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Abstract
The present numerical simulation is carried out to analyze the behaviors of vortex breakdown in a lid-driven swirling flow

in cylindrical cavity with a thin axial stationary or rotating rod. The range of aspect ratio (AR) of the cavity considered is to

be from 1.0 to 2.5. However, Reynolds number (Re) value, for a given AR, ranges from 1000 to any value till the topmost

point on the boundary of steady vortex breakdown zone is achieved. This enclosed flow region is also referred as annulus

cylindrical cavity. A systematic study has been carried out involving a large number of simulations to obtain one-vortex or

two-vortex breakdown zones for steady lid-driven swirling flow in the annulus cylindrical cavity. Cases within the inner

wall, i.e., the axial rod being stationary or rotating, have been considered. It is observed that the boundaries of zones and of

vortex breakdowns shift due to the presence of stationary/co-rotating thin axial rod. These zones of vortex breakdowns are

represented with plots in AR–Re plane for various rotating speeds of the axial rod. These plots give quick information

regarding overall influence of the presence of the thin axial rod. The direction of rotation of the rod is important; the co-

rotating rod has stabilizing effects, whereas counter-rotating rod tends to create unsteady flow.

Keywords Swirling flow � Axisymmetric � Incompressible

1 Introduction

There has been interest to study swirling flow for last many

decades. The swirling flow occurs in various flow devices:

ranging from centrifuges used for particle separation and

collection of vortex tubes used for cooling to furnaces and

combustion chambers. Vortex breakdown is beneficial in

vortex reactors and burners, [12], as in these devices

Vortex breakdown bubble acts as a flame holder and hence

provides efficient mixing and stable combustion. In vortex

suction devices, vortex breakdown also helps to collect

hazardous emissions Shtern and Hussain [26].

A fundamental basis for vortex breakdown control is yet

to be fully understood and developed. In general, the pre-

diction and control of vortex breakdown are difficult

because of involvement of many parameters, e.g., swirls-

to-axial velocity ratio, external axial pressure gradient,

flow divergence angle, and upstream flow profile. Any

changes in these parameters or the presence of external

disturbances strongly influence the vortex breakdown.

Hence, for a basic research aimed at developing a vortex

breakdown control strategy, it is desirable to have a well-

defined and well-controlled flow. This requirement moti-

vated present research to choose a confined flow that is free

of any types of external disturbances.

A well-studied swirling flow problem is confined flow in

a cylindrical container or cavity and the swirl is due to the

end rotating wall or lid. It is commonly referred as lid-

driven swirling flow. The appearances of vortex break-

downs (one, two, or three vortex breakdowns) depend upon

the aspect ratio (AR = height/radius) of the cavity and

Reynolds number (Re) which has been experimentally

investigated and established first time by Escudier [8].

Escudier represented his experimental data in the Reynolds
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number (Re) and Aspect ratio (AR) plane clearly showing

the stability boundaries for single, double, and triple

breakdowns zones and boundary between oscillatory and

steady flows. There are several advantages of studying the

vortex breakdown in a confined flow. First, the role of

control parameters can easily be established in the absence

of unknown or unpredictable ambient disturbances. Sec-

ond, the flow boundary conditions are well defined and

hence allowing meaningful comparisons of experimental

data Escudier [8] and numerical results Lopez [20]. Once

the flow physics and the means of VB control are under-

stood, one can extend this knowledge to practical problems

of confined or unconfined flows. Lopez 20] carried out a

detailed numerical study with an aim to develop a more

detailed understanding of the physics of the flow and to

clarify features that were not readily resolved from the

experimental visualizations.

Velocity measurements of vortex breakdown in an

enclosed cylinder were carried out experimentally by

Fujimura et al. [10]. In their study, detailed flow patterns

near the rotating disk are constructed by using the experi-

mental data. Confined swirling flows of aqueous surfactant

solutions due to a rotating disk in a cylindrical casing have

been investigated by Tamano et al. [28]. They clarified the

effects of the Reynolds number, elasticity number, and

aspect ratio on the velocity profiles in their study. A region

of rigid body rotation was found at the higher Reynolds

number tested for C14TASal 0.4 wt%. Presence of axial

temperature gradient greatly influences lid-driven swirling

flow and appearance of vortex breakdowns at given com-

bination of values of AR and Re. Such swirling flows under

the influence of the axial temperature gradient has been

investigated using CFD techniques by various researchers

Lugt and Abboud [22], Kim and Hyun [18], Lee and Hyun

[19] and Iwatsu [16]. Presence of axial magnetic field on

lid-driven swilling flow also influences the vortex break-

down and stability of the flow and has been studied by

various authors Bessaıh et al. [2], Bessaıh et al. [3] and

Gelfgat and Gelfgat [11].

The effects of partial heating of top rotating lid with

axial temperature gradient on vortex breakdown, in case of

axisymmetric stratified lid-driven swirling flow, have been

investigated by Dash and Singh [6]. In this study, the effect

of partially heating the top rotating lid on the vortex

breakdown size, shape, and location have been

investigated.

Husain et al. [14] have experimentally visualized the

vortex breakdown behavior for lid-driven swirls flow in a

cylindrical cavity with the presence of thin axial stationary

or rotating rod (i.e., in the cylindrical annulus region with

its inner wall as surface of stationary or rotating rods).

JØrgensen et al. [17] through their numerical simulation

have shown the effects of thin axial rod on vortex

breakdown. The presence of rotating rod, rotating in same

or opposite direction with respect to the direction of rota-

tion top lid, greatly influences the vortex breakdown.

[Jørgensen et al. [17] have investigated the control of

vortex breakdown in a closed cylindrical cavity with a

rotating lid along with thin rotating or stationary rod

positioned along the axis. They carried out numerical

simulations using various parameter values to study the

effects of a thin rotating rod and also to analyze the

influence of local vorticity sources. Their results show that

the vortex breakdown bubbles in the steady axisymmetric

flow can be affected dramatically, i.e., fully suppressed or

significantly enhanced, by rotating the rod and confirm the

experimental observations of Husain et al. [14].

Dash and Singh [5, 7] have analyzed the lid-driven

swirling flow in a closed cylindrical cavity under the

effects of an axial Magnetic field and thin axial rod inserted

in the middle. The study involved solution of Navier–

Stokes equation in cylindrical coordinates with appropriate

Lorentz force components due to magnetic field. It was

observed that a co-rotation of axial thin rod has similar

effects as those due to the presence of magnetic field, i.e.,

both have the stabilizing effects on the swirling flow.

Mununga et al. [23] have investigated the control of

confined vortex breakdown with partial rotating lids. Their

study describes large changes to the interior flow structure

induced by localized flow modification at the rotating

boundary. In a very recent study, subcritical instability of

finite circular Couette flow with stationary inner cylinder

has been studied by Lopez [21]. He found that at suffi-

ciently high Reynolds numbers, due to non-dimensional

rotation rate of the outer cylinder, the sidewall boundary

layer has concentrated shear, the pressure gradient in the

azimuthal direction and its thickness remains constant.

Pereira and Sousa [24] have modified the experimental

arrangement to include a conical rotating end wall. Also,

Escudier et al. [9] has investigated flow produced in a

conical container by a rotating end wall. In all these above

studies, hardly any study has been conducted to find the

zones and boundaries of vortex breakdowns due to the

presence of rotation or stationary axial rod. Aspect ratio

and Reynolds number effects on vortex breakdown and

steady/unsteady flow in the presence of axial rod (cylin-

drical annulus) are hardly ever discussed.

Present study involves a systematic analysis of effects of

the presence of thin axial rod, stationary or rotating in

either direction, on lid-driven swirling flow. Presence of

rotating axial rod imparts angular momentum is in near

flow field and hence influences the vortex breakdowns

along the axis. The results with various rotational speeds of

co-rotating rod are represented in terms of modification of

zones and boundaries of one-vortex and two-vortex

breakdowns on the AR–Re plane. The range of aspect ratio
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(AR) of the cavity considered is to be from 1.0 to 2.5.

However, Reynolds number (Re) value, for a given AR,

ranges from 1000 to any value till the topmost point on the

boundary of steady vortex breakdown zone is achieved.

The radius of the axial rod for all the cases is taken to be

10% of the radius of the cavity. The presence of rotating

axial rod, rotating in same or opposite direction with

respect to the direction of rotation of the top lid, greatly

influences the vortex breakdown as the rotating rod imparts

angular momentum in the surrounding flow field.

In this present study, the zones and boundaries of vortex

breakdowns for steady and unsteady flow in Aspect ratio

and Reynolds number plane have been investigated due to

the presence of axial rotating or stationary rod. The radius

of axial rod is kept constant (r = 0.1) to find the effect of

stationary or rotating condition of axial rod on swirling

flow. Present numerical simulation of the swirling flow is

based on solution of incompressible Navier–Stokes equa-

tions expressed in primitive variables. The flow under the

conditions considered in the present study is assumed to

remain axisymmetric. The present code has been devel-

oped, using finite difference method, on staggered grids

and using pressure correction technique. The velocity

components ur, uh, uy, are in r, h, y directions, respectively,
in cylindrical coordinate systems.

2 Mathematical formulations and method
of solution

The flow domain consists of a vertical cylindrical annulus

cavity of radius R and height H, one end with a fixed wall

and other end with a rotating lid, is filled with incom-

pressible viscous Newtonian fluid, Fig. 1. Without axial

rod the flow domain is simply that of a cylindrical cavity.

The basic swirling motion is generated by rotating the top/

bottom disk with constant angular velocity. As the lid

rotates with some angular velocity, it imparts angular

momentum and the fluid inside the cylindrical cavity also

rotates. The resulting fluid flow developed inside the cavity

has three velocity components; radial ur, azimuthal uh and

axial uy. A schematic of the flow domain is shown in

Fig. 1. The bottom end wall of the cylinder is fixed,

whereas the top lid is rotated with a steady angular velocity

(X) about the cylindrical axis. The fluid adjacent to the top

lid acquires angular momentum and is pushed radially

outward; when it reaches the cylindrical sidewall, the fluid

is constrained to flow downward. The swirling fluid

reaches the stationary bottom and moves radially inward

along the bottom end wall. In the vicinity of the axis, the

swirling fluid flows upward toward the top end wall, thus

completing the circuit in the meridional plane. The flow

structure is known to depend upon two key parameters,

namely; aspect ratio AR = H/R, and rotational Reynolds

number Re ¼ R2X
m where H and R are the height and radius

of the cylinder, respectively, and m the kinematic viscosity

of the fluid. Previous investigations by Escudier [8], Vogel

[29], and Lopez [20] have confirmed that, at certain com-

binations of these two parameters (AR & Re), a recircu-

lation region forms along the axis of the cylinder; such a

recirculation region is referred as vortex breakdown or

vortex breakdown bubble. The zones and boundaries for

single, double, and triple breakdowns, and boundary

between unsteady and steady flow zones, in the Reynolds

number (Re) and aspect ratio (AR) plane, has been

obtained experimentally by Escudier [8].

2.1 Governing equations

The Navier–Stokes equations in cylindrical coordinate for

axisymmetric case can be obtained by dropping all the

terms having partial derivatives with respect to h.
Continuity Equation

1

r

oðrurÞ
or

þ ouz

oz
¼ 0: ð1Þ

Momentum equation in radial direction

our

ot
þ 1

r

oðrururÞ
or

þ oðuruzÞ
oz

� u2h
r

¼ � op

or
þ 1

Re

o

or

1

r

orur

or

� �
þ o2ur

oz2

� �
: ð2Þ

Momentum equation in axial direction

Fig. 1 Schematic of lid-driven swirling flow in cylindrical cavity of

aspect ratio H/R with an axial rod
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where the reference scale for length, time, velocity and

pressure are R, X�1, RX, and [qR2X2], respectively. To

obtain non-dimensional equations these scaling systems are

used. The physical parameters which govern the fluid

motion and are used in the present study are defined as:

aspect ratio: [AR = H/R], H = height and R = radius of

cylindrical cavity and Reynolds number = [Re ¼ R2X
m ].

2.1.1 Boundary condition

On the surface of vertical side wall

r ¼ 1; 0� z�H=R; ur ¼ 0; uz ¼ 0; uh ¼ 0: ð5� aÞ

On the bottom stationary wall

z ¼ 0; 0� r� 1; ur ¼ 0; uz ¼ 0; uh ¼ 0: ð5� bÞ

On the top rotating wall

z ¼ 0; 0� r� 1; ur ¼ 0; uz ¼ 0; uh ¼ rX: ð5� cÞ

On axis of the cavity: (without axial rod)

r ¼ 0; 0� z�H=R; ur ¼ 0;
ouz

or
¼ 0; uh ¼ 0: ð5� dÞ

On the surface of axial rod of radius rrod (with axial rod

having angular velocity Xrod)

r ¼ rrod; 0� z�H=R; ur ¼ 0; uz ¼ 0;
uh ¼ k� Xrod � rrod:

ð5eÞ

where are X and Xrod rotational velocity of the lid and the

rod, respectively, (radian/sec) and k ¼ Xrod

X . The numerical

solution to the problem is obtained using finite difference

scheme on a staggered grid arrangement to solve the set of

equations, i.e., Eqs. (1)–(4) subjected to the boundary

equation Eq. (5).

2.2 Numerical technique and solution procedure

For incompressible flow problem, numerical solution of

Eqs. (1)–(4) is obtained on a staggered grid.

In the staggered grid arrangement, various physical

quantities are stored at different locations of a cell.

In the present scheme, the scalar quantity (p) is stored at

the center of the cell, whereas the velocity components

ur; uz are stored on the midpoints of the cell faces. How-

ever, for axisymmetric case velocity component uh is

effectively stored at the cell center only as shown in

Fig. 2b. It may be noted that in present numerical

scheme the convective terms in the momentum equations

are discretized by central/upwind differencing whereas the

viscous and the pressure terms are always approximated by

second-order central differencing.

Knowing the solution at nth time level ur; uh; uz, p, the

aim is to obtain the solution at next time level. The pro-

cedure of solving radial and axial momentum equations is

based on pressure correction technique, and subsequently

finite difference solution of angular momentum equation is

obtained. While advancing solution from nth time level to

ðnþ 1Þth time level explicitly, one get velocity field which

may or may not satisfy the continuity equation. This

problem is resolved by using pressure correction technique

where the pressure and velocity components for each cell

are corrected iteratively in such a way that for the final

pressure field the velocity divergence in each cell vanishes.

The typical features of pressure correction technique,

also referred as modified MAC method, are available in

detail in a paper by Chorin [1] and Peyret and Taylor [25]

for the solution of incompressible Navier Stoke equation in

rectangular Cartesian coordinate system. After obtaining

the corrected radial and axial velocity field using the above

pressure correction technique, these velocity components

are used to solve the azimuthal momentum equation

explicitly to get the uh at the (n ? 1)th time level.

A brief outline of the procedure for the governing

equations (Eqs. (1)–(4) in cylindrical coordinate for

axisymmetric case is presented here.

The solution procedure is summarized as:

1. The momentum equations along radial and axial

directions are solved following the pressure correction

technique.

2. After the corrected radial and axial velocities compo-

nents are known, momentum equation for azimuthal

direction is solved to obtain uh.

3. Steps (1) to (2) are repeated until convergence for the

case where the steady state exists or for a required time

for unsteady flow calculations.

3 Results and discussion

A few grid independency tests have been conducted for lid-

driven swirling flow without any axial rod. Effects of the

time step size on the accuracy of the solution and the

convergence history of the solution have also been
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investigated for a test case. Present code has been validated

for a number of test cases by comparing the present

numerical solution with both the numerical results as well

as the experimental data available in open literature. A

systematic study has been conducted to investigate the

behavior of confine lid-driven swirling in the annuals

region with stationary or rotating inner wall.

3.1 Grid resolution and time-step size effects

A grid independency test has been conducted for the case

of a AR = 2.0 cavity with top rotating lid at Re = 2000 and

time step dt = 0.001. Numerical solutions for the case with

equal spacing grids 101 9 201, 201 9 401, and

301 9 601 on the meridional plane have been obtained and

compared in Fig. 3. It can be observed from the time his-

tory of max Deli;j
�� �� (i.e., the maximum value of the mod of

the divergence of velocity field Deli;j) that for all the grids

the convergence is quite good and the convergence

becomes slower with the fineness of the grid Fig. 3a.

However, the final converged solution is almost identical as

can be seen from axial velocity profile along the axis of the

cavity, Fig. 3b.

To observe any influence of the time-step size on the

final solution the above case was re-evaluated with three

time steps; dt = 0.0005, 0.001 and 0.005. The time history

of max Deli;j
�� �� for these time steps shows that the conver-

gence rate increase with increase in the time-step size and

the final converged solutions are identical as can be seen

from Fig. 4.

For the same case of swirling flow in AR = 2.0 cavity

with Re = 2000, 101 9 201 grid and dt = 0.005, Fig. 5

shows that the time histories of max
ouri;j
ot

��� ���, max
ouyi;j
ot

��� ��� and

max
ouhi;j
ot

��� ��� (residues of radial, axial, and azimuthal

Fig. 2 a Grid in meridional

plane with dummy cells,

b velocities and pressure on

staggered grid arrangement

 (a) (b)

Fig. 3 Grid resolution effects on a time history residual, b axial velocity. Profile at r = 0
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momentum equations, respectively) are almost identical

indicating a good convergence. The time history of

max Deli;j
�� �� is also included in the figure. Hence, it may be

concluded that vanishing of Deli;j in each cell, i.e., a

divergence-free velocity field along with the associated

pressure field ensures that all the three momentum equa-

tions are also satisfied.

Another case of swirling flow in AR = 2.5 cavity with

Re = 2000 has been selected for grid independency study.

This case was selected because of the presence of two-

vortex breakdowns and hence more challenging one. Axial/

radial profiles of radial, axial, and azimuthal velocity

components of the swirling flow obtained by the bottom

rotating lid are shown in Fig. 6. It can be seen that there is

no difference in the solutions obtained with the finer

201 9 501 and 301 9 751 grids. Solution with 101 9 251

grid shows some small localized deviations in the regions

close to the vortex breakdowns. The same can also be

observed from the stream contours with the three grids,

Fig. 7.

3.2 Code validation

Present code is validated against both the experimental as

well as the numerical results available in open literature.

The first case of lid-driven confined swirling flow for

AR = 2.0 cavity with Re = 1000, 2000 and 2300 is con-

sidered and validated against the experimental data by

Sancho et al. [27]. The comparison of the present axial

velocity profiles with the experimental data is good for all

the three Reynolds numbers as shown in Fig. 8. The steam

contours for each Reynolds number are included in Fig. 9

which show the flow structure in the meridional plane

which is consistent with the regions and boundary diagram

due to Escudier [8]. For Re = 1000 case, stream lines near

the axis of symmetry are parallel, indicating no sign of

vortex breakdown for the case. With Re = 2000 there are

two distinct vortex breakdown along the axis and the col-

lapse into one-vortex breakdown as the Reynolds number is

further increased to Re = 2300.

In another validation, the axial velocity profiles along

the axis of symmetry, for three cases; AR = 1.5 with

Re = 990 &1290 and AR = 2.5 with Re = 1010, have been

obtained and compared with number of other numerical

(a) (b)

Fig. 4 Effect of time step (dt) on a time history of residual, b axial velocity profile at r = 0.0

Fig. 5 Comparison of time histories of different residuals with

101 9 201 grids
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solutions due to Guo et al. [24], Wang et al. [25] and

Bhaumic et al. [26] in Fig. 10. For all the three cases,

present solution in each case matches well with those due

to Guo et al. [13] and Wang et al. [30], but the solutions

due to Bhaumik and Laksmisha [4] show some small local

deviations. However, the overall comparison of all the

numerical solutions is quite good.

3.3 Effect of time step size on unsteady flows

A comparative study for unsteady swirling flow calcula-

tions has been carried out for the case of AR = 2.5 cavity

with Re = 2765. The case is a known to be a one with

unsteady flow and the point AR-Re plane lies in the

unsteady zone Escuder [8]. Figure 11 shows the

comparison of the time history of stream function at (r = R/

3, y = 2H/3) at sufficiently large time t = 3000.

The effect of time step size on the unsteady flow cal-

culations is presented in the form of time history of the

stream function at the same selected point with various

time step size as shown in Fig. 11. There are differences

with time step from dt = 0.005 to dt = 0.0005 but further

decrease in time step to dt = 0.0001 makes no difference as

compared to the one with dt = 0.0005. Hence, for the

present case the time step dt = 0.0005 looks adequate.

After approximately 2750 revolutions of the lid (i.e.,

t = 2750) the flow settles down to a periodic state.

(a) (b)

Fig. 6 Effect of grid resolution on a axial velocity profile at r = 0, b radial profiles at of axial, radial, and azimuthal velocity at y/h = 0.5

(c)(b)(a)

Grid (101X251)                Grid(201X501)             Grid(301X751) 

Fig. 7 Comparison of stream contours at three different grids 101 9 251, 201 9 601 and 301 9 751
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(b)(a)

(c)

Fig. 8 (I) Comparison of axial velocity profiles for AR = 2.0 cavity at a Re = 1000, b Re = 2000, c Re = 2300

        Re =1000, AR =2.0                

Fig. 9 Stream contours at different Reynolds number for AR = 2.0 cavity
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3.4 Vortex breakdown in cylindrical cavity
with axial thin rod of radius rrod

The behavior of vortex breakdown in case of confined lid-

driven swirling flow can be controlled by inserting a thin

(rotating/stationary) rod along the axis. The boundary

condition along the axis of symmetry is replaced with no-

slip condition on the surface of the rod as is given in

Eq. 5(e) and rewritten as

r ¼ rrod; 0� y� h; ur ¼ 0; uy ¼ 0; uh ¼ k� Xrod � rrod;

where X and Xrod are the rotational velocities (rad/sec) of

the top lid and the rod, respectively, and k ¼ Xrod

X .

All other boundary conditions remain same as in case of

lid-driven swirling flow without rod along its axis.

Depending on the selected value of k, different cases can
be studied. For stationary rod, k ¼ 0, co-rotating rod, i.e.,

the rod and the lid rotate in the same direction k ¼ þve and

for counter-rotating rod k ¼ �ve. Here, Rerod ¼ Xrodr
2
rod

m is

Reynolds number due to axial rod rotation.

3.4.1 Validation in the presence of axial rod

The present result is validated with the experimental result

of Husain et al. [14] and the numerical result of Herrada

and Shtern [15] at Re = 2720, AR = 3. 25. The axial

(stationary/rotating) thin rod (radius of rod (rrod)/radius of

lid (rlid) = 0. 04). Figure 12a–c shows flow patterns for

Re = 2720, AR = 3. 25 at Rerod ¼ 0:0 where the rod is at

rest. The streamline contours of present calculation shown

(a) (b)

(c)

Fig. 10 Comparison of axial velocity profiles at r = 0.0 with available numerical solutions for a Re = 990, AR = 1.5, b Re = 1290, AR = 1.5,

c Re = 1010, AR = 2.5
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in Fig. 12b middle is validated with flow visualization of

Husain et al. [14] in Fig. 12a left and streamline contour

Fig. 12c of Herrada and Shtern [15] Fig. 12c right; where

the rod is at rest, Rerod ¼ 0:0.

The presently calculated streamline contour is consistent

with the results of Husain et al. [14] Fig. 12a left and

Herrada and Shtern [15] Fig. 12c right; where three vortex

breakdowns are existing along the axis. The marking of

vortex number (i, ii, iii) by Husain et al. [14] in Fig. 12a

left can be seen in the present streamline contours.

In case of co-rotating rod condition for Re = 2720,

AR = 3. 25 at Rerod = 21, the present stream contours

Fig. 12e middle has been well matched with the flow

visualization of Husain et al. [14] Fig. 12d left and calcu-

lated stream contours of Herrada and Shtern [15] Fig. 12f

right. In this condition, vortex numbers (ii, iii) are com-

pletely suppressed. Regardless of minor differences, the

present numerical result is well agreed concerning the main

effect suppression of vortex breakdown even by a weak co-

rotation of the rod.

The rotating flow with the counter-rotation of the axial

rod, at a critical steady flow condition, Rerod = -12, for

Re = 2720, AR = 3. 25 the present stream contours

Fig. 12h middle has been validated with the flow visual-

ization of Husain et al. [14] in Fig. 12g left and calculated

stream contours of Herrada and Shtern [15] Fig. 12i right.

The present result is in excellent agreement, both showing

that the counter-rotation (a) significantly enlarges the vor-

tex ring (iii), shifts the vortex ring (iii) downstream, and the

flow is still steady at this Rerod = -12. Also, for these

above corresponding cases, quantitative comparison of

present numerical results with that due to Herrada and

Shtern [15] at Re = 2720, AR = 3.2, and rrod = 0.04, are

shown in Table 1. The magnitude of maximum and

minimum of stream function of the present result are well

agreed with Herrada and Shtern [15].

3.4.2 For unsteady flow condition

Flow visualization of Husain et al. [14] is investigated by

present code with help of the time history of vortex

breakdown bubbles and stream contours for counter-rotat-

ing of the axial rod at Rer = -16.5. Re = 2720, AR = 3.25.

Figure 13 shows the time history of radial, axial and cir-

culation for Rei = -16.5. The flow becomes weakly non-

periodic and unsteady which confirms the validity of the

present code with the experimental result of Husain et al.

[14].

The upstream vortex ring i also become strongly

unsteady and the number of vortex rings increases. As the

entire array of vortex rings i through iv moves downstream,

the downstream vortex iv approaches the disk. At this

stage, a satisfactory comparison of present result can be

visualized with the help of stream contours in Fig. 14a at a

non-dimensional time t = 2980. After the elongation, ring

transforms into Ni to Niv where N denotes new rings. At a

non-dimensional time, t = 2990 the matching of present

stream contour can be seen in Fig. 14b.

3.4.3 Case-I: AR = 2.5 Cylindrical cavity with axial
stationary/rotating rod at Re = 2400

To investigate the effects of presence of stationary or

rotating rod, a rod with rrod ¼ 0:1r, has been inserted along

the axis. Stream contours for cases with the rod being

stationary k ¼ 0, co-rotating rod with k ¼ 1&2 have been

compared with the one without any rod as shown in

Fig. 15. By introducing thin stationary rod some changes

have been observed from stream function contours in terms

of size, shape and location of vortex breakdowns as can be

seen in Fig. 15a, b. These changes are expected due to; (i)

the drastically different no-slip condition as compared to

the symmetric boundary condition and (ii) because of a

slight increase of the aspect ratio of the cavity. Co-rotating

rod imparts angular momentum in the same direction as the

rotating disk that delays or completely avoids bubble-type

vortex formation along the axis. For the co-rotating rod

with k ¼ 1, the vortex breakdown still exists and its size

and shape is very similar to the case of flow with stationary

rod, Fig. 15b, c. This indicates that co-rotating rod with

same speed as the lid does not impart sufficient axial

momentum to remove the vortex breakdown completely.

When the speed of the co-rotating rod is further increases

to k ¼ 2 the vortex breakdown completely varnishes,

Fig. 15d.

The azimuthal velocity profiles at y/h = 0.5 for the cases

of stationary and co-rotating rod has been compared with

Fig. 11 Instantaneous time history of stream contours at r = 0.2,

y = 0.8 and Re = 2765, AR = 2.5
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the one without rod Fig. 16a. It can be observed that the

azimuthal velocity for stationary rod near its surface is

lower than the one without any rod. This is expected

because of the application of no-slip condition on the

surface of the stationary rod. The effect of co-rotation of

the rod, k ¼ 1&2, on the lid-driven swirling flow is man-

ifested in the form of increase in the azimuthal velocity; the

increase is maximum near the rotating rod, start decreasing

with r, and almost diminishes beyond r = 0.8.

(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

Fig. 12 Comparison of experimental Husain et al. [14] left, numerical results at present middle, numerical Herrada and Shtern [15], at

Re = 2720, and Ri = 0.04, for different axial rod speed: a–c Rei = 0, d–f-Rei = 21, g–i Rei = - 12
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The axial velocity profiles at r = 0.15, a location 0.05r

away from the surface of the wall, for all the cases of

stationary and co-rotating axial rod have been compared

with axial profiles at r = 0.0 and r = 0.15 for the case

without the axial rod, 16(b). The profile along the axis for

the case without any rod shows the size and axial location

of two-vortex breakdowns. It can be observed that there is

no vortex breakdown for k ¼ 2 case and there is only

single vortex breakdown for each of the cases with

k ¼ 0:0&1:0. However, the vortex with k ¼ 1 gets stret-

ched in axial direction and also slightly shifts upward as

compared to the one with stationary rod.

Table 1 Comparison of present numerical results with that due to Herrada and Shtern [15], at Re = 2720, and Ri = 0.04, for different axial rod

speed

Results wmax-Present wmax-Herrada and Shtern [15] wmin-Present wmin-Herrada and Shtern [15]

Rerod ¼ 0 6.8633E-03 6.900E-03 - 5.1800E-06 5.000E-06

Rerod ¼ 21 6.9439E-03 6.900E-03 - 6.2042E-06 - 6.2000E-06

Rerod ¼ �12 6.7996E-03 6.800E-03 - 3.1667E-05 - 1.0400E-05

(b)(a)

(c)

Fig. 13 Time-periodic oscillation in the flow with the counter-rotating rod at Rei = 16.5. (AR = 3.25, Re = 2720). Value at r = 0.4, y = 1.9.

a Radial component of velocity, b Axial component of velocity (c) circulation
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For the counter-rotating rod,k ¼ �ve, the angular

momentum imparted by the rod is in opposite direction to

the one imparted by the rotating lid, and this may lead to

unsteady flow. When the rotation speed is k ¼ �1, the flow

still remains steady, as shown in Fig. 17, but two distinct

vortex breakdown bubbles appear along the axis: lower one

is smaller in size and is similar to the one with stationary

rod but the other one is bigger in size and is situated close

to the top rotating lid. When the speed of the counter-

rotating rod is increased to k ¼ �2, it makes the flow

highly unsteady as can be seen from Fig. 18. Time histories

of the residual of axial momentum equation, max
ouri;j
ot

��� ���, and
max Deli;j

�� �� for the swirling flow without rod and with rod

for the cases with k ¼ �2;�1; 0;þ1&þ 2 is included in

Fig. 19.

For all the cases considered here, both time histories

show similar trends. It may be observed that for the

counter-rotating rod with k ¼ �2, the residuals do not fall

with time indicating the flow remains oscillatory. Swirling

flow with co-rotating rod, k ¼ 2, results in a converged

vortex breakdown free steady solution although the con-

vergence is much slower than the reaming cases included

Fig. 19.

The vortex breakdown zones and boundaries, in AR-Re

plane for lid-driven swirling flow in cylindrical cavity with

thin axial stationary or co-rotating rod (i.e., with

k ¼ 0;þ1&þ 2) have been generated. This is achieved by

extensive study of these flows with varying values of AR

(a) (b)

Fig. 14 Comparison of flow visualization of the time evolution of vortex breakdown bubbles for counter-rotating disk and central rod at

Rer = 16.5. (AR = 3.25, Re = 2720). a Husain et al. [14] Present at t = 2980, b Husain et al. [14] Present t = 2990

(a) (b) (c) (d) 

Fig. 15 Streamline contours without and with rod (rrod = 0.1r) for AR = 2.5 cavity at Re = 2400
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and Re to obtain the zones and boundaries in each case.

These boundaries and zones of vortex breakdowns for

different cases are shown in Figs. 20 and 21.

3.4.4 Case-II Zones and boundaries of vortex breakdowns
in AR–Re plane for the lid-driven swirling flow
with axial stationary rod. [k= 0]

Figure 20a shows the regions and boundaries of one-vortex

breakdown and two-vortex breakdown zones, as obtained

by the present code, for the case of rotating lid in the

presence of thin axial stationary rod. The two-vortex

breakdown zone, within the range of AR = 2.5, is indicated

here by a curve-BQP and part of the boundary of one-

vortex breakdown zone is indicated by curve-ASM. The

curve-OQP is obtained as the boundary between the single-

and the double-vortex breakdown zones. The curve-AOB

separates the unsteady zone from steady vortex breakdown

zones. To have an idea how these zones and boundaries are

affected due to the presence of a stationary rod these have

been compared, in Fig. 20b, with the zones and boundaries

of vortex breakdowns for lid-driven cylindrical cavity flow

as obtained experimentally by Escudier [8].

The corresponding boundaries and zones of vortex

breakdowns as obtained by Escudier [8] consist of curve-

CKN as the boundary for one-vortex breakdown zone,

curve-HG as the boundary between the one-breakdown and

two-vortex breakdown zones and curve-CD as the

(a) (b)

Fig. 16 Effect of thin axial rod on a azimuthal velocity profile at y/h = 0.5, b axial velocity profile at r = 0.15 for AR = 2.5 cavity at Re = 2400

(c) t =2880 (a) t= 2800 (b) t =2840

Fig. 17 Flow pattern in meridional plane at different time for AR = 2.5 cavity at Re = 2400 with rod speed k ¼ �1. a t = 2800, b t = 2840,

c t = 2880
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boundary between steady and unsteady zones as shown in

Fig. 20b. It may be observed from the comparison shown

in Fig. 20b that the effects of presence of stationary axial

rod are; the one-vortex breakdown zone is shifted toward

left with upper boundary sifting more than the lower

boundary and the horizontal width of the zone increases,

the two-vortex breakdown zone reduces in size and the

boundary between steady vortex breakdown zones and

unsteady zone get stretched as well as shifts downward.

To capture the boundary curve-AOB between steady

and unsteady zones a large number of computations have

been performed. For example, for given aspect ratio (AR),

one has to find flow at increasing Reynolds number in

small steps and keep checking if the flow is steady or

unsteady. To establish the steady/unsteady nature of the

swirling flow corresponding to any point on the AR–Re

plane, the variation of three components velocity at nine

selected locations, in the flow field in meridional plane, is

studied. If at all the selected locations on meridional plane

each velocity component show the steady behavior then the

flow corresponding to pair of values of Re and AR (i.e., a

point on the Re–AR plane) is assumed to be steady.

Figure 21 shows, e.g., the variation of radial component

of the velocities with time at a location (r = 0.15, y = 0.2)

0 (a) (b) (c) 

Fig. 18 Flow pattern in meridional plane at different time for AR = 2.5 cavity at Re = 2400 with rod speed k ¼ �2. a t = 3500, b t = 3520,

c t = 3540

(a)  (b)

Fig. 19 Effect of axial rod on the time history of residuals of a continuity equation, b radial momentum equation for AR = 2.5 cavity at

Re = 2400
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on the meridional plane corresponding to three selected

points lying just above the unsteady boundary in the AR–

Re plane, i.e., the curve-AOB in Fig. 20. All these points

lying just above the unsteady boundary have Reynolds

number Re = 2550. After initial transient, the amplitudes

of fluctuation of radial velocity for AR = 1.5 case remains

more or less constant Fig. 21a. Similar trends for AR = 2.0

case can be observed from Fig. 21c. However, the ampli-

tude of fluctuation for AR = 1.7 keeps increasing with

time, Fig. 21b, which is expected as this point is relatively

farther from the unsteady boundary (Fig. 20). This indi-

cates that flow corresponding to each of these three points,

lying on AR–Re plane, is unsteady and hence these points

lie in the unsteady zone.

3.4.5 Case III Zones and boundaries of vortex breakdowns
in AR–Re plane for lid-driven swirling flow with co-
rotating axial rod [k= 1]

The effects upon vortex breakdown zones and boundaries

due to the presence of a thin axial co-rotating rod with

k ¼ 1 have been investigated and the results are presented

in Fig. 22a. This study has been carried out for AR range

from 1 to 2.5 only. It may be noted that for the rage of AR

up to 2.5, the two-vortex breakdown zone disappears

completely and that the boundary between steady and

unsteady zones (i.e., curve-AOB) shifts downwards.

In Fig. 22b, a comparison of zones and boundaries of

present case with rotating axial rod has been made with

those due to Escudier [8] for lid-driven swirling flow in a

cavity. It may be noted that for this case of co-rotating rod

the double-vortex breakdown zone disappears completely.

This is due to an additional angular momentum imparted to

the surrounding fluid by the rotating axial rod in the same

direction as by the top rotating lid. The shifting of single-

vortex breakdown zone, with its boundary curve-ASM

Fig. 22b, is relatively smaller in comparison with the case

of lid-driven swirling flow with stationary rod Fig. 20b.

Also shifting of the unsteady zone downwards, boundary

AOB in Fig. 22a, is larger as compared to the case with

stationary axial rod boundary curve-AOB Fig. 20.

3.4.6 Case IV zones and boundaries of vortex breakdown
in AR–Re plane for lid-driven swirling flow with co-
rotating axial rod [k= 2]

To understand the effects of increasing the rotational speed

of co-rotating rod, a case with [k = 2] has been investi-

gated. This study also has been carried out for AR = 1 to

2.5 only. It may be noted from Fig. 23a that for the given

range of AR up to 2.5, there is no vortex breakdown

developed for any combination of values of AR and Re

corresponding to any point lying throughout the zone of

steady flow in Re–AR plane.

Reason for having no vortex breakdowns is due to larger

additional angular momentum (angular speed of the rod is

twice that of the lid) imparted to the fluid by the rotating

axial rod. The present case has been compared with that

due to Escudier [8] curve in Fig. 23b. However, like pre-

vious cases the zone of the unsteady flow shifts downward

as compared to the one due to Escudier [8] for the case

without any axial rod.

(a) 

(b) 

Fig. 20 Zones and boundaries of one-breakdown and two-break-

downs in AR–Re plane; a present results with stationary axial rod

ðk ¼ 0Þ, b comparison with the case without rod due to Escudier [8]

336 Page 16 of 19 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:336

123



4 Conclusions

The present numerical solutions provide a clear picture of

the flow topology of lid-driven swirling flow especially of

the structure of the multiple recirculation zones, repre-

sented on AR–Re plane, and how these zones and bound-

aries are influenced by the presence of axial stationary/

rotating rod. An addition of swirl, by inserting a rotating

axial rod, near the axis of a lid-driven swirling flow is an

effective means to either suppress or enhance vortex

breakdown. The flow appears to be very sensitive to the

direction of rotation of the axial rod; co-rotating rod retains

a steady flow, suppresses vortex breakdown bubbles,

whereas counter-rotating rod tends to create unsteadiness.

Similar observations are also made by Husain et al. [14]

and JØrgensen et al. (2003).

One can use the counter-rotating (k ¼ �ve) thin axial

rod to achieve considerable oscillations even at much lower

Reynolds numbers, thereby subjecting, e.g., the biological

material to lower damaging stress levels. The vortex

breakdown zones and boundaries, in AR–Re plane for lid-

driven swirling flow in cylindrical cavity with thin axial

stationary or co-rotating rod (i.e., with k ¼ 0;þ1&þ 2)

have been generated. In addition for each case, the

boundary between unsteady and steady zones has also been

obtained. The zones and boundaries of the vortex break-

downs in the AR–Re plane are greatly affected by swirl

number k as shown in Figs. 18, 20 and 21 for various

values of k.
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(c)

(b)(a)

(d)

Fig. 21 Time history of radial component of velocity at point, r = 0.15 y = 0.2, with Re = 2550 and a AR = 1.5, b AR = 1.7, c AR = 2.0, d
AR = 2.5 for the case with stationary rod ðk ¼ 0Þ
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