fluids

V1 (fluid 2) displacing the Newtonian fluid N1 (fluid 1).

The density ratio is equal to qr ¼ 1:002. Figures 3 and 4

show the volume fraction field and the streamlines for

L=D ¼ 0:5, sy ¼ 0:3 and 2, and Re ¼ 0:001, 1, and 50. In

all volume fraction contour plots, fluid 2 is represented by

dark grey colour and fluid 1 by light grey. The streamlines

are coloured by the velocity magnitude of the flow, from

blue (low values of velocity) to red (high values of

velocity). However, the velocity scale is different for each

case, since the Reynolds numbers vary. The viscosity ratio

in this case is equal to gr ¼ g2=l, where l is the viscosity

of the Newtonian fluid N1, and g2 is the characteristic

viscosity of the viscoplastic fluids V1. The viscosity ratio

varies with the Reynolds number and the yield stress, and

their values for these cases go from 4347.8 to 31.4.

Increasing the Reynolds number, the characteristic shear

rate increases, and therefore, the viscoplastic viscosity and

the viscosity ratio decrease. On the other side, as yield

stress increases, the viscoplastic viscosity and the viscosity

ratio increase. In all cases analysed, the viscosity ratio is

much larger than unity, which leads to a flatter interface

shape during the displacement (not shown). For low Rey-

nolds numbers, it can be observed that the displaced vol-

ume of fluid 1 (Newtonian) inside the cavity in the eroded

region is negligible. The displacing fluid is not able to enter

the eroded region due to the low stress levels (below yield

stress). It is also noted a small amount of the displacing

fluid that is retained at the exit wall of the cavity. This fluid

gets there when it reaches the cavity, and doesn’t move

from there because the stress levels are below the yield

stress. It is noted that the larger viscosity ratio case

(Re ¼ 0:001; gr ¼ 2222:2) has the larger amount of fluid

retained. For sy ¼ 0:3, as Re increases to 1 fluid 2 begins to

enter the cavity, displacing fluid 1, because the stress level

increases to values larger than the yield stress. However,

for larger sy (Fig. 4), the stress level in the cavity is still

below yield stress, and the results are similar to that with

Re ¼ 0:001. When the Reynolds number increases further

(Re ¼ 50), the stress levels increase, but the displacement

through the cavity is worse because inertia makes fluid 2

passes through it, without entering. It is also noted that

inertia breaks the fore-aft symmetry due to flow advection

towards the cavity exit wall. This result is in agreement

with the results obtained by [17] and [26] for the flow of

one fluid through a expansion followed by a contraction,

where it is observed that inertia tends to displace the yield

surface to the side of the contraction (exit) wall of the

cavity. It is also interesting to note that the Newtonian fluid

that remains inside the cavity recirculates inside it, while

the viscoplastic fluid close to the cavity exit wall remains

stagnant.

Figures 5 and 6 show the results for L=D ¼ 1:5, for the

same cases as above. It can be noted that for the negligible

and low inertia cases (Re\1) fluid 2 fills almost all the

eroded region, meaning that the displacement process is

very good. When inertia increases, the displacing fluid is

advected throughout the exit cavity wall, resulting in a less

efficient displacement process. For the case with low yield

stress (sy ¼ 0:3) the displacement process is much worse

and unstable, probably due to lower values of the viscosity

ratio. Figure 7 shows the displacement process for this

Fig. 3 Volume fraction (left)

and streamlines (right, coloured

by the velocity magnitude) for

viscoplastic fluid V1 (dark

grey), sy ¼ 0:3 Pa, displacing

Newtonian fluid (light grey) for

L=D ¼ 0:5: a, d Re ¼ 0:001,
gr ¼ 2222:2, b, e Re ¼ 1,

gr ¼ 134:2, c, f Re ¼ 50,

gr ¼ 31:4
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particular case, where it can be observed that fluid 2 forms

a jet that travels in the direction of the cavity exit wall due

to inertia. When fluid 2 reaches the wall, it spreads all over

the cavity, and is not able to remove a large quantity of

fluid 1.

The results of the displacement efficiency in the eroded

region are shown in Fig. 8. It is noted that the efficiency is

much higher when the aspect ratio of the eroded region

(L / D) is larger. As it was observed in the volume fraction

field analysis, the flow dynamics is a competition between

Fig. 4 Volume fraction (left)

and streamlines (right, coloured

by the velocity magnitude) for

viscoplastic fluid V1 (dark

grey), sy ¼ 2 Pa, displacing

Newtonian fluid (light grey) for

L=D ¼ 0:5: a, d Re ¼ 0:001,
gr ¼ 4347:8, b, e Re ¼ 1,

gr ¼ 184:2, c, f Re ¼ 50,

gr ¼ 36:3

Fig. 5 Volume fraction (left) and streamlines (right, coloured by the velocity magnitude) for viscoplastic fluid V1 (dark grey), sy ¼ 0:3 Pa,

displacing Newtonian fluid (light grey) for L=D ¼ 1:5: a, d Re ¼ 0:001, gr ¼ 2222:2, b, e Re ¼ 1, gr ¼ 134:2, c, f Re ¼ 50, gr� ¼ 31:4

Fig. 6 Volume fraction (left) and streamlines (right, coloured by the velocity magnitude) for viscoplastic fluid V1 (dark grey), sy ¼ 2 Pa,

displacing Newtonian fluid (light grey) for L=D ¼ 1:5: a, d Re ¼ 0:001, gr ¼ 4347:8, b, e Re ¼ 1, gr ¼ 184:2, c, f Re ¼ 50, gr ¼ 36:3
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yield stress, viscous and inertia effects. In all situations, it

is observed that for higher Re, when inertia becomes

important, the displacing fluid is advected throughout the

tube without entering the eroded region, lowering the

efficiency displacement. For low Reynolds numbers, inertia

is negligible, and yield stress effects dominate. For low L /

D the efficiency is nearly constant with Re variation and is

small because the viscoplastic displacing fluid can’t enter

the cavity due to the low stress levels. As L / D increases,

the displacing fluid begins to enter the eroded region,

pushing the Newtonian fluid and ‘‘cleaning’’ the eroded

region. However, the results are non-monotonic. The larger

L / D presents an efficiency almost equal to 1 when Re is

negligible, decays very fast as Re increases to 0.01, and

increases again until inertia begins to control the flow. For

L=D ¼ 1 and low Re, the efficiency increases until inter-

mediate Reynolds numbers and decreases as Re increases

further, due to inertia. We can see also that yield stress

seems to be important only for low Re and L=D ¼ 1 and

1.5, but it doesn’t affect the process for L=D ¼ 0:5.

Another important result that can be evaluated in the

process is the distribution of the remaining displaced fluid

inside the eroded region. This can be done through the

analysis of the symmetry factor defined in eq. (13), which

is depicted in Fig. 9. It is worth recalling that the flow is

fore-aft symmetric if a ¼ 0, if a[ 0 the displacing fluid

concentration is higher close to the cavity exit, and if a\0

fluid 2 concentration is higher close to the cavity entrance.

It can be seen that the flow is symmetric, with very small

deviations for the shortest cavity. In the higher aspect ratios

no tendency can be noted for low Re, but as Re increases, a
slightly increases, and the displacing fluid tends to flow to

the right side of the eroded region due to inertia effects.

Fig. 7 Volume fraction evolution with time for viscoplastic fluid V1

(dark grey), sy ¼ 0:3 Pa, displacing Newtonian fluid (light grey) for

L=D ¼ 1:5: a t ¼ 0:25 s, b t ¼ 0:75 s, c t ¼ 1:25 s and d t ¼ 1:50 s

Fig. 8 Displacement efficiency as a function of the Reynolds number for the viscoplastic fluid V2 displacing the Newtonian fluid V2 for

L=D ¼ 0:5; 1:0; 1:5, and sy ¼ 0:3; 1:5; 2:0 Pa
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4.2 Newtonian fluid displacing viscoplastic fluid

Figure 10 presents the results for the Newtonian fluid N2

displacing the viscoplastic fluids V1, for qr ¼ 1:26, and

viscosity ratio gr ¼ l=g1, where l is the viscosity of the

Newtonian fluid (fluid 2), and g1 is the characteristic vis-

cosity of the viscoplastic fluid (fluid 1). In this case, the

viscosity ratio increases when Reynolds number increases,

and decreases when yield stress increases. As in the pre-

vious cases, some amount of fluid 1 remains inside the

cavity. The difference to the previous cases is that fluid 1

remains unyielded because the stress levels are below the

yield stress. The viscoplastic fluid only recirculates in the

high inertia case (Re ¼ 25), because the stress levels inside

the cavity are higher. For the intermediate Re and viscosity

ratios of order 1 the displacement is better, and only a small

amount of fluid 1 remains in the cavity. Increasing inertia,

we see again that the displacement and the fore-aft sym-

metry get worse, due to fluid advection that pushes the

displacing fluid to the exit wall of the eroded region,

generating a recirculating flow of the displaced fluid inside

the cavity.

Increasing the cavity aspect ratio to L=D ¼ 1:5, we

again see a better displacement than for lower aspect ratio.

Figure 11 shows that the displacing Newtonian fluid almost

fills the entire cavity, and only a small volume of the dis-

placed fluid remains close to the corners. We can observe

that for negligible and low inertia, the displacement is

better close to the entrance of the cavity. As Re increases,

the advection increases and deforms the interface to the

right (exit) side of the cavity. In addition, the fluid that

remains trapped begins to recirculate, due to higher levels

of stress, which surpass the yield stress.

The displacement efficiency is presented in Fig. 12.

Again it is clear that efficiency increases with L / D. When

inertia is negligible, the efficiency increases with Re and

decreases with yield stress, because it is directly related to

the region where the flow stress level is able to surpass the

yield stress. When inertia becomes important, flow

advection leads to lower displacement efficiency. The

symmetry factor is shown in Fig. 13. It can be seen that the

flow is symmetric, with very small deviations, for the

shortest cavity. As aspect ratio increases, it monotonically

increases with Re, going from negative values, where yield

stress dominates the flow, and the amount of displaced fluid

is higher close to the cavity exit, to positive ones (inertia

dominated flows) where the displacement is less efficient

close to the entrance of the eroded region.

4.3 Viscoplastic fluid V3 displacing viscoplastic
fluid V2

Figure 14 presents the results for the viscoplastic fluid V3

displacing the viscoplastic fluid V2, for s�y ¼ sy2=sy1 ¼ 60,

Fig. 9 Symmetry factor as a function of the Reynolds number for the viscoplastic fluid V2 displacing the Newtonian fluid for L=D ¼ 0:5; 1:0; 1:5,
and sy ¼ 0:3; 1:5; 2:0 Pa
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and the density ratio qr ¼ 1:57. The viscosity ratio is

gr ¼ g2=g1, where g1 is the characteristic viscosity of the

displaced fluid 1, and g2 is the characteristic viscosity of

the displacing fluid 2, both calculated at the characteristic

shear rate, _cc ¼ ð8vin=DhÞð3nþ 1Þ=4n. As in the previous

cases, it can be observed that for L=D ¼ 0:5 and negligible

inertia, only a small amount of the displacing fluid 2 enters

the eroded region, and a small amount of it remains stag-

nant at the exit wall. The stress levels generated are suf-

ficient to surpass the yield stress of fluid 1, so despite the

fact that it remains trapped in the cavity, it recirculates

there. As Re increases, but inertia is still low, a large

amount of fluid 1 is displaced due to the increase of the

stress levels that allows fluid 2 flows more into the cavity,

and the interface shape is shifted to the left. Increasing

inertia leads the interface to shift to the right due to fluid

advection, and the displacement process inside the cavity

becomes worse.

The results for L=D ¼ 1:5 are presented in Fig. 15. It

can be observed that they show similar behaviour of the

others pairs of fluids, with better displacement processes.

For negligible and low inertia, the interface between fluids

is shifted to the left, but when inertia becomes important

advection shifts the interface to the right and the dis-

placement process gets slightly worse.

The displacement efficiency is shown in Fig. 16. We can

see again that the highest efficiency is obtained for the

highest L / D. Since the efficiency is closer to unity for

these cases, we can observe only a mild variation of their

values for low Re. However, for the lower L / D we can see

a large increase in the efficiency due to the increase in the

stress levels at this range of Re. As inertia increases, we see

again the decrease of the displacement efficiency in all

cases.

Figure 17 shows the symmetry factor. In this case, the

shortest cavity has the largest fore-aft deviations from

Fig. 10 Volume fraction (left)

and streamlines (right, coloured

by the velocity magnitude) for

Newtonian fluid (dark grey)

displacing viscoplastic fluid V1

(light grey), sy ¼ 2 Pa, for

L=D ¼ 0:5: a, d Re ¼ 0:001,
gr ¼ 0:04, b, e Re ¼ 0:1,
gr ¼ 2:32, c, f Re ¼ 25,

gr ¼ 100:72

Fig. 11 Volume fraction (left) and streamlines (right, coloured by the velocity magnitude) for Newtonian fluid (dark grey) displacing viscoplastic

fluid V1 (light grey), sy ¼ 2 Pa, for L=D ¼ 1:5: a, d Re ¼ 0:001, gr ¼ 0:04, b, e Re ¼ 0:1, gr ¼ 2:32, c, f Re ¼ 25, gr ¼ 100:72
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Fig. 12 Displacement efficiency as a function of the Reynolds number for the Newtonian fluid displacing the viscoplastic fluid V2 for

L=D ¼ 0:5; 1:0; 1:5, and sy ¼ 0:3; 1:5; 2:0 Pa

Fig. 13 Symmetry factor as a function of the Reynolds number for the Newtonian fluid displacing the viscoplastic fluid V2 for

L=D ¼ 0:5; 1:0; 1:5, and sy ¼ 0:3; 1:5; 2:0 Pa
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symmetry. For higher Re the symmetry factor increases,

tending to positive values due to inertia effects, following

the same trend of the others pairs of fluids.

5 Final remarks

In this work, we analyse the displacement process of pairs

of fluids through an annular duct with a cavity. This

problem is found in the oil industry during cementing

operations in oil wells with eroded regions. The governing

conservation equations of mass and momentum are solved

numerically using the finite volume method, while the

volume of fluid method is used to model the multiphase

problem. The volume fraction field and flow streamlines

are presented for three pairs of fluids, that are representa-

tive for the real case scenarios, where the cement paste

displaces a spacer fluid (Newtonian or non-Newtonian) that

displaces the drilling fluid: a viscoplastic fluid displacing a

Newtonian one, a Newtonian fluid displacing a viscoplastic

one, and two viscoplastic fluids. We also present the dis-

placement efficiency and the symmetry factor, which

quantify the ratio of the amount of fluid left on each side of

the eroded region. Flow displacement is a function of the

geometry, ratio of fluids viscosities and densities, and yield

stress. It is shown that the displacement process is better for

larger aspect ratios of the eroded region. At low Reynolds

numbers, the process is governed by viscous effects, while

inertia dominates when Re increases, shifting the interface

towards the exit of the eroded region and decreasing the

displacement efficiency. The results obtained can help to

define better conditions during completing operations in oil

wells. However, some care must be taken regarding the

assumptions made in the present work, such as to consider

that the fluids are imiscible and that the flow is axisym-

metric (e.g. when there is eccentricity, this hypothesis is

not valid and the flow is 3D). The next steps of this work

would be to analyse new geometries for the eroded region,

Fig. 14 Volume fraction (left)

and streamlines (right, coloured

by the velocity magnitude) for

viscoplastic fluid V3 (dark grey)

displacing viscoplastic fluid V2

(light grey) for L=D ¼ 0:5,
s�y ¼ 60: a, d Re ¼ 0:001,

gr ¼ 29:30, b, e Re ¼ 0:1,
gr ¼ 11:46, c, f Re ¼ 50,

gr ¼ 3:11

Fig. 15 Volume fraction (left) and streamlines (right, coloured by the velocity magnitude) for viscoplastic fluid V3 (dark grey) displacing

viscoplastic fluid V2 (light grey) for L=D ¼ 1:5, s�y ¼ 60: a, d Re ¼ 0:001, gr ¼ 29:30, b, e Re ¼ 0:1, gr ¼ 11:46, c, f Re ¼ 50, gr ¼ 3:11
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Fig. 16 Displacement efficiency as a function of the Reynolds number for the viscoplastic fluid V3 displacing the viscoplastic fluid V2 for

L=D ¼ 0:5; 1:0; 1:5, and s�y ¼ 15; 20; 30; 60 Pa

Fig. 17 Symmetry factor as a function of the Reynolds number for the viscoplastic fluid V3 displacing the viscoplastic fluid V2 for

L=D ¼ 0:5; 1:0; 1:5, and s�y ¼ 15; 20; 30; 60 Pa
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the influence of tube inclination (non-vertical tubes), and to

compare the results obtained with experimental ones from

an experimental loop that is being developed.
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