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Abstract
Thin-walled structures are of enormous importance in the structural engineering world. Their successful design calls for

numerically efficient, accurate and reliable numerical tools. A new three-node shell element with six degrees of freedom

per node—three translations and three rotations—is presented in this paper. The discrete shear gap approach together with

the cell smoothing technique is implemented for treatment of shear locking. The membrane behavior is resolved by means

of the assumed natural deviatoric strains formulation with certain adjustments implemented to accommodate for shell

behavior. Examples are given to demonstrate the applicability of the proposed element for modeling shell structures. The

accuracy and convergence rate are tested on a chosen set of well-known challenging benchmark problems, and the results

are compared with those yielded by the Abaqus S3 element.

Keywords Triangular shell element � Discrete shear gap � Strain cell smoothing � Assumed natural deviatoric strains �
Drilling degree of freedom

1 Introduction

Thin-walled structures constitute a rather broad class of

engineering structures. Roughly speaking, some 80% of

structures of diverse scales and applications belong to this

group. They are the result of engineering tendency to

optimize the structures by reducing their weight while

keeping high capacity. Such a confronting set of objectives

led to the thinness of the walls (dead-load reduction)

combined with the curved geometry that allows the use of

high membrane stiffness to carry transverse loading. With

such preferable properties, thin-walled structures are

nowadays widely utilized in automotive, aerospace, trans-

portation, defense industries, to name but a few.

The research on thin-walled structures (referred to as

shells from this point on) is rather broad and diverse in

scope, so that an exhaustive overview would be pro-

hibitively long. But it would be worthwhile to mention

certain research directions, particularly those that represent

the contemporary trend of development in the field. Beside

classical structural materials (primarily metals), the use of

modern fiber-reinforced composites (FRC) gained in

importance in the past couple of decades as it opens up

further opportunities for weight reduction and use of

directionally dependant material properties. The suscepti-

bility to hidden failures and delamination of these struc-

tures resulted in efforts to provide models for interlaminar

damage and failure of FRC structures [44] and develop-

ment of various methods for non-destructive damage

detection [20, 39]. Another possibility of improving

structural properties of shells is seen in the use of func-

tionally graded materials, as they enable even higher effi-

ciency of material utilization [9, 25, 28, 37]. Furthermore,

the recognition of high adaptability intrinsic for natural

systems led to biomimetics in structural engineering. The

resulting active/adaptive structures comprise actuators and

sensors and can actively influence their mechanical

behavior. Of particular interest are active elements with

high integrability into/onto the shell structures.
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Piezoelectric elements as a common choice have been the

subject of interest of numerous researchers, who provided

numerical tools for their modeling and simulation already

in the 90s as given in the survey by Benjeddou [4]. The

authors of the article at hand have also been active in this

enticing research field lately [32, 40–42].

A successful research and development in all the above-

mentioned fields rely on the fundamental engineering

activities—modeling and simulation. The finite element

method (FEM) has established itself as the prime numerical

tool in the field of structural analysis. Surely, different

fields and problems demand models of different levels of

complexity. The majority of workhorse shell elements in

commercial FEM software packages are based on a first-

order 2D theory. The foundation of the classical first-order

2D theory is the Kirchhoff–Love model. The triangular and

quadrilateral semiloof elements by Irons [21] should be

mentioned as ones of the most successful shell elements

that implement the discrete Kirchhoff–Love kinematical

assumptions. Though the Kirchhoff–Love model is a rather

simple one and often sufficient, the attention was early

shifted to the Reissner–Mindlin model in the shell formu-

lations for FEM. The latter one is the basis of the first-order

shear deformation 2D theory. Hence, it involves the

transverse shear effects (not included in the Kirchhoff–

Love model) and is therewith applicable to both thin and

moderately thick shells. However, the reason for the early

shift is not to be sought in the indisputably greater gener-

ality of the model, but it is more of a pragmatic nature—

namely the reduced continuity requirements from the FE

shape functions (C0 continuity for the Reissner–Mindlin

model vs. C1 continuity needed for the Kirchhoff–Love

model). A rather large group of elements belonging to the

family of degenerate (referring to degenerated solid) shell

elements have been developed based on the Reissner–

Mindlin kinematics (e.g., [1, 14, 22, 31]). These elements

are applicable over a wide range of shell curvatures and

thickness, but handling rotational degrees of freedom

proved to be somewhat challenging in geometrically non-

linear cases. Hence, some researchers turned their attention

to the so-called solid–shell element formulations that use

only translational displacements as nodal degrees of free-

dom [23, 26]. Furthermore, for better accuracy of strain and

stress recovery, particularly when composite laminates are

considered, layer-wise theories have been developed

[19, 27]. A rather interesting approach has been lately

proposed in articles by Carrera et al. [10] and Valvano and

Carrera [47], in which finite elements with node-dependant

kinematics are applied to combine the equivalent single-

layer approach with a layer-wise approach and thus

increase the accuracy locally, i.e., in the sub-domains

where the problem at hand demands higher accuracy.

Another interesting approach that aims at a seamless inte-

gration of design (CAD) and analysis (FEM) is denoted as

isogeometric FE analysis. Isogeometric FE developments

for shells have been based on both Kirchhoff–Love and

Reissner–Mindlin kinematics [5, 15, 34].

The list of finite element formulations developed for

shells could be continued almost indefinitely as this is one

of a few topics in structural mechanics that have attracted so

much interest and work. The above-given rather short

extract of the work in the field only serves as a proof of that.

This paper aims at a novel, numerically very efficient, three-

node shell element based on the Reissner–Mindlin kine-

matics. The authors are aware of the recent developments

based on the edge-based smoothing techniques [13, 45]

which, in this manner, practically account for curved

geometry up to certain degree despite the faceted FE rep-

resentation of the geometry. The present development is

based on observation of an ’isolated element’, meaning that

the element properties are not influenced by the surrounding

elements. Although the advantages of the edge-based

smoothing techniques are obvious, one of the reasons for

this choice is the possibility of efficient direct implemen-

tation into the simplified corotational FE formulation as

proposed by Marinkovic et al. [33] and Nguyen et al. [35]. It

will be shown that the present element offers good perfor-

mance and successfully resolves benchmark problems that

are well-known as challenging for shell finite elements.

2 Element formulation

The developed shell element is a three-node element that

implements six degrees of freedom per node (three trans-

lations and three rotations). Besides the global coordinate

system, the element local coordinate system (x0; y0; z0) is of
particular importance for the formulation. The local coor-

dinate system is defined so that the x0-axis is oriented from

node 1 toward node 2, while the z0-axis is perpendicular to
the element surface. The y0-axis is determined in a

straightforward manner by the cross-product of the z0- and
x0-axis unit vectors. The element implements the Mindlin–

Reissner kinematics, so that the displacement field is

interpolated by means of the mid-surface displacements

u’, v’ and w’ along the local x0; y0 and z0-axes, respectively,
and the rotations hx0i and hy0i around the local x0 and y0-axes,
respectively, thus:
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where h denotes the constant shell thickness, t 2 ½�1; 1�
and Ni are the linear shape functions:
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N1ðx0; y0Þ ¼
1

2A
x02y

0
3 � x03y

0
2 þ y023x

0 þ x032y
0� �

N2ðx0; y0Þ ¼
1

2A
x03y

0
1 � x01y

0
3 þ y031x

0 þ x013y
0� �

N3ðx0; y0Þ ¼
1

2A
x01y

0
2 � x02y

0
1 þ y012x

0 þ x021y
0� �

ð2Þ

In Eq. (2) A is the element area, and x0i and y
0
i; i ¼ 1; 2; 3 are

the local coordinates of the element nodes, while x0ij and y0ij
denote the abbreviated coordinate differences, i.e., x0ij ¼
x0i � x0j and y0ij ¼ y0i � y0j. The element area A is given by:

A ¼ 1

2
x021y

0
31 � x031y

0
21

� �
ð3Þ

One may note that the original element kinematics

demands only five degrees of freedom. The drilling degree

of freedom, namely the rotation around the local z0-axis,
hz0 , will be introduced later, when the membrane behavior

of the element is considered. Due to the flat shape, the

elastic behavior of the element can be represented as a

superposition of a plate and membrane element (Fig. 1).

For such an approach, it is rather convenient to separate the

degrees of freedom (dofs) with respect to the element local

coordinate system into plate-related and membrane-related

dofs. As Fig. 1 shows, the plate-related dofs are the

transverse deflection w0 and the rotations around the in-

plane axes, hx0 and hy0 . On the other hand, the membrane-

related dofs are the in-plane displacements u0 and v0, and
the rotation around the z0-axis, hz0 . Hence, they can be

sorted as follows:

where the index in the subscript of each degree of freedom

represents the node number. Correspondingly, the element

stiffness matrix is separated into the plate, ½Kp�, and

membrane part, ½Kmem�, leading to the following form of

the static finite element relation:

Ks½ � uef g ¼
½Kmem� ½0�
½0� ½Kp�

� � fumemg
fupg

� �

¼ fef g ð5Þ

where ½Ks� is the resulting element stiffness matrix, fueg is

the vector of nodal degrees of freedom and ffeg is the

element load vector (both forces and moments). For the

membrane part, the assumed natural deviatoric strain

(ANDES) formulation [16] is used, while the plate part of

the element is based on the discrete shear gap (DSG)

approach [8].

2.1 Plate element (modified DSG3 formulation)

The plate stiffness ½Kp� can be expressed as the sum of

bending stiffness ½Kpb� and shear stiffness ½Kps�:
½Kp� ¼ ½Kpb� þ ½Kps� ð6Þ

Once the corresponding strain–displacement matrices ½Bpb�,
½Bps�, respectively, are determined with respect to the local

coordinate system, the stiffness matrices are simply

computed:

½Kpb� ¼
Z

ðAÞ
½Bpb�T½D�½Bpb�dA ð7Þ

and

½Kps� ¼
Z

ðAÞ
½Bps�T½F�½Bps�dA ð8Þ

where [D] and [F] are the material matrices related to

bending and transverse shear deformation, respectively.

They are obtained by integrating the corresponding mate-

rial constants through the thickness [7]. Since the plate

strain–displacement matrices are constant over the element

Fig. 1 Shell element; local element coordinate system

fumemg ¼ u01 v01 hz01 u02 v02 hz02 u03 v03 hz03f gT

fupg ¼ w0
1 hx01 hy01 w0

2 hx02 hy02 w0
3 hx03 hy03f gT

ð4Þ
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domain, the in-plane integration comes down to the mul-

tiplication with the element area A.

2.1.1 Bending strain–displacement matrix ½Bpb�

The strain–displacement matrix due to bending, ½Bpb�, is
derived directly from the discretized displacement field

(Eq. 1):
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which yields ½Bpb� in the closed form:

2.1.2 Shear strain–displacement matrix ½Bps�

For treatment of the notorious transverse shear locking

effect, the present element implies the discrete shear gap

technique as proposed by Bletzinger et al. [8] and the cell

strain smoothing technique proposed by Nguyen-Thoi et al.

[36]. The idea behind the discrete shear gap approach is the

separation of deformation into a part due to transverse

shear and a part due to bending. The shear gap represents

the difference between the total deformation and the

deformation due to bending. It is obtained by integration of

the kinematical equation for the transverse shears along the

natural coordinates n2 and n3 (see Fig. 2). As a conse-

quence of different order of interpolations for the part due

to the transverse deflection and the part due to rotations

within the kinematically derived discretized transverse

shear, the obtained shear gap cannot be identically equal to

zero in the physical regimes which impose this condition

(bending of rather thin structures). The resulting parasitic

transverse shear makes the model too stiff, and the effect is

well-known as shear locking.

The DSG approach starts by evaluating the shear gaps at

the nodes, using the nodal rotations and displacements:

Dw1
cn2 ¼ Dw3

cn2 ¼ Dw1
cn3 ¼ Dw2

cn3 ¼ 0

Dw2
cn2 ¼ w0

2 � w0
1 þ

1

2
x021 hy01 þ hy02

� �
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Dw3
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3 � w0
1 þ

1

2
x031 hy01 þ hy03

� �
� y031 hx01 þ hx03ð Þ

� �
:

ð11Þ

Furthermore, the obtained nodal shear gaps are interpolated

using the linear shape functions (2) and subsequently dif-

ferentiated in order to obtain the DSG-based transverse

shear field:

cx0z0 ¼
ow�

c

ox0
¼ oN2

ox0
Dw2

cn2 þ
oN3

ox0
Dw3

cn3
ð12Þ

cy0z0 ¼
ow�

c

oy0
¼ oN2

oy0
Dw2

cn2 þ
oN3

oy0
Dw3

cn3 ð13Þ

In a compact matrix form, it reads:

fc�g ¼
cy0z0

cx0z0

� �

¼ ½Bs�fupg ð14Þ

where ½Bs� is the strain–displacement matrix yielding the

transverse shears. For the present element, it is given in the

closed form as:

Fig. 2 Triangular coordinates n1; n2, n3

½Bpb� ¼
1

2A

0 0 y023 0 0 y031 0 0 y012
0 �x032 0 0 �x013 0 0 �x021 0

0 �y023 x032 0 �y031 x013 0 �y012 x021

2

6
4

3

7
5 ð10Þ
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with:

a1 ¼
1

2
y012x

0
13 a2 ¼

1

2
y031x

0
21

a3 ¼
1

2
x021x

0
13 a4 ¼

1

2
y012y

0
31

ð16Þ

The transverse shear stiffness is further modified by

applying the strain smoothing technique [29]. Using the

element centroid as an additional node, the element is

divided into three sub-triangles (see Fig. 3). The transverse

shear strain–displacement matrices are computed for each

sub-triangle and then averaged by implementing the

assumption that the displacement of the centroid is the

average of the nodal displacements:
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s3 � ½ 1
3
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ð17Þ

where ½BMj
s � is the nodal transverse shear strain–displace-

ment matrix of the jth sub-triangle. Finally, the averaged

transverse shear strain–displacement matrix is determined

in a straightforward manner :

½Bps� ¼
1

3

X3

i¼1

½BMi

s �: ð18Þ

2.2 Membrane element

For the membrane part, the ANDES membrane formulation

by Felippa and Militello [16] is implemented. This for-

mulation combines the free formulation (FF) by Bergan

and Nygård [6] and a modified version of the assumed

natural strain (ANS) formulation by Park and Stanley [38].

Only the fundamental ideas of the approach and selected

basic equations are given here. The interested reader should

address references [2, 16, 18] for the detailed formulation

and reasoning behind certain steps of the formulation.

The basic idea behind the FF is representation of the

displacement field by a chosen set of modes and modal

coefficients. This actually implies that, regarding the dis-

placements involved in the membrane part fumemg, the

discretized displacement field given in Eq. (1) is aban-

doned. The mode set includes basic modes consisting of a

complete set of linearly independent rigid-body and con-

stant strain modes, and higher-order modes, which are in

this case linear strain modes. According to the FF, the

overall number of modes corresponds to the overall num-

ber of nodal degrees of freedom involved in the membrane

part, so that the relation between the modal coefficients and

nodal dofs is defined by an invertible square transformation

matrix. This is also important for the rank sufficiency of the

stiffness matrix. Modifications of the FF allow for a larger

number of modes in the group of higher-order modes,

provided a sufficient number of additional kinematic con-

straints between the modes are defined, thus retaining the

Fig. 3 Sub-triangles M1;M2, M3

Fig. 4 Natural strain components

Bs½ � ¼ 1

2A

x032 A 0 x013 a1 a3 x021 � a2 � a3

y023 0 �A y031 a4 a2 y012 � a4 � a1

� �

ð15Þ
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invertibility of the transformation matrix between the

modal and nodal dofs. To ensure variational correctness,

another important requirement from the higher-order

modes is that they are energy orthogonal with respect to the

constant strain modes.

Since the modes are grouped into the basic and higher-

order modes, the membrane stiffness matrix, ½Kmem�, is

correspondingly decomposed into the basic, ½Kb�, and

higher-order stiffness, ½Kh�.
½Kmem� ¼ ½Kb� þ ½Kh�: ð19Þ

2.2.1 Basic stiffness

In the ANDES formulation, the basic stiffness is computed

in exactly the same manner as in the FF [6]:

½Kb� ¼ V�1½L�½C�½L�T ð20Þ

where V is the element volume (V ¼ Ah), [C] is the Hooks

matrix and [L] is the 3� 9 force-lumping matrix that

consistently maps an arbitrary constant stress field into the

element nodal forces. In order to derive the lumping

matrix, the virtual work along element sides is expressed

for the constant stress state, whereby the beam-type shape

functions are used along the element sides. The resulting

lumping matrix has the following closed form:

½L�

¼ h
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y023 0 x032

0 x032 y023
a
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0
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0
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a
6
y031 y032 � y012

� � a
6
x013 x012 � x023
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3

x012y
0
21 � x023y

0
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� �

y012 0 x021

0 x021 y012
a
6
y012 y032 � y012
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6
x021 x023 � x031

� � a
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0
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6
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3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
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ð21Þ

where a is a free parameter that will be addressed later. If a
is equal to zero, the basic stiffness comes down to the

stiffness matrix of the constant strain triangular (CST)

element. In this case, the rows and columns associated with

the drilling degree of freedom vanish.

2.2.2 Higher-order stiffness

The objective of the higher-order modes is to provide

adequate coverage of the in-plane bending. Hence the

choice in the ANDES formulation is to use three (in-plane)

bending modes which produce linear natural strains along

the element sides (Fig. 4). They are also referred to as

’deviatoric’ strains (strains that deviate from the constant

strain state). The drilling degrees of freedom are essential

in their description.

For this purpose, the ANDES formulation makes use of

the so-called hierarchical rotations, hi, extracted by sub-

tracting the mean rotation (the rotation yielded by the

constant strain element), h0, from the nodal drilling rota-

tions (see Fig. 5):

hi ¼ hi � h0: ð22Þ

Since h0 can be determined by:

h0 ¼
1

4A
x023u

0
1 þ x031u

0
2 þ x012u

0
3 þ y023v

0
1 þ y031v

0
2 þ y012v

0
3

� �

ð23Þ

the hierarchical rotations are finally obtained by means of

the following relation:

Fig. 5 CST deformation and hierarchical rotations

Fig. 6 Deformation modes—higher stiffness

356 Page 6 of 13 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:356

123



h1
h2
h3

8
><

>:

9
>=

>;

¼ 1

4A

x032 y032 4A x013 y013 0 x021 y021 0

x032 y032 0 x013 y013 4A x021 y021 0

x032 y032 0 x013 y013 0 x021 y021 4A

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½Thu�

fumemg

ð24Þ

The form of the three in-plane bending modes together

with the sets of hierarchical rotations defining them is

depicted in Fig. 6. However, those three modes are linearly

dependent (obviously, their sum vanishes) and, hence, a

fourth, torsion mode is added to the set (Fig. 6).

Another important aspect, before proceeding to the

stiffness matrix, is the transformation of the natural strains

to the Cartesian strain components. One can think of the

natural strains as a measurement result obtained by means

of a strain gage rosette, with the three strain gages oriented

along the element sides. Thus, the transformation is given

by the classical strain gage rosette transformation:

½Tnat� ¼
1

4A2

y023y
0
13l

2
21 x023x
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13l
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21 y023x

0
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ð25Þ

where l21,l32,l13 are the lengths of the element sides. Now,

the higher-order stiffness is computed by:

½Kh� ¼ b0
9

4
½Thu�T½Kh�½Thu� ð26Þ

where b0 is one of the free dimensionless parameters, while

½Kh� is the higher-order stiffness in terms of hierarchical

rotations:

½Kh� ¼
h

3
½Q4�T½Cnat�½Q4� þ ½Q5�T½Cnat�½Q5� þ ½Q6�T½Cnat�½Q6�

	 


ð27Þ

with:

½Cnat� ¼ ½Tnat�T½C�½Tnat� ð28Þ

where

½Q4� ¼
1

2
½Q1� þ ½Q2�ð Þ

½Q5� ¼
1

2
½Q2� þ ½Q3�ð Þ

½Q6� ¼
1

2
½Q1� þ ½Q3�ð Þ

ð29Þ

Finally, the matrices ½Q1�; ½Q2� and ½Q3� are given in terms

of additional nine dimensionless parameters b1 - b9:
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2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

½Q2� ¼
2A

3

b9
l221

b7
l221

b8
l221

b3
l232

b1
l232

b2
l232

b6
l213

b4
l213

b5
l213

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

½Q3� ¼
2A

3

b5
l221

b6
l221

b4
l221

b8
l232

b9
l232

b7
l232

b2
l213

b3
l213

b1
l213

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð30Þ

Considering purely membrane ANDES element, Fellipa

[17] provided the optimal values of a and b-parameters,

together with the complete reasoning and justification for

those values. However, Shin and Lee [45] argued that a

shell element requires modified values of the free param-

eters, due to the physical regimes that involve membrane-

bending coupling. In those cases, the higher-order stiffness

as defined in the ANDES formulation would give rise to

drill rotation locking. On the other hand, if the higher-order

stiffness is decreased too much with respect to the entire

element stiffness, a problem referred to as ‘‘free-corner’’

problem by Cook [11] appears. Hence, Shin and Lee [45]

performed a parameter study showing that the values a ¼
1=8 and b0 ¼ a2=4 represent a reasonable choice for the

three-node shell element. They also offered a slightly

modified version that accounts for the inter-planar angle

between adjacent elements and the ratio of the in-plane

element maximal dimension to the thickness. This actually

means that, in the modified approach, parameter b0 differs
from element to element and, with the mesh refinement, it

converges to b0 ¼ a2=4. However, we remain consistent in

our ‘‘isolated element’’-based approach and adopt the

above-given constant values for a and b0. The remaining b-
parameters are as defined by the original ANDES formu-

lation: b1 ¼ 1; b2 ¼ 2; b3 ¼ 1; b4 ¼ 0; b5 ¼ 1; b6 ¼ �1,

b7 ¼ �1; b8 ¼ �1; b9 ¼ �2.
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3 Element validation

In what follows, a set of examples is considered in order to

demonstrate properties of the developed shell element. The

examples include basic patch tests and several popular

benchmark tests. The benchmark tests are proposed by

various authors and have proven to represent a challenge

for shell elements. Those examples are computed using the

present element and the linear triangular shell element from

ABAQUS (Abaqus S3). The ability of the element to yield

the correct (reference) solution and the convergence rate

are studied. As certain authors used non-SI units (e.g., inch,

pound-force), whereas in the remaining examples SI units

were used, only numerical values will be given in the

considered examples. Any set of units for length and force

may be associated with those values (e.g., N for force and

m for length, or pound-force for force and inch for length)

in any of the considered examples, as long as they are

consistently used and kept throughout the whole example.

3.1 Patch tests

Patch tests are generally used as an indicator of the element

quality. They are set up as simple examples with the known

exact solutions, which have to be reproduced by the

developed element with distorted FE meshes. This is a

necessary condition for convergence.

In the patch tests briefly described below, the developed

element was evaluated with respect to the ability to exactly

reproduce the constant stress state. The considered patch

tests are force patch tests, meaning that the FE assemblage

is exposed to external forces giving rise to constant stress

states. Furthermore, the tests were designed so as to isolate

and check specific behavior of the element—first the

membrane and then bending behavior was in focus. This

required adequate load cases used with the very same

geometry and FE mesh, both shown in Fig. 7. The thick-

ness of the structure is 0.001, and the isotropic material is

characterized by the Young’s modulus of 1:0� 106 and the

Poisson’s ratio of 0.3.

3.1.1 Membrane patch test

In order to test the membrane behavior of the element, the

considered structure was exposed to four different load

cases.

In the first two cases, two opposite edges were exposed

to a constant line load. In the first case, the edges aligned

with the y axis were loaded, while in the second case the

loaded edges were those aligned with the x axis. The load

was selected so that the structure was exposed to a tensile

normal stress. A constant line load qn ¼ 1, normal to the

element edge, was applied. This resulted in nodal forces of

the magnitude 0.06 and drilling moments of the magnitude

0.012 (given by aqnl2=12, where l is the edge length), see

Fig. 8. Such a load gives rise to the constant normal stress

of 1000, which was exactly reproduced by all elements in

the FE assemblage.

In the remaining two cases, the only difference was that

the line loads were linear along the edges taking values

between þ 1 and � 1. The resulting nodal forces are rep-

resented in Fig. 8. In these two cases, the resulting stress is

the constant in-plane shear stress of the magnitude 1224.7.

Again, the correct stress state was exactly reproduced in all

shell elements in each case.

Fig. 7 Geometry patch test

Fig. 8 Load cases membrane patch test

356 Page 8 of 13 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:356

123



3.1.2 Plate patch tests

Similarly to the membrane patch tests, the plate patch tests

included four load cases with the constant or linear line

bending moments. In each plate patch test, the line bending

moments were defined completely analogously to the line

forces used in the corresponding membrane patch test.

Hence, in the first two cases, those were constant line

moments and in the latter two, linear line moments. The

resulting nodal moments are graphically represented in

Fig. 9. The resulting stresses on the outer surfaces of the

structure are same as in the analogous cases with the line

forces. Those values were also exactly reproduced in all

elements.

3.2 Raasch problem

The Raasch challenge was originally proposed by Ingo

Raasch, who reported non-converging results in 1991 when

he used the shell elements available in the commercial

finite element software MSC/NASTRAN [24]. Further-

more, Knight [24] reported that the shell elements without

the transverse shear flexibility (Kirchhoff–Love kinemat-

ics) converged to the correct value in contrast to the shell

elements with the transverse shear flexibility (Reissner–

Mindlin kinematics) available at that time.

The geometry of the Raasch test is a hook-like curved

strip consisting of two different arc segments that are

tangent at their point of intersection. The radius R1 of the

first segment is 14, while the radius R2 of the second

segment is 46 (Fig. 10). The thickness of the structure is 2

and the width is 20. The end of the structure placed at the

origin of the coordinate system (first segment) in Fig. 10 is

clamped. The free end of the structure (second segment) is

exposed to the uniformly distributed load f of 8.7563 acting

in the width direction (z-direction). The structure is con-

sidered to be made of an isotropic material with the

Young’s modulus of 22:77� 106 and the Poisson’s ratio of

0.35.

The geometry, kinematic boundary conditions and

loading lead to a complex deformation state that involves

bending, twisting and in-plane shearing. This is the reason

why the example turned out to be rather challenging for

various shell element formulations. MacNeal et al. [30]

concluded that the transfer of twisting moment from ele-

ment to element produced spurious transverse shear

deformation and inferred from this that a proper treatment

of the shell normal and drilling degrees of freedom within

Fig. 9 Load cases plate patch test

Fig. 10 Geometry Raasch hook

Table 1 Normalized tip displacements in z-direction—Raasch hook

problem

Elements Present Abaqus S3

18 0.845 0.842

216 0.968 0.912

896 0.998 0.961

1072 1.000 0.988
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the element formulation was necessary to obtain the cor-

rect, i.e., reference solution.

In order to check the ability of reproducing the reference

solution and evaluate the rate of convergence, several FE

meshes are considered (18, 216, 896 and 1072 elements).

The obtained results are further normalized by the refer-

ence solution that reads wref ¼ 0:12535 [24]. The com-

parative results by the presented element and Abaqus S3

element are summarized in Table 1. Obviously, in this

example both elements show a similar convergence rate

and converge to the correct result.

3.3 Twisted beam

The twisted beam test is a widely used benchmark problem

to check the accuracy and performance of developed ele-

ments. The beam geometry is twisted at an angle of 90�

between the two ends. The warped geometry gives rise to

rather complex deformations for any load acting at the free

end perpendicularly to the beam axis. The cantilevered

beam, with the length of L ¼ 12 and the width of W ¼ 1:1,

is presented in Fig. 11. It is made of a material character-

ized by the Young’s modulus of 29.0 and the Poisson’s

ratio of 0.22. In order to test the present element for thin

and thick shell structures, two different thicknesses are

considered—0.05 and 0.32.

For each thickness, two load cases are studied with the

point load of f ¼ 1:0 acting at the center of the free end. In

the first case, the load acts in the y-direction, while in the

second case it acts in the z-direction (see Fig. 11). The

obtained results for four different meshes, containing

48, 96, 384 and 1280 elements, are normalized by the

reference solution provided by Simo et al. [46] for the thin

structure (wref ¼ 0:3431; vref ¼ 1:390) and MacNeal and

Harder [30] for the thick twisted beam

(wref ¼ 1:754� 10�3; vref ¼ 5:424� 10�3). Table 2 shows

a good convergence rate of the results by the presented

element for any combination of the considered load cases

Fig. 11 Geometry twisted beam

Table 2 Normalized displacements twisted beam problem

t ¼ 0:05 wref ¼ 0:3431 vref ¼ 1:390

Elements Present Abaqus S3 Present Abaqus S3

24 0.916 0.751 0.903 0.768

32 0.951 0.901 0.964 0.914

48 0.981 0.960 0.986 0.967

64 0.989 0.984 0.991 0.986

96 0.995 0.993 0.994 0.992

384 0.999 0.998 0.997 0.996

1536 1.000 0.999 0.999 0.998

t ¼ 0:32 wref ¼ 1:754� 10�3 vref ¼ 5:424� 10�3

Elements Present Abaqus S3 Present Abaqus S3

24 0.764 0.701 0.975 0.895

32 0.809 0.782 0.983 0.960

48 0.862 0.831 0.991 0.979

64 0.889 0.862 0.995 0.987

96 0.910 0.887 0.999 0.990

384 0.971 0.958 1.003 0.997

1536 0.996 0.989 1.004 1.000

Fig. 12 Geometry pinched hemisphere

Table 3 Normalized displacements (wA; uB) of the pinched hemi-

sphere of point A and B

Elements Present Abaqus S3

uB=uref wA=wref uB=uref wA=wref

128 0.929 0.899 0.931 0.898

512 0.985 0.980 0.986 0.980

2048 0.999 0.997 0.998 0.996
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and thickness. It is slightly better than the convergence rate

by the Abaqus S3 element.

3.4 Pinched hemispherical shell with 18� hole

The next test case involves a doubly curved structure. It is a

hemispherical shell with an 18� hole at the top, exposed to

two pairs of forces. The pair of forces (f ¼ 1) aligned with

the z axis acts inward the hemisphere, i.e., toward the

hemisphere center. On the other hand, the pair of forces

along the x-axis acts outward the hemisphere. The double

symmetry allows to model only one quarter of the structure

with symmetry conditions applied, see Fig. 12. The

hemisphere has a radius of 10 and thickness of 0.04,

Young’s modulus is 68:25� 106 and Poisson’s ratio is 0.3.

Three FE meshes, with 128, 512 and 2048 elements, are

used, the finest of which is depicted in Fig. 12. Following

the same procedure as in the previous examples, Table 3

gives the normalized displacements of points A and B, at

which the external forces act, in the x- and y-direction,

respectively, computed with the present element and

Abaqus S3 element. The normalization is done with respect

to the reference solution by Simo et al. [46], which reads

uref ¼ wref ¼ 0:093.

3.5 Pinched cylinder with end diaphragm

The next test case studied is a cylindrical shell with rigid

diaphragms at both ends and subjected to two oppositely

oriented forces acting at the middle of the length and

toward the cylinder axis (see Fig. 13). This is also one of

the standard test cases used to evaluate the performance of

shell element formulations. The symmetry of the consid-

ered case allows consideration of only one-eight of the

model with symmetry conditions, as seen in Fig. 13, below.

The geometry of one-eight of the cylinder is defined by the

radius R ¼ 300, the length L ¼ 300 and the thickness

t ¼ 3. The material is considered to be isotropic with the

Young’s modulus Y ¼ 3� 106 and the Poisson’s ratio of

0.3. The concentrated force acting upon the reduced model

(one-eight) at point A is f ¼ 0:25 (Fig. 13). Again, the

convergence analysis reveals slightly better convergence of

the results by the present element compared to Abaqus S3.

Fig. 13 Geometry pinched cylinder

Table 4 Normalized vertical

displacements of the pinched

cylinder of point A

Elements Present Abaqus S3

720 0.918 0.899

1428 0.952 0.941

2820 0.978 0.978

4484 0.994 0.990

Fig. 14 Geometry Cooks membrane

Table 5 Normalized displacements (u) of the cooks membrane of

point A

Elements Present Abaqus S3

8 0.562 0.531

32 0.842 0.825

128 0.935 0.916

512 0.983 0.976
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Table 4 gives the vertical displacement wA (at point A) for

several meshes, whereby the results are normalized by the

reference solution wref ¼ �1:8248� 10�2 provided by

Belytschko [3].

3.6 Cooks membrane

Finally, the popular benchmark problem named after Cook

et al. [12], the Cooks membrane problem, is addressed. The

considered structure has a trapezoidal form (see Fig. 14) in

the x–y plane. It is clamped along the longer edge aligned

with the x axis and subjected to a line force acting along the

shorter x axis-oriented edge. The magnitude of the line

force is 1/16 which amounts to a total force of 1. The

isotropic material is described by the Young’s modulus

Y ¼ 1 and Poisson’s ratio of 1/3. In this example, the

acting load gives rise to in-plane bending and extensive

shear deformation.

The solutions for the vertical displacement at the point A

(uA) are normalized with the reference solution uref ¼
23:91 provided by Winkler and Plakomytis [43] and listed

in Table 5. Obviously, the present element performs better

than the Abaqus S3 element in this test case.

4 Conclusions

Thin-walled structures grow in number and diversity every

day. This growth is driven by many factors including cost

and weight economy, novel materials and production

techniques, possibility of converting them into adaptive

systems by means of active elements. The peculiarities in

their mechanical behavior have always been an impetus for

researchers to develop adequate mechanical models. And

with the appearance of FEM, this transferred to the

development of reliable, accurate and efficient shell-type

finite elements.

The three-node shell element proposed in this paper

implements the Reissner–Mindlin kinematics. Just as any

other three-node element, it is a flat element and the shell

behavior is recovered by directly combining the plate and

membrane behavior. The formulation implements the

already existing solutions for plate and membrane ele-

ments, but, to the best of the authors knowledge, it repre-

sents a novel combination. The membrane part is based on

the assumed natural deviatoric strain (ANDES) formulation

with the appropriate modification of the free parameters to

accommodate for bending-membrane coupling present in

shell elements. The plate part relies on the discrete shear

gap (DSG) formulation to resolve the shear locking, and

the cell smoothing technique is used to improve the accu-

racy. The cell smoothing is applied only to the part defining

the transverse shears. Besides the typical five degrees of

freedom per node (three translations and two rotations

about the in-plane axes), the drilling degree of freedom

(rotation about the normal) is also included in the element

formulation. The examples have demonstrated that the

element successfully passes the patch test and resolves the

challenging benchmark cases offering therewith a good

convergence rate. Those properties of the element com-

bined with the high meshing ability intrinsic for triangular

elements render the proposed shell element a powerful

numerical tool when simulating the global behavior of shell

structures.

In further work, the element formulation is to be

extended to cover geometrically nonlinear cases, laminated

structures with directionally dependent material properties

and inclusion of multifunctional materials such as piezo-

electric ceramics, which implies coupled-field effects.

These developments are currently in progress.
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