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Abstract
Although many researchers have studied the vibration and buckling behavior of porous materials, the behavior of porous

nanobeams is still a needed issue to be studied. This paper is focused on the buckling and nonlinear vibration of

functionally graded (FG) porous nanobeam for the first time. Nonlinear Von Kármán strains are put into consideration to

study the nonlinear behavior of nanobeam based on the Euler–Bernoulli beam theory. The nonlocal Eringen’s theory is

used to study the size effects. The mechanical properties of ceramic and metal are used to model the functionally graded

material through thickness, and the boundary conditions are considered as clamped–clamped (CC) and simply supported–

simply supported (SS). The generalized differential quadrature method (GDQM) is used in conjunction with the iterative

method to solve the equations. The parametric study is done to examine the effects of nonlinearity, porosity, sized effect,

FG index, etc., on the vibration and buckling of porous nanobeam.
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1 Introduction

During the past few years, vast usage of new kinds of

materials is growing in many engineering structures. One

of these new materials is porous materials which have vast

applications and are modeled for different usages such as

biomedical applications [1–3] and energy absorption [4].

The thermal buckling of solid circular plate bounded with

piezoelectric sensor–actuator patches with porous material

properties varying along the thickness was studied by

Joubaneh et al. [5]. Pei-Sheng [6] analyzed a failure model

of simplified structures for isotropic three-dimensional

reticulated porous materials under compressive loads. Chen

et al. [7] performed examination on the elastic buckling

and static bending of shear deformable FG porous beams

based on the Timoshenko beam theory. The buckling

behavior of a rectangular porous plate is studied by Mag-

nucki et al. [8]. The mechanical behavior of isotropic

porous beams is studied by Magnucki and Stasiewicz [9]

under compressive force. The buckling and deflection of a

circular porous plate under radial uniform compression and

uniformly distributed load is considered by Magnucka-

Blandzi [10]. The buckling analysis of circular plate made

of porous material under thermal loads is performed by

Jabbari et al. [11], and they also studied the same problem

considering the layers of piezoelectric actuators [12] and

also piezoelectric sensor–actuator patches [13]. The

mechanical behavior of GASAR copper with cylindrical

pores oriented in the direction of loading has been studied

under uniaxial compressive loads [14]. Jabbari et al. [15]
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investigated on the thermal buckling of radially solid cir-

cular plate made of porous material with piezoelectric

actuator layers. The transverse vibrations of a thin porous

plate which is saturated by a fluid are studied by Leclaire

et al. [16] based on the classical theory of homogeneous

plates. The buckling of soft ferromagnetic FG circular

plates made of porous material was studied by Jabbari et al.

[17]. The buckling examination of isotropic three-dimen-

sional reticulated porous metal foams and the failure

analysis is performed by Liu [18]. Amirkhani et al. [19]

studied the different pore geometries and their orientation

with respect to the compressive loading direction on

mechanical responses of scaffolds. Experimental study on

the compressive behavior of porous titanium in the out-of-

plane direction was studied by Li et al. [20]. The analysis

on the buckling behavior of functionally graded piezo-

electric plates with porosities is performed by Barati et al.

[21].

The study of nanoporous structures is of great interest

among researchers around the world. Using the theory of

surface elasticity, Xia et al. [22] studied the mechanical

properties of nanoporous materials. Yu et al. [23] studied

the buckling of nanobeam using the size-dependent model,

i.e., nonlocal thermoelasticity, and based on Euler–Ber-

noulli beam theory. Shen and Xiang [24] studied the

postbuckling of nanocomposite cylindrical shells rein-

forced by single-walled carbon nanotubes (SWCNTs).

Also, axial buckling of double-walled boron nitride nan-

otubes (DWBNNTs) under combined electro-thermo-me-

chanical loadings is investigated by Arani et al. [25].

Mohammadabadi et al. [26] studied the thermal effect on

size-dependent buckling behavior of micro-composite

laminated beams.

In addition to the vibrations, buckling of nanostructures

is also important to study. Kiani [27] studied the elastic

buckling of micro- and nanorods/tubes. Aydogdu [28]

studied the bending, buckling and free vibration of nano-

beams by a generalized nonlocal beam theory. Thai [29]

studied the bending, buckling and vibration of nanobeams

by nonlocal shear deformation beam theory. The critical

force of axial buckling of a nanowire was studied by Wang

and Feng [30] considering the effects of surface elasticity

and residual surface tension. The nonlinear postbuckling

load–deflection behavior of FG Timoshenko beam was

studied by Paul and Das [31] under in-plane thermal

loading. Ansari et al. [32] studied the postbuckling

deflection of nanobeams considering the effect of surface

stress. The size-dependent nonlinear vibration porous uni-

form and nonuniform micro-beams were studied by Shafiei

et al. [33]. Moreover, there are a number of other papers

considering the nonlinear behavior of micro- and nano-

beams [34–38].

As you see, the absence of a deep study on the buckling

and vibration of porous nanosize beams in the literature is

sensible. So, we decided to study the buckling and non-

linear vibrations of a nanobeam with two types of porous

materials based on Euler–Bernoulli beam theory and using

the Eringen’s nonlocal elasticity theory. The boundary

conditions are considered as clamped–clamped (CC) and

simply supported–simply supported (SS). Using the

GDQM and the iterative methods, the nonlinear governing

equations are solved. The normalized and nondimensional

frequencies and the critical buckling force are calculated

for different values of nonlocal parameters, FG indexes,

porosity volume fractions, etc.

2 Problem and formulation

A functionally graded nanoscale porous Euler–Bernoulli

beam is considered with length of ‘L,’ width ‘b’ and height

‘h’ which are located on x, y and z directions, respectively,

as shown in Fig. 1.

2.1 Functionally graded material

As the studied FG nanobeam is composed of metal and

ceramic, the physical and mechanical properties of the

nanobeam vary through the thickness (Fig. 1). The power

law defines the variations of properties as follows:

VcðzÞ ¼
z

h
þ 1

2

� �n

ð1Þ

VmðzÞ ¼ 1� VcðzÞ ð2Þ

where V denotes the volume fraction, the subscripts ()c and

()m denote the ceramic and metal, respectively, and ‘n’ is

the FG index which describes the volume fraction change

of the materials composition (Fig. 1). h is the thickness of

the beam, and z shows the position along the thickness of

the beam. As Eqs. (1) and (2) define, the material of the

bottom (z = - h/2) and the top surfaces (z = h/2) of the

nanobeam is made of pure metal and pure ceramic,

respectively. According to Eqs. (1) and (2), the physical

and mechanical properties of the FG nanobeam can be

defined as a function of ceramic and metal volume fraction

as below:

F zð Þ ¼ Vc zð Þ Fc � Fmð Þ þ Fm ð3Þ

In Eq. (3), F(z) can be both the physical and mechanical

properties of the nanobeam at a specific point (z). Also F1

and F2 are parameters of physical and mechanical prop-

erties of pure ceramic and pure metal, respectively.
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2.2 Porous structures

Two different types of porosity distributions are shown in

Fig. 2. According to Eqs. (1)–(3) and two types of porosity

distributions [33], the physical and mechanical properties

of the FG porous nanobeam such as mass density (q),
Young’s modulus (E) and Poisson’s ratio (m) can be defined

as below.Porous Type 1:

q zð Þ ¼ qm þ qc � qmð Þ 1

2
þ z

h

� �n

� a
2

qc þ qmð Þ ð4aÞ

E zð Þ ¼ Em þ Ec � Emð Þ 1

2
þ z

h

� �n

� a
2

Ec þ Emð Þ ð4bÞ

m zð Þ ¼ mm þ mc � mmð Þ 1

2
þ z

h

� �n

� a
2

mc þ mmð Þ ð4cÞ

Porous Type 2:

q zð Þ ¼ qm

þ qc � qmð Þ 1

2
þ z

h

� �n

� a
2

qc þ qmð Þ 1� 2
zj j
h

� �

ð5aÞ

E zð Þ ¼ Em

þ Ec � Emð Þ 1

2
þ z

h

� �n

� a
2

Ec þ Emð Þ 1� 2
zj j
h

� �

ð5bÞ

m zð Þ ¼ mm þ mc � mmð Þ 1

2
þ z

h

� �n

� a
2

mc þ mmð Þ 1� 2
zj j
h

� �

ð5cÞ

where a is the porosity volume fraction.

2.3 Mathematical modeling

Euler–Bernoulli beam theory and the nonlocal Eringen’s

theory are of many applications and have been used many

times to study buckling and vibrations [39–42]. Thus, to

prevent the unnecessary descriptions, the general nonlinear

equation of vibration and buckling of FG Euler–Bernoulli

nanobeam considering the boundary conditions is as

follows:

du :
o

ox
Ax

ou

ox
þ 1

2
Ax

ow x; tð Þ
ox

� �2
" #

� o

ox
Bx

o2w

ox2

� �

¼ o2

ot2
m0u� m1

ow

ox

� �
� e0að Þ2 o

2

ot2
m0

o2u

ox2
� m1

o3w

ox3

� �

ð6aÞ

dw : � o2

ox2
Cx

o2w

ox2

� �
þ o2

ox2
Bx

ou

ox

� �

þ o

ox
�Pþ 1

2
Ax

ow

ox

� �2

�Bx

o2w

ox2

 !
ow

ox

" #

� e0að Þ2 o
2

ox2
o

ox
�Pþ 1

2
Ax

ow

ox

� �2

�Bx

o2w

ox2

 !
ow

ox

" #( )

¼ o2

ot2
m0wþ m1

ou

ox
� m2

o2w

ox2

� �

� e0að Þ2 o
2

ox2
o2

ot2
m0wþ m1

ou

ox
� m2

o2w

ox2

� �� �

ð6bÞ

h Length, x-direction

Fig. 1 Schematic of the FG

nanobeam

Fig. 2 Cross-sectional area of

FG porous nanobeam. a Even

distribution of porosities (Type

1). b Uneven distribution of

porosities (Type 2)
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where a is the internal characteristic lengths, e0 indicates a

material constant, and �P is the external axial load.

Ax;Bx;Cxð Þ ¼
Zh=2

�h=2

Zb=2

�b=2

E zð Þ 1; z; z2
� �

dydz ð7aÞ

m0;m1;m2ð Þ ¼
Zh=2

�h=2

Zb=2

�b=2

q zð Þ 1; z; z2
� �

dydz ð7bÞ

The boundary conditions are as follows:

N ¼ 0 or u ¼ 0 at x ¼ 0 and x ¼ L ð8aÞ

oM

ox
þ m2

o3w

oxot2
¼ 0 or w ¼ 0 at x ¼ 0 and

x ¼ L

ð8bÞ

M ¼ 0 or
ow

ox
¼ 0 at x ¼ 0 and x ¼ L ð8cÞ

Based on nonlocal theory, N and M are defined as follows:

N ¼ Ax

ou

ox
þ 1

2
Ax

ow x; tð Þ
ox

� �2

þ e0að Þ2 o
ox

m0

o2u

ot2

� �
ð9aÞ

M ¼ �Cx

o2w

ox2
þ e0að Þ2 m0

o2w

ot2
� m2

o4w

ox2ot2

� �

� e0að Þ2 o
ox

�P
ow

ox

� �
ð9bÞ

3 Solution methodology

The generalized differential quadrature method (GDQM)

has vastly been utilized to solve nonlinear equations and is

proven to be accurate for this purpose [43, 44]. As the

concepts of this method have been explained a lot in the

literature [45–54], here we avoid repeating those explana-

tions regarding GDQM.

In GDQM, the rth-order derivative of function f xið Þ is:

orf xð Þ
oxr

����
x¼xP

¼
Xk
j¼1

C
ðrÞ
ij f xið Þ ð10Þ

where k is the number of grid points along x direction and

Cij is:

C
ð1Þ
ij ¼

�M xið Þ
xi � xj
� �

�M xj
� � ; i; j ¼ 1; 2; . . .; n and i 6¼ j

C
ð1Þ
ij ¼ �

Pn
j¼1;i 6¼j

C
ð1Þ
ij ; i ¼ j

ð11Þ

where �M(x) is defined as follows:

�M xið Þ ¼
Yk

j¼1;j6¼i

xi � xj
� �

ð12Þ

The weighting coefficient C(r), along x direction, can be

obtained as follows:

Table 1 The coefficients of Young’s modulus, mass density and

Poisson’s ratio of ceramic (Al2O3) and metal (SUS304), [56]

Material Properties Value

SUS304 E (Pa) 2.0104e?11

q (kg/m3) 8166

t 0.3262

Al2O3 E (Pa) 3.4955e?11

q (kg/m3) 3800

t 0.24

Table 2 Comparison of the first and second linear frequencies of SS and CC nanobeams with the results of Lu, Lee [57] for various nonlocal

values

Boundary condition l ¼ 0:2 l ¼ 0:4 l ¼ 0:6 l ¼ 0:8

Present [57] Present [57] Present [57] Present [57]

SS

FLF 2.890833178 2.8908 2.479026635 2.4790 2.150671092 2.1507 1.910175385 1.9102

SLF 4.958050211 4.9581 3.820348414 3.8204 3.181495315 3.1815 2.775429832 2.7754

TLF 6.452002663 6.4520 4.772238066 4.7722 3.93292651 3.9329 3.417405447 3.4174

CC

FLF 4.276610821 4.2766 3.592313195 3.5923 3.08369597 3.0837 2.724625421 2.7246

SLF 6.035215162 6.0352 4.597799439 4.5978 3.816480343 3.8165 3.325123214 3.3251

TLF 7.384012932 7.3840 5.473777457 5.4738 4.523133894 4.5231 3.936024423 3.9360

FLF fundamental linear frequency, SLF second linear frequency, TLF third linear frequency
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C
ðrÞ
ij ¼ r C

ðr�1Þ
ij C

ð1Þ
ij �

C
ðr�1Þ
ij

xi � xj
� �

" #
; i; j ¼ 1; 2; . . .; k; i 6¼ j and 2� r� k � 1

C
ðrÞ
ii ¼ �

Pn
j¼1;i 6¼j

C
ðrÞ
ij ; i; j ¼ 1; 2; . . .; k and 1� r� k � 1

ð13Þ

To obtain a better distribution for mesh points, Cheby-

shev–Gauss–Lobatto technique is applied as follows:

xi ¼
L

2
1� cos

i� 1ð Þ
k � 1ð Þ p

� �� �
i ¼ 1; 2; 3; . . .; k ð14Þ

The nonlinear motion equations of the FG porous nano-

beam [Eqs. (6), (8)] are considered to be the combination

of three matrixes. Thus, we can obtain the linear and

nonlinear stiffness as

½K�Linear þ ½K�non�Linear � x2½M�
	 


kf g ¼ 0 ð15Þ

The nonlinear stiffness matrix is first neglected to solve the

governing motion equation using the GDQM. So, by

applying the weight coefficients [Eq. (13)] to the linear

motion equations, we have:

Table 3 Validation with the

normalized fundamental

frequency of CC and SS

nanobeams in different

amplitudes

Amp = 1 Amp = 2 Amp = 3

CC Malekzadeh and Shojaee [58] 1.0222 1.0858 1.1823

Shafiei et al. [55] 1.02219 1.08567 1.183103

Present 1.022191379 1.085670505 1.183103614

SS Shafiei et al. [55] 1.08916 1.31778 1.62568

Lestari and Hanagud [59] 1.0892 1.3178 1.6257

Singh et al. [60] 1.0897 1.3229 1.6394

Present 1.089158176 1.317776104 1.625677213
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Fig. 3 Nondimensional frequency versus FG index for clamped–clamped nanobeam porosity of Type 1
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du :
Xn
s¼1

Cð1Þ
rs Ax

Xn
s¼1

Cð1Þ
rs Us

" #
�
Xn
s¼1

Cð1Þ
rs Bx

Xn
s¼1

Cð2Þ
rs Ws

" #

¼ o2

ot2
m0Us � m1

Xn
s¼1

Cð1Þ
rs Ws

" #

� e0að Þ2 o
2

ot2
m0

Xn
s¼1

Cð2Þ
rs Us � m1

Xn
s¼1

Cð3Þ
rs Ws

" #

ð16aÞ

dw :
Xn
s¼1

Cð2Þ
rs �Cx

Xn
s¼1

Cð2Þ
rs Ws

" #

þ
Xn
s¼1

Cð2Þ
rs Bx

Xn
s¼1

Cð1Þ
rs Us

" #
þ
Xn
s¼1

Cð1Þ
rs

�P
Xn
s¼1

Cð1Þ
rs Ws

 !

� e0að Þ2
Xn
s¼1

Cð2Þ
rs

Xn
s¼1

Cð1Þ
rs

�P
Xn
s¼1

Cð1Þ
rs Ws

 !" #

¼ o2

ot2

m0Ws þ m1

Xn
s¼1

Cð1Þ
rs Us � m2

Xn
s¼1

Cð2Þ
rs Ws

� e0að Þ2 o
2

ox2
m0Ws þ m1

Xn
s¼1

Cð1Þ
rs Us � m2

Xn
s¼1

Cð2Þ
rs Ws

 !

2
666664

3
777775

ð16bÞ

Then, applying the boundary conditions, Eq. (8), and

assembling the related matrixes to the boundary conditions

and governing equations, the linear fundamental frequency

can be calculated as below:

Kdd½ � Kdb½ �
Kbd½ � Kbb½ �

� �
kdf g
kbf g

� �
¼ x2

Linear

Mdd½ � Mdb½ �
Mbd½ � Mbb½ �

� �
kdf g
kbf g

� �

ð17Þ

where b and d indexes represent the boundary and domain,

respectively, and k is the mode shape. To solve the non-

linear vibration equations, we need to know the linear

mode shapes. U and W mode shapes can be obtained by

Eq. (17). To obtain the nonlinear mode shapes, we first put

the values of the calculated linear mode shapes in the

nonlinear stiffness matrix, and then, using Eq. (6), and also

coupling the linear and nonlinear stiffness matrixes with

the mass matrix, we obtain the nonlinear frequency and

mode shape. Then, to derive the convergent nonlinear

results, the iteration method is employed to recalculate the

results.
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Fig. 4 Nondimensional frequency versus FG index for clamped–clamped nanobeam porosity of Type 2
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du :
Xn
s¼1

Cð1Þ
rs Ax

Xn
s¼1

Cð1Þ
rs Us þ

1

2
Ax

Xn
s¼1

Cð1Þ
rs Ws

 !2
2
4

3
5

�
Xn
s¼1

Cð1Þ
rs Bx

Xn
s¼1

Cð2Þ
rs Ws

" #

¼ x2
non�Linear

m0Us � m1

Xn
s¼1

Cð1Þ
rs Ws � e0að Þ2 m0

Xn
s¼1

Cð2Þ
rs Us � m1

Xn
s¼1

Cð3Þ
rs Ws

" # !

ð18aÞ

dw :
Xn
s¼1

Cð2Þ
rs �Cx

Xn
s¼1

Cð2Þ
rs Ws

" #

þ
Xn
s¼1

Cð2Þ
rs Bx

Xn
s¼1

Cð1Þ
rs Us

" #
þ
Xn
s¼1

Cð1Þ
rs

�Pþ 1

2
Ax

Xn
s¼1

Cð1Þ
rs Ws

 !2

�Bx

Xn
s¼1

Cð2Þ
rs Ws

0
@

1
AXn

s¼1

Cð1Þ
rs Ws

2
4

3
5

� e0að Þ2
Xn
s¼1

Cð2Þ
rs

Xn
s¼1

Cð1Þ
rs

�Pþ 1

2
Ax

Xn
s¼1

Cð1Þ
rs Ws

 !2

�Bx

Xn
s¼1

Cð2Þ
rs Ws

0
@

1
A

2
4

8<
:

Xn
s¼1

Cð1Þ
rs Ws

#)
¼ x2

non�Linear

m0Ws þ m1

Xn
s¼1

Cð1Þ
rs Us � m2

Xn
s¼1

Cð2Þ
rs Ws

� e0að Þ2 o
2

ox2
m0Ws þ m1

Xn
s¼1

Cð1Þ
rs Us � m2

Xn
s¼1

Cð2Þ
rs Ws

 !

2
666664

3
777775

ð18bÞ

Now, by removing the time-dependent parameters, the

dynamic equation is changed to the static equation and �P is

the desired parameter. Then, using the similar solving

procedure of eigenvalue problem which yielded for vibra-

tion frequency, we now obtain the critical buckling load.
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Fig. 5 Normalized frequency versus nonlinear amplitude for clamped nanobeam for porosity of Type 1 when l ¼ 0:2
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4 Numerical results

Here, the number of grid point is considered to be n = 29

which is sufficient to obtain the accurate results for the

present analysis, and the mesh type is shown in Eq. (14).

Metric dimension is used for the solving procedure, but the

results are first made nondimensional and then normalized

with respect to the linear and local result, by Eqs. (20) and

(21). The nonlinear results are derived using iteration

method. The numerical procedure is applied for the linear

and nonlinear normalized and nondimensional frequencies

and the buckling of the porous FG nanobeam to examine

the effects of nonlinearity, porous volume fraction, non-

local value, etc. To obtain the best results for the Euler–

Bernoulli nanobeam, the ratio of length to height is set to

be L/h = 40. The material of the nanobeam is considered as

FG composed of metal and ceramic with varying compo-

sition through the thickness. In order to have better

understanding of the results, nondimensional parameters

are defined as follows:

l ¼ e0a

L
ð20aÞ

W2 ¼ m0

Cxceramic

L4x2 ð20bÞ

Amp ¼ qmax

~r
¼

ffiffiffiffiffi
h2

12

r
ð20cÞ

PCr ¼ �P� L2

Cx

ð20dÞ

where a is the internal characteristic length, and e0 defines

a material constant. Also l,W, qmax, r, Amp and PCr are the

nondimensional small-scale parameter, nondimensional

frequency, vibration amplitude, gyration radius, nondi-

mensional amplitude and critical buckling load, respec-

tively [55]. Also normalize frequency is introduced as

Normalized frequency ¼
Non � linear frequency of nano � beam

Linear frequency of ceramic local beam

ð21Þ

The mechanical properties of metal and ceramic which

compose the FG nanobeam are presented in Table 1.
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Fig. 6 Normalized frequency versus nonlinear amplitude for clamped nanobeam with n ¼ 2 and porosity of Type 2
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In order to prove the accuracy of the results, the first and

second linear frequencies of nanobeams with CC and SS

boundary conditions are compared with the results of Lu

et al. [57] in Table 2. After that, the fundamental frequency

and the critical buckling load of the porous nanobeam are

depicted for different values of porosity volume fractions,

FG index, nonlocal parameter, etc.

Table 2 shows the validation of the results based on the

first and the second linear frequencies of the nanobeam

with CC and SS boundary conditions with the results of Lu

et al. [57]. It can clearly be seen that the obtained linear

frequencies are in perfect match with the results of Lu et al.

[57] in different nonlocal values. Table 3 shows the good

agreement of the results with the results of Malekzadeh and

Shojaee [58], Shafiei et al. [55], Lestari and Hanagud [59]

and Singh et al. [60] for clamped and simply supported

nanobeams in different values of amplitude of nonlinearity.

Figures 3 and 4 show the nondimensional frequency

versus the FG index (n) for different values of nonlocal

parameters (l) and porosity volume fractions (a), respec-
tively, for Type 1 and Type 2 porous nanobeams under

clamped–clamped (CC) boundary condition. It can be seen

in these two figures that increasing the nonlocal parameter

decreases the nondimensional frequency and increment of

FG index increases the nondimensional frequency of both

porous types. It is observed in Fig. 3 that the effect of the

porosity volume fraction changes after n & 1 (Type 1). As

when n is lower than 1, increasing the porosity volume

fraction increases the nondimensional frequency, but, after

n & 1, the nondimensional frequency decreases by

increasing the porosity volume fraction. This is due to the

change of material properties which can obviously be seen

in Eq. (4). It is because when n\ 1, increasing a increases

the stiffness, but, when n is higher than 1, the stiffness

decreases with the increment of porosity (a).
It is also obvious in Fig. 4 that the nondimensional

frequency of Type 2 porous nanobeam increases with the

porosity volume fraction in all values of FG index. Besides,

a smooth convergence is seen in the values of the nondi-

mensional frequency as the FG index increases. Compar-

ison between Figs. 3 and 4 shows that the frequency of

Type 2 porous nanobeam is lower than Type 1 when the

FG index is low and porosity is high. But, in higher FG

indexes, for example when n = 4, the differences of the

frequencies of Type 1 and Type 2 are not so significant.
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Fig. 7 Nondimensional critical buckling load (PCr) of clamped–clamped Type 1 porous FG nanobeam versus FG index (n)
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Figure 5 shows the normalized frequency of Type 1

porous nanobeam versus the nonlinear amplitude for dif-

ferent values of porous volume fraction and FG index for

CC and SS boundary conditions. It is seen that increasing

the amplitude increases the normalized frequency. Besides,

it is seen that the dependency of the effect of the porous

volume fraction on the value of the FG index occurs in both

CC and SS boundary conditions. In addition, the frequency

of the CC boundary condition is higher than that of SS

boundary condition as the degree of freedom (DOF) of the

CC boundary condition is lower.

Figure 6 shows the normalized frequency of Type 2

porous nanobeam versus the nonlinear amplitude when the

nonlocal value is l = 0.2. Similar to the previous figures,

Fig. 6 shows that the normalized frequency decreases with

the increment of the nonlocal value. It is also shown that as

Type 2 porosity increases, the normalized frequency

slightly decreases. This slight decrement of normalized

frequency of Type 2 porous nanobeam which is due to the

change of porosity is shown previously in Fig. 4.

Figures 7 and 8, respectively, show the critical buckling

load of Type 1 and 2 porous nanobeams versus the FG

index for different values of porous volume fraction and

nonlocal values for CC and SS boundary conditions. It is

shown that increasing the FG index decreases the critical

buckling load. However, this increment is mostly seen

when FG index is lower than 1 and as FG index becomes

higher, the effect of FG index on the critical buckling load

decreases. Figures 7 and 8 also show that increasing the

nonlocal value and porous volume fraction decreases the

critical buckling load. In fact, increasing the nonlocal value

decreases the stiffness of the nanobeam and decreases the

critical buckling load. In addition, the critical buckling load

of the CC boundary condition is higher than that of SS

boundary condition as the DOF of the SS boundary con-

dition is higher.

5 Conclusion

In this study, the nonlinear vibration behavior and buckling

of porous FG nanobeam is studied. The nonlinear Von

Kármán strains are considered to study the nonlinear

behavior, and the boundary conditions are considered as
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Fig. 8 Nondimensional critical buckling load (PCr) of simply supported—simply supported Type 1 porous FG nanobeam versus FG index (n)
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clamped–clamped (CC) and simply supported–simply

supported (SS). The nonlinear equations are derived based

on Eringen’s theory, and GDQM is employed to calculate

the results. The most important results of this work are:

• The normalized frequency and the critical buckling

load increase with the decrement of FG index and

nonlocal value due to the decrement of the stiffness of

the nanobeam.

• The effect of the porosity on the normalized frequency

depends on the value of the FG index and does not

depend on the boundary condition.

• The effect of Type 1 porosity on buckling force and

normalized frequency is more than that of Type 2

porosity.

• The effect of the porosity volume fraction on the

normalized frequency depends on the FG index as

when n is bigger than 1, the porosity increases the

frequency, but when n is lower than 1, the frequency

decreases by increasing the porosity volume fraction.
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