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Abstract
Metal matrix composites offer a substantial surety to meet the present and future demands spanning from automobiles to

aerospace. Hybrid metal matrix composites are a new choice of materials involving several advantages over the single

reinforcement. In this present study, three specimens possessing aluminium 7075 reinforced with particulates of silicon

carbide (5, 10, 15% weight percentage) and alumina (5% weight percentage) were developed using stir casting. The

purpose of the study was to investigate the effect of reinforcement particles of silicon carbide on the machinability of

hybrid metal matrix composites. These materials are engineered to match the requirements of optimal output responses

such as low surface roughness, less tool wear, a less cutting force with the high rate of material removal under a set of

practical machining constraints. Multi-objective parametric optimization using genetic algorithm obtained optimal cutting

responses. The spindle speed, feed rate, depth of cut and weight percentages of SiC were selected as the influencing

parameters for meeting the output responses in end milling operation. Based on the Box–Behnken design in response

surface methodology, 27 experimental runs were conducted and nonlinear regression models were developed to predict the

objective function. The adequacy of the model was checked through ANOVA and was found to be significant. The

optimum settings of the parameters were found using multi-objective genetic algorithm. The predicted optimal settings

were verified through confirmatory experiments, and the results validated.

Keywords Composites � End milling � Genetic algorithm � Interaction effects � Multi-objective

List of symbols
Ra Surface roughness (lm)

MRR Material removal rate (mm3/min)

Tw Tool wear (mm)

Fz Cutting force (N)

N Spindle speed (rpm)

f Feed rate (mm/rev)

d Depth of cut (mm)

w Weight percentage of silicon carbide

DF Degree of freedom

CI Confidence interval

VIF Variance inflation factor

1 Introduction

Composites are the result of the research in material sci-

ence with a view of finding potential light weight

replacements for heavier materials. Metal matrix compos-

ites can be tailored to have superior properties such as high

specific strength, stiffness, wear resistance, high-tempera-

ture performance, better thermal and mechanical proper-

ties, fatigue and creep resistance than those of monolithic

alloys. Hybrid particulate-reinforced aluminium compos-

ites find diverse applications in automotive, aircraft and

locomotive industries due to their increased hardness and

strength. Machining is unavoidable in manufacturing, but

the machinability of composites is not as that of the matrix

material and is hindered by the hardness of the

Technical Editor: Márcio Bacci da Silva.
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reinforcements. Hence, machinability studies have

acquired greater importance in the area of composites

[1–3]. End milling is the widely used operation for metal

removal in a variety of manufacturing industries including

the automobile and aerospace sector where quality is an

important factor in the production of slots, pockets and

moulds/dies [4–10]. Hence, more insight into the process is

required. A manufacturing industry always aims at pro-

ducing a large number of products with desired quality at

the right time with less cost. This invites the use of multi-

objective optimization [11]. There are several multi-ob-

jective optimization techniques for the same like goal

programming, simulated annealing (SA), grey relational

analysis (GRA) and genetic algorithms (GA). The genetic

algorithm works with a random population of solution

points, and a set of Pareto-optimal solutions is obtained for

the best performance measures.

A detailed survey of the research works recently pub-

lished in journals was studied in depth to acquire knowl-

edge and constraints of the study. Evolutionary algorithms

are widely used as they are reasonably accurate [12].

Indrajit et al. [13] reviewed the various evolutionary

algorithms used in metal cutting processes. Jawahir et al.

[14] consolidated in his studies on the effect of surface

integrity and directed that the major challenges in surface

integrity studies for the future include the generation and

use of new and advanced experimental tools and tech-

niques for comprehensive evaluation of surface integrity

from material removal processes. Doriana et al. [15] sug-

gested that the application of the genetic algorithm-based

approach in complex machining systems. He concluded

that intelligent manufacturing achieves substantial savings

in terms of money and time if it integrates an efficient

automated process planning module with other automated

systems such as production, transportation and assembly.

Senthilkumar et al. [16] obtained a non-dominated

solution set to maximize metal removal rate and to mini-

mize surface roughness using genetic algorithm. Vijay

Kumar et al. [17] concluded that the experimental values

and the regression model values follow an identical trend

showing that the models developed are best suited for

turning operation. Majumder [18] illustrated the use of

three algorithms—particle swarm optimization, simulated

annealing and genetic algorithm for optimizing the electric

discharge machining process parameters. Hesam et al. [19]

investigated the use of micro-genetic algorithm for

obtaining good surface finish in EDM process. Thangarasu

et al. [20] studied that the major parameters affecting

machining quality include surface roughness and material

removal rate in AISI 304 stainless steel using MOGA.

Ganesan et al. [21] remarked the advantages of multi-ob-

jective optimization approach over the single-objective one

and highlighted that by means of Pareto-graph several

different situations may be considered, facilitating the

choice of right parameters for any condition.

Mahfouf et al. [22] compared the GA-based single-ob-

jective and the multi-objective optimization algorithms to

obtain the optimal combination of the composites and the

tempering temperature for optimal design of alloy steels.

The results show that the evolutionary multi-objective

algorithm (EMO) techniques can be effectively used to

deal the optimization problems.

Yadav et al. [23] studied the process parameters of

wheel speed, pulse current, pulse on-time and duty factor in

electrical discharge diamond face grinding and optimized

the material removal rate (MRR) and average surface

roughness (Ra) using multi-objective genetic algorithm.

Santhanakrishnan et al. [24] focused on the effect of

geometrical and machining parameters such as rake angle,

nose radius, cutting speed, feed rate and depth of cut on

temperature rise during end milling operation on Al 6351

with high-speed steel end mill cutter using genetic

algorithm.

Malghan et al. [25] investigated the multi-objective

optimization using the application of particle swarm opti-

mization and response surface methodology for face mil-

ling parameters on aluminium matrix composites. They

concluded that spindle speed has major contribution fol-

lowed by feed rate and depth of cut on cutting force, sur-

face roughness and power consumption.

Prabhu et al. [26] studied the optimization of electric

discharge machining parameters using fuzzy logic with

central composite design of response surface methodology.

The literature survey made shows that limited research

has been reported with the application of response surface

methodology (RSM)-based genetic algorithm (GA) to

optimize the material removal rate, surface roughness, tool

wear and cutting force simultaneously.

Most of the studies during machining of Al-based

composites reinforced with SiC particles revealed the wear

characteristics of tool based on only the effects of cutting

parameters like cutting speed, feed rate, depth of cut. The

effect of weight percentage of SiC and Al2O3 particles has

not been examined simultaneously for various machin-

ability characteristics like surface finish, material removal

rate, cutting force and tool wear. The formation of con-

tinuous chips while machining of aluminium is a serious

issue which causes heat generation leading to excess tool

wear.

To the authors’ best knowledge, no work published

evaluates the optimality and the effects of cutting param-

eters on multi-performance characteristics in end milling

process by using RSM and multi-objective genetic algo-

rithm (MOGA). The setting of parameters was accom-

plished by Box–Behnken design method. The purpose of

the present work aims to: i) develop a mathematical model
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using spindle speed, feed rate, depth of cut and varying

weight percentage of SiC by multiple nonlinear regression

for obtaining optimal responses using RSM; ii) obtain

Pareto-optimal solutions to acquire appropriate optimal

input variables for improving machinability; (iii) investi-

gate the effect of SiC on machinability characteristics of

prepared hybrid composites; and iv) study of effect of

process parameter on formation of chips during machining.

2 Materials and methods

2.1 Material selection

Aluminium 7075 is used as the base material. Also called

aircraft aluminium, Al7075 is widely employed in transport

applications, including marine, automotive and aviation,

due to their high strength-to-density ratio. Corrosion pro-

tection is ensured also in outdoor atmosphere. The rein-

forcements chosen are silicon carbide and alumina. Owing

to their increased hardness and strength, the mechanical

properties of the composite are enhanced. The silicon

carbide particles size used is 220 meshes, and the average

size of alumina used is 45 lm. The density of Al2O3 par-

ticles is higher than SiC. The alumina particles prevent the

oxidation of liquid aluminium. The volume fraction of

alumina is kept fixed as 5%. The literature survey suggests

that the addition of SiC to 15% increases the mechanical

properties of the composite. It is also obvious that the

volume fraction of the reinforcement phase as well the

matrix properties affects the machinability of the com-

posite. So the three combinations of composites as

90Al7075/5SiC/5Al2O3, 85Al7075/10SiC/5Al2O3 and

80Al7075/15SiC/5Al2O3 were fabricated with the size of

130 mm 9 100 mm 9 50 mm.

2.2 Stir casting

Stir casting technique is used to fabricate aluminium alloy

with varying percentages of silicon carbide and alumina

reinforcements. In order to achieve good bonding between

the matrix and particulates, one weight per cent of mag-

nesium was added. The stir casting furnace (Fig. 1) is

mounted on the floor, and the temperature of the furnace is

precisely measured and controlled in order to achieve

sound quality composite. The melt was maintained at a

temperature between 750 �C and 800 �C for 1 h. Vortex

was created by using a mechanical stirrer.

Weighed quantities of SiC and alumina are preheated to

600 �C and added to the melt with constant stirring for

about 10 min at 500–650 rpm. After complete addition of

the particles to the melt, the composite alloy was tilt-

poured into the preheated (300 �C) permanent steel mould

and allowed to cool in atmospheric air. The billet was then

removed from the mould and machined to required

dimensions.

The microstructures of Al7075/5%Al2O3/5%SiC,

Al7075/5%Al2O3/10%SiC and Al7075/5%Al2O3/15%SiC

are shown in Fig. 2a–c.

In this work L27, orthogonal array of Box–Behnken

design of the experiment is used for conducting the end

milling operation trials. These three-level estimates pro-

vided a simple, efficient and systematic approach to opti-

mizing the design, performance, quality and cost compared

to central composite design (CCD). A number of factors

such as spindle speed, feed, depth of cut, tool geometry,

work/tool materials and cutting conditions affect the

machinability characteristics. Four controlling factors,

namely spindle speed, feed, depth of cut and weight per-

centage of SiC, were chosen. These factors were selected

from literature study of machining optimization problems

and machinability studies [3, 23, 24]. Table 1 lists the

machining parameters used as control factors and their

levels. The values were taken based on machining settings

normally followed in industries for Al7075 with carbide-

coated inserts. The range of cutting parameters normally

used in the industry for such processes has been adopted.

With a higher proportion of SiC, composite becomes

brittle leading to poor surface finish. The combination of

cutting parameters coupled with variation in the composi-

tion of reinforcement may lead to better performances.

Considering these, proportions of SiC was also taken as a

factor influencing the machining performance. Machin-

ability was referred by surface finish, tool life, power

Fig. 1 Stir casting furnace make: SWAM EQUIP
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consumption and material removal rate. So the multi-re-

sponses were chosen as surface roughness, MRR, cutting

force and tool wear.

2.3 End milling operation

Based on the design matrix, the fabricated composites were

end-milled in a BFW Universal Milling Machine (Fig. 3).

AXMT 0903 PER-EML TT8020 of Taegu Tec carbide-

coated which has helical higher positive cutting edge inserts

was used for end milling. Length and diameter of the tool

holder are 170 mm and 20 mm, respectively (specification

TE90AX 220-09-L). Surface roughness (Ra) was measured

using MITUTOYO SJ210 surface tester. Tool flank wear

(Tw) was measured using METZER profile projector (model

Metz-401). Cutting force (Fz) wasmeasured inKistlermulti-

component dynamometer (model 9257B).

Material removal rate (MRR) was calculated as per

Eq. (1)

MRR ¼ L �W � D=T mm3=min
� �

ð1Þ

where L—length of specimen (mm), W—width of cut

(mm), D—depth of cut (mm), T—time taken for material

removal in minutes. Measurements of responses are shown

in Fig. 4 (Table 2).

Table 2 shows the experimental parameter settings and

the corresponding values of the responses. With the data

available in the table, regression models for all the

responses were formulated. The details of the models are

discussed in the next section.

3 Results and discussion

3.1 Mathematical modelling and optimization

In most of the surface model problems, the form of asso-

ciation between the output and the independent variable is

unpredictable. Thus, the first step in RSM is to find a

suitable approximation for the true functional relationship

between Y and set of independent variables used. Usually, a

second-order model is developed in RSM. It is assumed

that all the parameters are controllable by experiments with

negligible errors. Therefore, a second-order polynomial

Eq. (2) can be used to find a suitable functional relationship

between the process parameters and the response surface.

Y ¼ b0 þ
Xk

j¼1

bjXj þ
Xk

j¼1

bjjX
2
j þ

X

i\

Xk

j¼2

bjjXiXj þ e ð2Þ

where Xj denotes parameters, k is the number of parame-

ters, bj is the coefficients, e is the random error, and

coefficients used in the above model can be calculated by

means of using a least squares technique. The second-order

model is normally used when the response function is not

known or nonlinear. ANOVA was taken into account to

estimate the suitability of the regression model. To this

end, the ratio of variance due to the effect of the model

factors and variance resulting from the error terms, F ratio,

a b cSiC

Al2O3

Al Matrix 

Fig. 2 Microstructures of

Al7075 composite with alumina

5% and SiC a 5%, b 10% and

c 15%

Table 1 Control factors and levels for end milling

Control factors Levels

- 1 0 ? 1

Spindle speed (N) in rpm 1000 1500 2000

Feed rate (f) in mm/rev 0.02 0.03 0.04

Depth of cut (d) in mm 1 1.5 2

Weight percentage of SiC (w) 5 10 15

Fig. 3 BFW universal milling machine
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was calculated as an ANOVA procedure. F ratio or vari-

ance ratio is employed to determine the significance of the

model regarding variance of all the terms at an appropriate

level of a. The aim of RSM model is to obtain a significant

model [27].

To test the significance of the individual model coeffi-

cients, the model can be optimized by adding or deleting

coefficients through backward elimination, forward addi-

tion or stepwise elimination/addition/exchange [28].

The regression equation reveals the relationship between

each of the parameters using the experimental data which in

turn can be used to estimate the expected values of the

response. In this work, the responses chosen are surface

roughness, cutting force tool wear andmaterial removal rate.

Design Expert software aids to understand and evaluate

the effects of parameters and their interaction effects on the

response. It is an efficient tool to optimize processes with

one or more responses. Speed (N), feed rate (f), depth of cut

(d), the weight percentage of silicon carbide content (w) are

chosen as the input parameters. The response surface of

various responses can be expressed in terms of these fac-

tors as in Eq. (3).

Response Y ¼ f N; f ; d;wð Þ ð3Þ

Prediction models for the responses are obtained by

nonlinear quadratic backward reduction regression mod-

elling with an exit alpha value of 0.1. The quadratic

equations in terms of coded factors for the various objec-

tives are given in Eqs. 4, 5, 6 and 7.

Ra ¼ 0:56þ 0:036N þ 0:038f þ 0:023d þ 0:026w

� 0:075Nw� 0:027w2 ð4Þ

MRR ¼ 2238:93þ 351:69N þ 427:2f þ 247:23d

� 231:44w� 525:25N2 � 344:03f 2

þ 596:37d2 � 585:52w2

ð5Þ

CF ¼ 108:47þ 11:51N � 12:63f þ 27:04d � 7:93w

� 24:77Nf � 9:75Nwþ 12:09fd � 11:94fw

þ 14:50dw� 7:74N2 � 16:17w2

ð6Þ

TW ¼ 0:25þ 0:090N þ 0:031f þ 0:028d þ 0:055w

þ 0:014fwþ 0:013d2 þ 0:013w2 ð7Þ

3.2 Analysis of variance

The mathematical models obtained are tested for their

adequacy through analysis of variance. A greater F value

and a lesser p value make the parameters more significant

at 95% confidence interval. Tables 3, 4, 5 and 6 show the

ANOVA table results from a reduced quadratic model for

responses by considering the backward reduction proce-

dure with 0.1 alpha exit value to automatically reduce

insignificant terms. Daniel et al. [29] demonstrated in

multi-objective optimization of wire electric discharge

machining work using the backward reduction procedure of

RSM.

Fig. 4 Measurements of responses. a Cutting tool insert, b tool holder (TE90AX 220-09-L), c workpieces, d surface roughness measurement,

e tool flank wear measurement
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Table 3 shows the ANOVA table for response surface-

reduced quadratic model of surface roughness (Ra). The

model F value of 10.69 implies the model is significant.

There is only a 0.01% chance that a ‘‘model F value’’ this

large could occur due to noise. p value less than 0.05

indicates model terms are significant. In this case A, B, C,

D, AD are significant model terms. Values greater than 0.1

indicate the model terms are not significant. The ‘‘lack of

Table 2 Experimental results

Run Spindle speed (N) Feed rate (f) Depth of cut (d) SiC (w) Ra (lm) MRR (mm3/min) Fz (N) Tw (mm)

1 ?1 0 - 1 0 0.5023 956.3 101.41 0.347

2 0 - 1 ?1 0 0.542 1043.48 161.5 0.247

3 0 0 0 0 0.563 2148.95 106.29 0.249

4 0 0 0 0 0.561 2147.93 106.27 0.245

5 - 1 ?1 0 0 0.575 925.98 109.31 0.199

6 0 ?1 ?1 0 0.654 2790.7 107.67 0.298

7 0 ?1 0 ?1 0.638 1125.98 76.54 0.351

8 0 - 1 - 1 0 0.5342 734.125 80.11 0.2016

9 0 - 1 0 - 1 0.42 805.97 94.48 0.188

10 - 1 0 ?1 0 0.5012 812.61 109.5 0.188

11 ?1 - 1 0 0 0.587 1303.57 146.58 0.316

12 0 ?1 0 - 1 0.521 2109.38 96.36 0.233

13 ?1 0 0 ?1 0.502 1258.8 59.87 0.401

14 0 0 - 1 - 1 0.523 756.303 89.04 0.184

15 ?1 ?1 0 0 0.654 2160.00 72.94 0.359

16 0 ?1 - 1 0 0.586 1406.25 74.62 0.266

17 0 0 ?1 ?1 0.5996 812.61 122.56 0.395

18 0 0 0 0 0.562 2148.94 106.29 0.249

19 0 0 ?1 - 1 0.534 1506.28 112.34 0.25

20 - 1 0 - 1 0 0.501 759.494 50.75 0.135

21 ?1 0 ?1 0 0.61 1463.42 148.07 0.379

22 - 1 0 0 ?1 0.5623 834.45 68.08 0.231

23 - 1 - 1 0 0 0.521 698.817 83.86 0.136

24 0 - 1 0 ?1 0.562 805.97 122.44 0.249

25 0 0 - 1 ?1 0.514 762.712 41.24 0.289

26 - 1 0 0 - 1 0.412 1088.71 81.44 0.116

27 ?1 0 0 - 1 0.6052 2111.11 112.24 0.288

Table 3 ANOVA table for

response surface-reduced

quadratic model of surface

roughness

Source Sum of squares df Mean square F value p value

Model 0.076 6 0.013 10.69 \ 0.0001 Significant

A—Spindle speed 0.016 1 0.016 13.35 0.0016

B—Feed rate 0.018 1 0.018 15.06 0.0009

C—Depth of cut 6.55E-03 1 6.55E-03 5.55 0.0288

D—Percentage of SiC 8.32E-03 1 8.32E-03 7.05 0.0152

AD 0.023 1 0.023 19.1 0.0003

D2 4.81E-03 1 4.81E-03 4.07 0.0572

Residual 0.024 20 1.18E-03

Lack of fit 0.024 18 1.31E-03 3934.45 0.0003 Significant

Pure error 6.67E-07 2 3.33E-07

Cor total 0.099 26

377 Page 6 of 15 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:377

123



Table 4 ANOVA table for

response surface-reduced

quadratic model of material

removal rate

Source Sum of squares DF Mean square F value p value

Model 8.18E?06 8 1.02E?06 9.53 \ 0.0001 Significant

A—Spindle speed 1.48E?06 1 1.48E?06 13.83 0.0016

B—Feed rate 2.19E?06 1 2.19E?06 20.4 0.0003

C—Depth of cut 7.34E?05 1 7.34E?05 6.83 0.0176

D—Percentage of SiC 6.43E?05 1 6.43E?05 5.99 0.0249

A2 1.47E?06 1 1.47E?06 13.71 0.0016

B2 6.31E?05 1 6.31E?05 5.88 0.0261

C2 1.90E?06 1 1.90E?06 17.67 0.0005

D2 1.83E?06 1 1.83E?06 17.03 0.0006

Residual 1.93E?06 18 1.07E?05

Lack of fit 1.88E?06 16 1.18E?05 4.84 0.1844 Not significant

Pure error 48605.4 2 24302.7

Cor total 1.01E?07 26

Table 5 ANOVA table for

response surface-reduced

quadratic model of cutting force

Source Sum of squares DF Mean square F value p value

Model 19672.89 11 1788.44 15.48 \ 0.0001 Significant

A—Spindle speed 1590.91 1 1590.91 13.77 0.0021

B—Feed rate 1913.45 1 1913.45 16.56 0.001

C—Depth of cut 8773.4 1 8773.4 75.95 \ 0.0001

D—Percentage of SiC 754.78 1 754.78 6.53 0.0219

AB 2454.71 1 2454.71 21.25 0.0003

AD 380.45 1 380.45 3.29 0.0896

BC 584.19 1 584.19 5.06 0.04

BD 570.73 1 570.73 4.94 0.042

CD 841.58 1 841.58 7.29 0.0165

A2 383.57 1 383.57 3.32 0.0884

D2 1673.23 1 1673.23 14.48 0.0017

Residual 1732.73 15 115.52

Lack of fit 1732.73 13 133.29 1.48E?05 \ 0.0001 Significant

Pure error 1.80E-03 2 9.00E-04

Cor total 21405.61 26

Table 6 ANOVA table for

response surface-reduced

quadratic model of Tool wear

Source Sum of squares df Mean square F value p value

Model 0.16 7 0.022 102.64 \ 0.0001 Significant

A—Spindle speed 0.098 1 0.098 447.86 \ 0.0001

B—Feed rate 0.011 1 0.011 51.63 \ 0.0001

C—Depth of cut 9.32E-03 1 9.32E-03 42.54 \ 0.0001

D—Percentage of SiC 0.036 1 0.036 164.22 \ 0.0001

BD 8.12E-04 1 8.12E-04 3.71 0.0692

C2 1.16E-03 1 1.16E-03 5.31 0.0327

D2 1.07E-03 1 1.07E-03 4.87 0.0399

Residual 4.16E-03 19 2.19E-04

Lack of fit 4.16E-03 17 2.45E-04 244.7 0.0041 Significant

Pure error 2.00E-06 2 1.00E-06

Cor total 0.16 26
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fit F value’’ of 3934.45 implies the lack of fit is signifi-

cantly relative. There is only a 0.03% chance that a ‘‘lack

of fit F value’’ this large could occur due to noise. R-

squared value is 0.7624. The ‘‘Pred R-squared’’ of 0.5167

is in reasonable agreement with the ‘‘Adj R-squared’’ of

0.6911.

Table 4 indicates the analysis of variance for response

surface-reduced quadratic model of MRR. The model

F value of 9.53 implies the model is significant. There is

only a 0.01% chance that a ‘‘model F value’’ this large

could occur due to noise. Values of ‘‘Prob[F’’ less than

0.05 indicate model terms are significant. In this case A, B,

C, D, A2, B2, C2, D2 are significant model terms. Values

greater than 0.1 indicate the model terms are not signifi-

cant. The ‘‘lack of fit F value’’ of 4.84 implies the lack of

fit is not significantly relative to the pure error. There is a

18.44% chance that a ‘‘lack of fit F value’’ this large could

occur due to noise. R-squared value is 0.8090. R-squared

value is 0.9191. The ‘‘Pred R-squared’’ of 0.5702 is in

reasonable agreement with the ‘‘Adj R-squared’’ of 0.7241.

Table 5 reveals about the variance of analysis of

reduced quadratic model for cutting force. The model

F value of 15.48 implies the model is significant. There is

only a 0.01% chance that a ‘‘model F value’’ this large

could occur due to noise. In this case A, B, C, D, AB, BC,

BD, CD, D2 are significant model terms. Here is only a

0.01% chance that a ‘‘lack of fit F value’’ this large could

occur due to noise. The ‘‘Pred R-squared’’ of 0.6872 is in

reasonable agreement with the ‘‘Adj R-squared’’ of 0.8597.

Table 6 depicts the information of ANOVA for response

surface-reduced quadratic model of tool wear. The model

F value of 102.64 implies the model is significant. There is

only a 0.01% chance that a ‘‘model F value’’ this large

could occur due to noise. In this case A, B, C, D, C2, D2 are

significant model terms. There is only a 0.41% chance that

a ‘‘lack of fit F value’’ this large could occur due to noise.

R-squared value is 0.9742. The ‘‘Pred R-squared’’ of

0.9391 is in reasonable agreement with the ‘‘Adj R-

squared’’ of 0.9647.

Tables 7, 8, 9 and 10 show the confidence interval

results of standard error for the responses of surface

roughness, MRR, cutting force and tool wear.

Normal probability plot of residual is a diagnostic

checking tool for normality of residuals of developed

response surface model. From Fig. 5a–d, it is observed that

distributed residuals are almost proportional to the normal

probability following a straight line pattern, indicating that

the errors are distributed normally.

3.3 Effect of SiC on machinability

Machinability means good performance regarding surface

finish, cutting power consumption, material remove rate,

chip removal and tool life, surface finish. Lui et al. [30]

studied on the interaction of the cutting tools and the

ceramic-reinforced metal matrix composites during micro-

machining. In particulate MMCs, the effects of particle

shapes (aspect ratio), particle size and volume fraction

have a substantial influence on the micro-cutting perfor-

mance. Hence, the effect of the weight percentage of the

reinforcement (SiC) with the most influencing parameter

on the machinability characteristics was studied.

Figure 6 represents the surface plot of surface roughness

with respect to varying spindle speed and weight percent-

age of SiC. The figure shows that surface roughness

increases with increase in spindle speed.

From Fig. 6, it can be observed that the surface rough-

ness increased by increasing the percentage of SiC at the

hold value of feed rate of 0.03 mm/rev. Likewise,

increasing the spindle speed from 1000 to 2000 rpm, the

surface roughness increased at 5 wt% of SiC. The combi-

nation of lower percentage of SiC and higher spindle speed

exhibited the higher surface roughness. The cutting speed

plays the major role in deciding the surface roughness.

Generally, at higher speeds minimum surface roughness is

achieved, and at lower speeds, the surface is rougher due to

the formation of built-up edges (BUE). But in this com-

posite, due to the presence of reinforcements and higher

tool wear at increased speeds, increasing side flow of alu-

minium metal which outweighs the effect of reduced cut-

ting forces, surface roughness increases at increased

speeds.

From Fig. 7, it can be examined that MRR increases

gradually by increasing the addition of SiC from 5 to

Table 7 Confidence interval for

surface roughness
Factor Coefficient estimate df Standard error 95% CI low 95% CI high VIF

Intercept 0.56 1 8.87E-03 0.55 0.58

A—Spindle speed 0.036 1 9.92E-03 0.016 0.057 1

B—Feed rate 0.038 1 9.92E-03 0.018 0.059 1

C—Depth of cut 0.023 1 9.92E-03 2.67E-03 0.044 1

D—Percentage of SiC 0.026 1 9.92E-03 5.64E-03 0.047 1

AD - 0.075 1 0.017 - 0.11 - 0.039 1

D2 - 0.027 1 0.013 - 0.055 9.01E-04 1
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10 wt% at a spindle speed rate of 1000 rpm. Further

increase in SiC causes decrease in MRR. It is clear from

the plot that the combination of lower percentage of SiC

and higher spindle speed causes higher amount of material

removal. As SiC content increases, the brittleness of the

composite increases leading to the disappearance of BUE.

Increased reinforcements hindered material removal rate

due to their increased hardness

From Fig. 8, it has been examined that cutting force

increases with increase in spindle speed. When the spindle

speed is fixed at 1000 rpm and increasing the percentage of

SiC from 5% to 15%, cutting force increases up to a certain

limit of 10 wt% of SiC reinforcement and then cutting

force decreases. The formation of the built-up edge (BUE)

on the tools and change in the thickness of the chips

removed from the workpiece material is very important in

determining cutting force values. Though increased rein-

forcements result in the disappearance of BUE, accelerated

tool wear at a high volume fraction of SiC increases the

cutting force required to cut the material (Fig. 8). Also

cutting force modelling has to be done on a microscale as

the tool encounters the harder reinforcements and matrix

alternatively.

Table 8 Confidence interval for

MRR
Factor Coefficient estimate df Standard error 95% CI low 95% CI high

Intercept 2238.93 1 189.16 1841.53 2636.3

A—Spindle speed 351.69 1 94.58 152.99 550.4

B—Feed rate 427.2 1 94.58 228.49 625.9

C—Depth of cut 247.23 1 94.58 48.53 445.93

D—Percentage of SiC - 231.44 1 94.58 - 430.14 - 32.73

A2 - 525.25 1 141.87 - 823.3 - 227.2

B2 - 344.03 1 141.87 - 642.08 - 45.98

C2 - 596.37 1 141.87 - 894.43 - 298.32

D2 - 585.52 1 141.87 - 883.58 - 287.47

Table 9 Confidence interval for

cutting force
Factor Coefficient estimate df Standard error 95% CI low 95% CI high VIF

Intercept 108.47 1 3.58 100.83 116.11 1

A—Spindle speed 11.51 1 3.1 4.9 18.13 1

B—Feed rate - 12.63 1 3.1 - 19.24 - 6.01 1

C—Depth of cut 27.04 1 3.1 20.43 33.65 1

D—Percentage of SiC - 7.93 1 3.1 - 14.54 - 1.32 1

AB - 24.77 1 5.37 - 36.23 - 13.32 1

AD - 9.75 1 5.37 - 21.21 1.7 1

BC - 12.09 1 5.37 - 23.54 - 0.63 1

BD - 11.94 1 5.37 - 23.4 - 0.49 1

CD 14.5 1 5.37 3.05 25.96 1.04

A2 - 7.74 1 4.25 - 16.8 1.31 1.04

D2 - 16.17 1 4.25 - 25.22 - 7.11 1

Table 10 Confidence interval

for tool wear
Factor Coefficient estimate df Standard error 95% CI low 95% CI high VIF

Intercept 0.25 1 4.93E-03 0.24 0.26

A—Spindle speed 0.09 1 4.27E-03 0.081 0.099 1

B—Feed rate 0.031 1 4.27E-03 0.022 0.04 1

C—Depth of cut 0.028 1 4.27E-03 0.019 0.037 1

D—Percentage of SiC 0.055 1 4.27E-03 0.046 0.064 1

BD 0.014 1 7.40E-03 - 1.24E-03 0.03 1

C2 0.013 1 5.85E-03 1.24E-03 0.026 1.04

D2 0.013 1 5.85E-03 6.62E-04 0.025 1.04
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The response plot for tool wear (Fig. 9) shows a linear

curve. As the percentage of SiC and spindle speed increase,

tool wear also increased. At a lower spindle speed, tool

wear is less, and the formation of unstable larger BUE at a

low spindle speed protects the cutting edge from further

wear. But with an increase in spindle speed, an increase in

tool wear is observed, due to the formation of high tem-

perature at high spindle speed and thermal softening at

cutting edge. The results were similar to the work con-

cluded by the researcher Ozben et al. [31].

3.4 Multi-objective optimization solutions using
RSM

A set of multi-response optimization solution for minimum

surface roughness, cutting force, tool wear and maximum

material removal rate is given in Table 11. The optimum

point of prediction of multi-response characteristics of fine

surface finish, least cutting force, tool wear and maximum

MRR is shown in Table 12. The purpose of the confirma-

tion test is to validate the results drawn during the tests.

Once the optimum level of the process parameters is

Fig. 5 Normal probability plots of residuals for a surface roughness, b material removal rate, c cutting force, d tool wear
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selected, the last step is to predict and verify the

improvement of the machinability characteristics using the

optimum level of the parameters.

Confirmatory tests were conducted twice with the set-

tings of solution 9. The confirmatory test results show the

values of Ra as 0.49 lm and 0.47 lm, MRR as 1745 mm3/

min and 1689 mm3/min, Fz as 96.2 N and 101.7 N and,

Tw as 0.23 mm and 0.15 mm for the two runs. Table 13

shows confirmatory result with 95% confidence level.

Confirmation is intended to be used to confirm that the

model can predict actual outcomes at the optimal settings

determined from the analysis. Two (n = 2) runs are con-

ducted at the optimal settings. The average of those runs is

compared to the prediction interval for a sample of size n.

The larger the n, the smaller the interval. Smaller intervals

indicate good precision in the estimates. If the sample size

is one, then it can be thought of as the next observation. A

prediction interval will be larger (a wider spread) than the

confidence interval because there is more scatter expected

from a small sample estimating the average versus the

entire population’s true mean.

Multi-response optimization by RSM shows that the

minimum value of surface roughness during end milling

aluminium composites can be obtained at spindle speed of

1210 rpm, feed rate of 0.033 mm/rev, depth of cut of

1.6 mm and 5% of SiC.

3.5 Optimization using multi-objective genetic
algorithm

The aim of this work is to simultaneously optimize surface

roughness, material removal rate, cutting force and tool

wear as to (1) minimize surface roughness (Ra), (2) max-

imize material removal rate (MRR), (3) minimize cutting

force (Fz) and (4) minimize tool wear (Tw).

Genetic algorithm is a popularly used meta-heuristic

tool for multi-objective optimization. Multi-objective GA

generates a set of Pareto-optimal solutions which are each

good in some respect. Optimization is done using multi-

Fig. 6 Surface plot of Surface roughness

Fig. 7 Surface plot of MRR

Fig. 8 Surface plot of cutting force

Fig. 9 Surface plot of tool wear
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objective genetic algorithm and direct search tool box.

Because of the conflicting nature of performance measures,

a single combination of input parameters does not serve the

purpose. As a result, a set of optimal solutions (i.e., Pareto-

optimal solutions) is achieved instead of a single solution.

Pareto-front plots the function values for all non-inferiority

solutions of Ra and MRR as shown in Fig. 10.

The non-dominated Pareto-optimal solutions are listed

in Table 14. These points can be plotted between any two

objective functions to form the Pareto-front. Figure 10

shows the Pareto-front drawn between surface roughness

and material removal rate. Points 1–4 show a very good

surface finish but at the cost of material removal rate.

Though the roughness values fall within 0.3 microns, the

material removal is less than 1100 mm3/min. Points 6–10

show a moderate surface finish with a good increase in

material removal rate (1000–2050 mm3/min). Points 12–14

pertain to a very high material removal of more than

2000 mm3/min with surface roughness values falling

between 0.8 and 1.20 microns.

Studying Table 14, several decisions may be made,

depending on the real conditions. For instance, the most

suitable machining parameters should match the solution

14 when the power consumption is an important concern

since cutting force is a direct predictor of power con-

sumption. But at these cutting conditions, material removal

is not so appreciable which means that the production time

increases. The choice of solution will essentially depend on

the working environment. Similar observations were made

in the research of Pushpendra et al. [32].

Table 11 Multi-response solutions

S. No. Spindle speed Feed rate Depth of cut Percentage of SiC Ra (lm) MRR (mm3/min) Fz (N) Tw (mm)

1 1208 0.032 1.600 5.000 0.451 1596 89.891 0.163

2 1206 0.032 1.597 5.000 0.451 1593 89.777 0.162

3 1207 0.032 1.598 5.000 0.452 1589 89.685 0.162

4 1208 0.032 1.605 5.000 0.451 1601 90.089 0.163

5 1209 0.033 1.598 5.000 0.452 1602 90.013 0.163

6 1203 0.032 1.608 5.000 0.451 1591 89.935 0.162

7 1209 0.032 1.608 5.000 0.451 1601 90.089 0.163

8 1205 0.033 1.605 5.000 0.451 1601 90.135 0.163

9 1210 0.033 1.605 5.000 0.450 1611 90.303 0.164

Table 12 Optimum point of prediction

Solution 1 of 9

response

Predicted

mean

Predicted

median

SD SE mean 95% CI low

for mean

95% CI high

for mean

95% TI low for

99% pop

95% TI high for

99% pop

Surface

roughness

0.460 0.460 0.0343565 0.018276 0.422128 0.498376 0.308584 0.611919

Material

removal rate

1605.33 1605.33 296.766 177.151 1219.35 1991.31 131.26 3079.41

Cutting force 90.3411 90.3411 10.7478 6.02053 77.5086 103.174 39.9957 140.686

Tool wear 0.16122 0.16122 0.0148002 0.007246 0.146053 0.176387 0.0964461 0.225994

Table 13 Experimental and predicted values of results—two-sided, confidence = 95%

Solution 9 of response Predicted mean Predicted median SD n SE Pred 95% PI low Data mean 95% PI HIGH

Surface roughness 0.462 0.462 0.0343 2 0.02994 0.3999 0.4 0.5248

Material removal rate 1611 1611 296.76 2 270.846 1021.8 1717 2202

Cutting force 90.64 90.64 10.747 2 9.50771 70.376 98.95 110

Tool wear 0.16 0.16 0.0148 2 0.01252 0.1344 0.19 0.1868
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3.6 Confirmatory runs

The multi-responses were tested after the MOGA mod-

elling to identify the input parameters settings that would

meet the requirement. Confirmatory runs were conducted at

these required settings of Pareto-optimal solution points 6

and 13 (moderate surface roughness and maximum mate-

rial rate) for a speed of 1511 and 1957 rpm. The

experimental values were found to be in close agreement

with the predictions. The values are tabulated in Table 15.

The workpiece prepared at the confirmatory test settings

was machined at two depths of cut (1.27 mm and

1.87 mm), and their chip forms were observed. It was seen

that these chips were easily freeable and they do not coil up

continuously as while machining aluminium. It is also

observed that chips formed were not of the same form in

composites with a non-uniform distribution. The chips

Fig. 10 Pareto-front—Ra and MRR

Table 14 Pareto-optimal solutions

Points Spindle speed (rpm) Feed rate (mm/rev) DoC (mm) SiC (%) Ra (lm) MRR (mm3/min) Fz (N) Tw (mm)

1 1032 0.03 1.07 5 0.02 152 50.3 0.106

2 1300 0.02 1.07 5 0.14 213 68.1 0.15

3 1386 0.04 1.07 15 0.17 327 11.7 0.421

4 1459 0.04 1.12 15 0.22 1043 22.9 0.412

5 1548 0.03 1.38 6 0.237 282 116.1 0.240

6 1511 0.03 1.27 6 0.31 1021 122.9 0.349

7 1885 0.04 1.17 13 0.44 1506 61.8 0.397

8 1924 0.04 1.28 12 0.64 1202 59.5 0.372

9 1764 0.03 1.85 7 0.69 1724 124.9 0.288

10 1958 0.04 1.65 15 0.71 2034 44.7 0.443

11 1934 0.04 1.76 12 0.728 586 78.7 0.390

12 1881 0.04 1.84 6 0.83 1967 96.1 0.356

13 1957 0.04 1.87 13 1.02 2356 131.2 0.487

14 1953 0.04 1.8 7 1.09 2513 93.3 0.367
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produced at 1.27 and 1.87 mm depth of cut are shown in

Fig. 11a, b.

It is observed that these chips were almost discontinuous

and unlike those obtained while machining aluminium.

These chips easily got broken from the surface of the

workpiece and tool without hindering machining. In com-

posites with inhomogeneous distribution, continuous chips

were formed in one part of the composite and high heat

generation was observed at the other area which may be

attributed to the presence of unreinforced matrix areas and

particle agglomeration in the other area.

4 Conclusion

Composites are novel materials which provide a new

approach for material engineers to design the material and

its properties based on their functional requirement with

proper compositions of matrix and reinforcements. With a

view of designing the composite for improved machin-

ability, this paper aims to simultaneously optimize several

responses which are a measure of machinability under a set

of practical machining constraints. The combined effect of

alumina and SiC has been studied to optimize the weight

percentage of reinforcements.

Multi-response optimization by RSM shows that the

minimum value of surface roughness (0.46 lm), cutting

force (90.3411 N), tool wear (0.161 mm), maximum

material removal rate (1605.33 mm3/min) during end

milling AA7075 hybrid composite can be achieved at

spindle speed of 1210 rpm, feed rate of 0.033 mm/rev,

depth of cut of 1.6 mm and 5% of SiC.

Pareto-optimal solutions can be used to find the multiple

sets of optimal solutions so as to empower a manufacturing

engineer to determine an appropriate optimal accomplish-

ing set of input variables according to the specific engi-

neering requirement. Confirmatory test was conducted for

two of the Genetic algorithm predicted Pareto-optimal

settings and the test results go closely with the predicted

values. The explicit process models connecting the con-

trollable process parameters with output variables such as

cutting force, material removal, tool wear and generated

surface roughness for advanced varied materials during end

milling process will reasonably improve the industrial

needs of MMCs processing.
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