
TECHNICAL PAPER

Multiple cracks analysis in a FG orthotropic layer with FGPM coating
under anti-plane loading

R. Sourki1,2 • S. Ilyaei3 • M. Bastanfar1 • M. M. Monfared4

Received: 11 August 2017 / Accepted: 15 May 2018 / Published online: 25 May 2018
� The Brazilian Society of Mechanical Sciences and Engineering 2018

Abstract
An analytical solution to the fracture analysis of a functionally graded (FG) orthotropic substrate with FG piezoelectric

coating weakened by a screw dislocation is carried out. The material properties are assumed to vary exponentially through

the thickness of the layers. The problem is solved under various types of anti-plane shear and in-plane electric loadings. At

first, by considering a single-screw dislocation at crack location, an analytical solution is developed. Next, by using the

Fourier transform, the problem is reduced to a system of singular integral equations with Cauchy-type singularities. Then,

by computing the dislocation densities, both the stress intensity factors and the stress fields at the crack tips under different

electromechanical loadings are determined. In this investigation, various examples are solved to show the applicability of

the proposed solution by studying the effects of the cracks configurations, material properties, and non-homogeneity

parameter on the stress intensity factors.

Keywords FG orthotropic substrate � Non-homogeneous piezoelectric coating � Distributed dislocation technique �
Stress intensity factors � Elliptical cracks � Mode III fracture analysis

1 Introduction

Smart structures like piezoelectric materials have been

manipulated in some advanced applications which neces-

sitate the analysis of their behavior in different positions.

Piezoelectric materials have various behaviors, so they are

usually susceptible to cracking. Therefore, these materials

have drawn a great attention of many researches in fracture

mechanics. It is known that when piezoelectric materials

deformed, they produce an electric field and undergo

deformation when subjected to an electric field. Piezo-

electric materials, due to this intrinsic coupling

phenomenon, are used extensively in technologies such as

aerospace, power generation and flow monitoring, and

industrial equipment. A case in point is the application of

such materials in airplanes wing with smart flexible flaps

which are skeptical to cracking. Hence, the study of the

fracture mechanics of piezoelectric materials plays an

important role in the fracture problem.

To achieve advanced performance, piezoelectric

components are often made as layered structures. For

enhancing mechanical performance, the simplest struc-

ture is merely the composition of a piezoelectric layer

and an orthotropic substrate which are used commonly

[1].

Some investigations are done for weakened piezoelec-

tric materials. For instance, Mousavi and Paavola [2]

investigated the problem of cracked layer under anti-plane

mechanical and in-plane electrical loading. The distributed

dislocation technique was used to calculate the stress

intensity factors (SIFs). Wang and Xu [3] by utilizing the

Green’s function method studied the fracture problem of

the interaction between a piezoelectric screw dislocation

and a finite crack in a hexagonal piezoelectric solid. Huang

and Kuang [4] considered piezoelectric material with

respect to the first-order perturbation analysis of a non-

Technical Editor: Paulo de Tarso Rocha de Mendonça.

& M. M. Monfared

mo_m_monfared@yahoo.com

1 Faculty of Engineering, University of Zanjan, Zanjan, Iran

2 Composites Research Network, School of Engineering, The

University of British Columbia, Kelowna, BC, Canada

3 Department of Mechanical Engineering, Takestan Branch,

Islamic Azad University, Qazvin, Iran

4 Department of Mechanical Engineering, Hashtgerd Branch,

Islamic Azad University, P.O. Box 33615-178, Alborz, Iran

123

Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:309
https://doi.org/10.1007/s40430-018-1234-1(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-018-1234-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-018-1234-1&amp;domain=pdf
https://doi.org/10.1007/s40430-018-1234-1


ideal crack. The results showed the stress and electric

intensity factors at the vicinity of cracks tips.

Besides, there have been some studies for the layered

structures containing cracks. As an illustration, Lee et al. [5]

considered the problem of Yoffe crack between a piezo-

electric and two orthotropic layers under anti-plane loading.

The results showed that the dynamic stress intensity factors

depend on items such as crack length, the ratios of stiffness,

and thickness. Narita and Shindo [6] studied the effect of

the electroelastic interactions on the SIFs for the interface

crack problem between piezoelectric and orthotropic

materials. The SIFs and the effect of electroelastic inter-

actions on the energy release rate were obtained. Kah Soh

et al. [7] analyzed the interfacial crack problem subjected to

anti-plane shear and in-plane electric loading. The effects of

thickness and material constants on SIFs were shown to be

significant. Li [8] presented a closed-form solution of two

collinear crack normal to the piezoelectric strip boundaries.

The SIFs and the energy release rate at the inner and outer

crack tips were obtained. Li and Tang [9] investigated the

interfacial crack problem between two dissimilar piezo-

electric layer under the permeable crack assumption. Bayat

et al. [10] investigated the problem of a cracked orthotropic

layer with imperfect piezoelectric coating. SIFs and hoop

stress on the imperfect bonding coefficient were calculated.

Bagheri et al. [11] investigated cracked piezoelectric sub-

strate with imperfect orthotropic coating. By using the

dislocation densities, the field of stress intensity factors was

determined. Feng et al. [12] considered the problem of

interface crack between orthotropic substrate and a piezo-

electric layer. Different material and geometrical parame-

ters were considered to calculate SIFs. Kwon and Meguid

[13] studied the fracture problem of Griffith crack between

rectangular piezoelectric and two orthotropic layer. Ding

and Li [14] considered and discussed the effects of periodic

cracks in an FG piezoelectric strip bonded to a piezoelectric

half-plane. Ueda [15] studied the crack problem in func-

tionally graded piezoelectric (FGPM) layer bonded between

two elastic coats under electromechanical loading.

Numerical calculations are accomplished to compute the

energy density factors.

Baghestani et al. [16] studied the problem of cracked

orthotropic layer. The stress analysis of an orthotropic layer

under in-plane point loads were carried out. Monfared et al.

[17] investigated elastodynamic analysis of a cracked

orthotropic layer under anti-plane loading using the dis-

tributed dislocation method. And in another investigation,

Monfared and Ayatollahi [18] studied the cracked FG

orthotropic half-plane containing multiple cracks under

time-harmonic loading.

In the present study, a cracked FG orthotropic layer that

is bonded to an FGP coating under different types of

electromechanical loading is investigated. The problem is

solved utilizing the Fourier transformation and disturbed

dislocation technique to determinate the SIFs as well as the

stress fields at cracks tips. Eventually, several examples are

solved numerically to show the effect of various parame-

ters such as cracks configuration, non-homogeneity

parameter, various materials, and the type of loadings on

the stress intensity factors.

In Sect. 2, the constitutive equations are presented, the

displacement and stress fields for the FG orthotropic layer

weakened by a single-screw-type dislocation bonded to the

FGP coating are obtained. Next, in Sect. 3, the stress fields,

without the dislocation, for different types of loadings

applied to the boundaries are calculated. Then, the method

to solve the system of integral equations for any cracks

pattern is presented in Sect. 4. Finally, several examples

are solved to show the influence of the aforementioned

parameters on the stress intensity factors.

2 Formulation of the problem

We consider an FG orthotropic layer with thickness h2
bonded to an FGP layer with thickness h1 that were polled

in the z direction (shown in Fig. 1). The single dislocation

is chosen at point ðf; gÞ to analyze the stress fields which

results in determination of the SIFs at crack tips.

2.1 Constitutive equations for the functionally
graded piezoelectric coating

For the anti-plane deformation, the only nonzero dis-

placement component is w, so other two elastic displace-

ments u and v oriented in x and y axes disappear.

The displacement components are u; v;w and the electric

components are Ex;Ey;Ez, so we have

u ¼ 0; Ex ¼ Exðx; yÞ;
v ¼ 0; Ey ¼ Eyðx; yÞ;
w ¼ wðx; yÞ; Ez ¼ 0:

ð1Þ

Fig. 1 Schematic view of the FG orthotropic substrate with screw

dislocation
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For the electric fields with respect to the electrical

potential uðx; yÞ are

Ex ¼ � ouðx; yÞ
ox

; Ey ¼ � ouðx; yÞ
oy

; ð2Þ

and the constitutive equations for the FGP layer in the

region 0\y\h1 are achieved by

rzx1ðx; yÞ ¼ c44ðyÞ
ow1ðx; yÞ

ox
þ e15ðyÞ

ouðx; yÞ
ox

;

Dx1ðx; yÞ ¼ e15ðyÞ
ow1ðx; yÞ

ox
� d11ðyÞ

ouðx; yÞ
ox

;

rzy1ðx; yÞ ¼ c44ðyÞ
ow1ðx; yÞ

oy
þ e15ðyÞ

ouðx; yÞ
oy

;

Dy1ðx; yÞ ¼ e15ðyÞ
ow1ðx; yÞ

oy
� d11ðyÞ

ouðx; yÞ
oy

;

ð3Þ

in which Dx1ðx; yÞ; Dy1ðx; yÞ are the components of electric

displacements. Furthermore, the shear modulus measured

in a constant electric field is c44ðyÞ, dielectric constant

measured at a constant strain is shown with d11ðyÞ, and the

piezoelectric constant is depicted as e15ðyÞ. The equilib-

rium equation and the Maxwell equation are written for the

stress and the electric displacement components, respec-

tively, as follows:

orxz1ðx; yÞ
ox

þ oryz1ðx; yÞ
oy

¼ 0;

oDx1ðx; yÞ
ox

þ oDy1ðx; yÞ
oy

¼ 0:

ð4Þ

By applying Eq. (3) into Eq. (4) we have

c44ðyÞDw1 þ e15ðyÞDuþ oc44ðyÞ
oy

ow1

oy
þ oe15ðyÞ

oy

ou
oy

¼ 0;

e15ðyÞDw1 � d11ðyÞDuþ oe15ðyÞ
oy

ow1

oy
� od11ðyÞ

oy

ou
oy

¼ 0;

ð5Þ

where D ¼ o2

ox2
þ o2

oy2

� �
is two-dimensional Laplacian

operator. In this problem, for the sake of simplification, the

FGP layer properties are assumed to vary exponentially in

y direction similarly which is described as follow

½c44ðyÞ; e15ðyÞ; d11ðyÞ� ¼ e2jy c044; e
0
15; d

0
11

� �
ð6Þ

in which c044; e
0
15 and d011 are material properties at y ¼ 0.

And j is FG constant with dimension 1

length
. By substi-

tuting Eq. (6) into Eq. (5), we have

c044Dw1 þ e015Duþ 2jc044
ow1

oy
þ 2je015

ou
oy

¼ 0;

e015Dw1 � d011Duþ 2je015
ow1

oy
� 2jd011

ou
oy

¼ 0:

ð7Þ

It can be seen that Eq. (7) is coupled so the Bleustein

function [19] is introduced to decouple the above-men-

tioned equations as

wðx; yÞ ¼ u� aw1; a ¼ e015=d
0
11 ð8Þ

By utilizing Eqs. (8), (7) could be separated as fallow

Dw1 þ 2j
ow1

oy
¼ 0; Dwþ 2j

ow
oy

¼ 0; ð9Þ

therefore, in terms of ðw;w1Þ, the constitutive Eq. (3) is

expressed as

rzx1 ¼ ½c44ðyÞ þ ae15ðyÞ�
ow1

ox
þ e15ðyÞ

ow
ox

; Dx1 ¼ �d11ðyÞ
ow
ox

;

rzy1 ¼ ½c44ðyÞ þ ae15ðyÞ�
ow1

oy
þ e15ðyÞ

ow
oy

; Dy1 ¼ �d11ðyÞ
ow
oy

:

ð10Þ

2.2 Constitutive equations for the functionally
graded orthotropic substrate

The constitutive equations for the anti-plane deformation

of an FG orthotropic layer in the region � h2\y\0 are

rzxiðx; yÞ ¼ GxðyÞ
owiðx; yÞ

ox
; rzyiðx; yÞ ¼ GyðyÞ

owiðx; yÞ
oy

;

i ¼ 2; 3;

ð11Þ

where GxðyÞ and GyðyÞ are the FG orthotropic substrate

constants in the x and y directions, respectively. The

equilibrium equation for an FG orthotropic layer could be

written as follows:

GxðyÞ
o2wi

ox2
þ GyðyÞ2k

owi

oy
þ GyðyÞ

o2wi

oy2
¼ 0; i ¼ 2; 3;

ð12Þ

and the shear moduli of an FG orthotropic layer,

GxðyÞ;GyðyÞ are considered as

½GyðyÞ;GxðyÞ� ¼ e2ky G0
y ;G

0
x

h i
ð13Þ

so we could write

g2
o2wi

ox2
þ o2wi

oy2
þ 2k

owi

oy
¼ 0; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gx=Gy

q
i ¼ 2; 3:

ð14Þ

The self-equilibrium of stress and the continuity con-

ditions taking into account the screw dislocation with the

Burgers vector bz must be satisfied when there is no trac-

tion applied on the boundaries
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rzy1ðx; h1Þ ¼ 0; rzy2ðx; gþÞ ¼ rzy3ðx; g�Þ;
rzy3ðx;� h2Þ ¼ 0; rzy1ðx; 0þÞ ¼ rzy2ðx; 0�Þ;
Dyðx; 0Þ ¼ 0; w1ðx; 0þÞ ¼ w2ðx; 0�Þ;
Dyðx; h1Þ ¼ 0; w2ðx; gþÞ � w3ðx; g�Þ ¼ bzHðx� fÞ:

ð15Þ

in which Hð:Þ is the Heaviside step-function. The complex

Fourier transform is utilized to solve the above-mentioned

conditions which is defined by

f �ðsÞ ¼
Zþ1

�1

f ðxÞeisxdx; f ðxÞ ¼ 1

2p

Zþ1

�1

f �ðsÞe�isxds:

ð16Þ

By solving the Eq. (14) using the Fourier transform and

applying the boundary conditions (15), the displacement

components are obtained which leads to the determination

of the stress fields in an FG orthotropic layer. The stress

components have singular behavior at the vicinity of the

crack tips, so by investigating the asymptotic meaning, s !
1 the singular terms can be separated. So the stress

amounts can be shown as follows:

rzx2ðx; yÞ ¼ � bzGx

p

Zþ1

0

T11

E
½T12 � T13� þ

esgðg�yÞ

2

� �2
4

cos½sðx� fÞ�ds� gðy� gÞ
2½ðx� fÞ2 þ g2ðy� gÞ2�

#
;

rzy2ðx; yÞ ¼ � bzg
2Gy

p

Zþ1

0

T21

E
½T22 � T23� �

esgðg�yÞ

2

� �2
4

sin½sðx� fÞ�dsþ ðx� fÞ
2½ðx� fÞ2 þ g2ðy� gÞ2�

#
:

ð17aÞ

for region g\y\0 and

rzx3ðx; yÞ ¼
bzGx

p

Zþ1

0

T31

E
½T32 � T33� �

esgðy�gÞ

2

� �2
4

cos½sðx� fÞ�dsþ gðg� yÞ
2½ðx� fÞ2 þ g2ðy� gÞ2�

#
;

rzy3ðx; yÞ ¼ � bzg
2Gy

p

Zþ1

0

T41

E
½T42 � T43� �

esgðy�gÞ

2

� �2
4

sin½sðx� fÞ�dsþ ðx� fÞ
2½ðx� fÞ2 þ g2ðy� gÞ2�

#
:

ð17bÞ

for region � h2\y\g, in which the functions Tij are given

in ‘‘Appendix A’’ and the parameters E; v1; v2 and a1 read

as follows

E ¼ a1v
2
1 coshðh2v1Þ sinhðh1v2Þ þ v1 sinhðh2v1Þ

g2Gyv2 coshðh1v2Þ þ a1k� jg2Gy

	 

v1 sinhðh1v2Þ

� �

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2g2 þ k2

q
; v2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ j2

p
; a1 ¼ ðc44 þ e15aÞ;

ð18Þ

3 FG orthotropic layer bonded to FGP strip
under various tractions

In this part, the FG orthotropic substrate and the FG

piezoelectric coating without dislocation are considered to

be under an anti-plane mechanical and in-plane electrical

point load as well as two different types of shear tractions

which are explained in Sects. 3.1 and 3.2 respectively.

3.1 Anti-plane mechanical and in-plane electrical
point load

The boundary condition for the FG orthotropic substrate

and the FGP coating under an anti-plane pure mechanical

and in-plane electrical point loads with the magnitude s0
and D0 are defined as

rzy3ðx;�h2Þ ¼ s0dðxÞ; Dyðx; h1Þ ¼ D0dðxÞ;
rzy1ðx; h1Þ ¼ s0dðxÞ; Dyðx; 0þÞ ¼ D0dðxÞ;

ð19Þ

where dðxÞ is the Dirac delta function. Now, with respect to
the Fourier transform Eq. (16), and the mention boundary

conditions (19), similarly to the dislocation solution, the

stress components can be obtained as follows:

rzx2ðx; yÞ ¼ �
Zþ1

0

x

F
ðd11ðA1 þ A2 � A3 þ A4 � A5Þs0

h

� A6A7Þ þ
GxD0e15

d11pða1 þ gGy Þ
escy
�
: sinðsxÞds

� GxD0e15

d11pða1 þ gGyÞ
x

x2 þ ðygÞ2

 !

rzy2ðx; yÞ ¼
Zþ1

0

1

F
ðd11ðC1 � C2 þ C3 þ C4 þ C5Þ

�
s0

� C6C7Þ �
gGyD0e15

d11pða1 þ gGyÞ
escy� cosðsxÞds

þ gGyD0e15

d11pða1 þ gGyÞ
yg

x2 þ ðygÞ2

 !

ð20Þ
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in which the functions F and Ai; Cii ¼ 1; 2; . . .; 7 are given

in ‘‘Appendix B’’ and parameters v1; v2 and a1 are the same

ones defined in Eq. (18).

3.2 Layers under uniform shear tractions

Two different types of loading are considered on the

boundaries. At first, Case I, illustrates the constant shear

traction on the boundaries defined by pure mechanical

loading s0 and dielectric displacement D0 [5] and then Case

II, explains the stresses for the uniform traction defined by

pure mechanical loading s0 without the effect of dielectric

displacement on the crack opening which is considered in

many investigations mentioned in the literature. The

boundary condition can be shown as follows:

rzy3ðx;�h2Þ ¼ seq; Dyðx; h1Þ ¼ D0;

rzy1ðx; h1Þ ¼ seq; Dyðx; 0þÞ ¼ D0:

seq ¼
a1
c44

s0 �
e15

d11
D0ðCase IÞ

s0 ðCase IIÞ

(
ð21Þ

4 Multiple straight and curved cracks
formulations

The dislocation method is capable of solving and analyzing

layers weakened by multiple straight and curved cracks. So

in this section, this method is employed to analyze the

stress in the vicinity of the cracks tips. Therefore, the

multiple cracks configurations with coordinates ðxi; yiÞ may

be explained in parametric form as fallow

xi ¼ x0i þ xiðxÞ; yi ¼ y0i þ yiðxÞ; � 1�x� 1;
i ¼ 1; 2; . . .;N:

ð22Þ

The stress amounts on the surface of the ith crack in the

local coordinates could be written as fallow, in which hi is
the angel between x and tangent axes s

rnzðxi; yiÞ ¼ ryz cos hi � rxz sin hi; i ¼ 1; 2; . . .;N ð23Þ

At this section, we consider dislocation with unknown

dislocation density as BzjðpÞ; � 1� p� 1: that is dis-

tributed on the very small segment daj located on the

surface of the jth crack. The anti-plane traction components

on the ith crack surface due to the presence of the dis-

tributed dislocations on the face of all N cracks yield

rnzðxiðxÞ; yiðxÞÞ ¼
XN
j¼1

Z1

�1

kijðx; pÞajBzjðpÞdp;

i ¼ 1; 2; . . .;N:

ð24Þ

With considering the Buckner’s principle [20], the left-

hand side of Eq. (24) gives the stress components after

changing the sign, which are obtained in Sect. 3. Besides,

the kernels kijðx; pÞ appeared in Eq. (24) are the coeffi-

cients of bz in Eq. (18) for each region determined in

Sect. 2 which are given in ‘‘Appendix C’’.

The crack opening displacement across the jth crack

using the definition of dislocation can be written as

w�
j ðxÞ � wþ

j ðxÞ ¼
Zx

�1

BzjðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0jðpÞÞ

2 þ ðy0jðpÞÞ
2

q
dp;

j ¼ 1; 2; . . .;N:

ð25Þ

The displacement fields must be single-valued, and as a

consequence, the following closure conditions for embed-

ded cracks should be employed

Z1

�1

BzjðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0jðpÞÞ

2 þ ðy0jðpÞÞ
2

q
dp ¼ 0; j ¼ 1; 2; . . .;N:

ð26Þ

By calculating the unknown dislocation density BzjðpÞ, it
is feasible to determine the stress intensity factors. So, the

system of integral Eqs. (24) and (26) is determined to find

the dislocation density functions BzjðpÞ. It should be

mentioned that the stress fields behave as 1=
ffiffi
r

p
in the

vicinity of the crack tips where r is the distance from the

crack tip. The dislocation density can be expressed as

BzjðpÞ ¼
qzjðpÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p ; � 1� p� 1; j ¼ 1; 2; . . .;N: ð27Þ

Parameters qzjðpÞ can be calculated by substituting

Eq. (27) into Eqs. (24) and (26) and solving the resultant

system of integral equations. So, by means of the crack

opening displacement given in Eq. (25), the SIFs can be

written for the vicinity of ith crack tip as follows:

KIIILi ¼
ffiffiffi
2

p

4
gGyðyÞ lim

rLi!0

w�
i ðxÞ � wþ

i ðxÞffiffiffiffiffi
rLi

p ;

KIIIRi
¼

ffiffiffi
2

p

4
gGyðyÞ lim

rRi!0

w�
i ðxÞ � wþ

i ðxÞffiffiffiffiffiffi
rRi

p :

ð28Þ

in which subscripts L and R are the left and right tips of a

crack, respectively, and

rLi ¼ ðxiðxÞ � xið� 1Þ2 þ ðyiðxÞ � yið� 1Þ2
h i1

2

;

rRi
¼ ðxiðxÞ � xið1Þ2 þ ðyiðxÞ � yið1Þ2
h i1

2

:

ð29Þ

Consequently, the mode III stress intensity factors for

embedded cracks are
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kIIILi ¼
gGyðyÞ

2
x0ið� 1Þ
	 
2þ y0ið� 1Þ

	 
2h i1
4

qzið� 1Þ;

kIIIRi
¼ � gGyðyÞ

2
x0ið� 1Þ
	 
2þ y0ið� 1Þ

	 
2h i1
4

qzið1Þ;

i ¼ 1; 2; . . .;N:

ð30Þ

To determine stress intensity factors, the results for

qzið� 1Þ should be calculated utilizing the technique

developed by Erdogan et al. [21].

Also, for some specific examples, elliptical cracks are

investigated. The parametric form for these cracks is as

follows:

xi ¼ ai sinð/pÞ; yi ¼ bi cosð/pÞ; � 1� p� 1;
i ¼ 1; 2; . . .N

ð31Þ

where a and b are the half length of major and minor axes

of ellipse, respectively, and / is the angle between crack

tips and the vertical axis.

5 Result and discussion

At this section, some examples are solved to demonstrate

the applicability of the distributed dislocation technique by

solving and calculating the SIFs for multiple straight and

curved cracks in the FG orthotropic substrate bonded to the

FGP coating. The influence of different types and numbers

of cracks on SIFs is considered. In the numerical results,

PZT4 and PZT5 are used for piezoelectric layer and two

different orthotropic properties are considered that are

given in Tables 1 and 2, respectively.

The thickness of the FG orthotropic substrate and FG

piezoelectric coating will be assumed h2 ¼ 0:1m and

h1 ¼ 0:1h2, respectively. The dimensionless crack length is

considered to be a=h2 ¼ 0:5 unless it is stated for a specific

example. Three different types of loadings are applied to

the boundaries in the following examples. In this study

layers are investigated under electromechanical point load,

constant shear stress defined by pure mechanical load s0
and dielectric displacement D0, and uniform shear stress s0
which are explained in Sect. 3. The SIFs are normalized by

K0 ¼ s0
ffiffiffi
a

p
unless otherwise stated for the specific exam-

ples. Also, in the majority of the examples, PZT4 is

considered as the piezoelectric coating material unless it is

expressed for the specific example.

Table 3 provides the results for various normalized

dielectric constant and its effect on the stress intensity

factors. The results are compared with those of [5], they

have indicated that the effect of the second orthotropic

layer is negligible on the SIFs. Besides, for this compar-

ison, the crack is located in the vicinity of the interface of

two layers. It can be seen that the dielectric constant has

significant effect on the SIFs and can make them to be zero

when D� ¼ 1.

In Fig. 2 the stress distribution of a straight crack along

its axis is depicted. As expected the stresses have singular

behavior at the vicinity of the crack tips. The stress values

drops rapidly and tends to be equal to the external load that

applied on the boundaries when we are far away from the

crack tips.

Figure 3 shows the stress intensity factors versus

dimensionless crack length. The non-homogeneity param-

eter has a considerable effect on the SIFs amounts. The

SIFs decreases gradually as the non-dimensional non-ho-

mogeneity parameter increases. This phenomena states that

there is the possibility to decrease the crack opening by

increasing the orthotropic FG parameter. On the other side

of the coin, it can be seen that the SIFs values goes up

significantly as crack length increases.

In the next example, different orthotropic materials and

their non-homogeneity parameters under two types of

loadings namely Case I and Case II are investigated. Fig-

ures 4 and 5 depicts that the stress intensity factors for the

isotropic material has considerably more values than the

orthotropic material. Besides, SIFs under Case II have far

more values than the ones under Case I. The results pro-

vided in this figure shows that specific amounts of FG

orthotropic material can reduce the SIFs values. Also, these

results illustrate that non-homogeneity parameters play an

important role in the design of mechanical structures.

Table 4 shows the effects of the different types of

loading on a single embedded crack in the FG orthotropic

strip. Different non-homogeneity parameter are considered

for each layer in this investigation while dimensionless

crack length is assumed a=h2 ¼ 1. The applied electrical

loading is considered to be D� ¼ 1. As can be seen, the

SIFs for Case I have approximately zero values. In all the

Table 1 Material properties for piezoelectric coating. Reproduced

with permission from [2, 5]

Material c044 ðPaÞ e015 ðC/m2Þ d011 ðC/VmÞ

PZT-4 2:56� 1010 12:7 64:6� 10�10

PZT-5 2:11� 1010 12:3 81:1� 10�10

Table 2 Material properties for orthotropic layer. Reproduced with

permission from [5]

Materials G0
x ðGPaÞ G0

y ðGPaÞ q ðkg/m3Þ g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gx



Gy

q

Aluminum 26:5 26:5 2800 1

Graphite-epoxy 5:65 3:61 1590 1.25
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next examples, the amount of dielectric constant is con-

sidered to be D� ¼ 1 so that the mediums would endure by

far the least amount of SIFs.

Figure 6 shows the effect of different piezoelectric and

piezoelectric FG parameter on SIFs when crack is located

in d ¼ h2=8. As can be seen in Fig. 6, piezoelectric

material has significant effect on SIFs. Same as previous

example, FG piezoelectric coating non-homogeneity

parameter can reduce the amount of SIFs and decrease

crack opening values.

In the next example, the effect of crack orientation on

the stress intensity factors under different loading types,

namely Case II (Fig. 7a) and point load (Fig. 7b), is

Table 3 Stress intensity factor comparisons under dielectric effect D� ¼ D0ðc044e015Þ=ða1d011s0Þ

Layers compositions D� ¼ �1 D� ¼ �0:5 D� ¼ 0 D� ¼ 0:5 D� ¼ 1

Present: PZT5: aluminum KIII

K�
0

¼ 3:6008 KIII

K�
0

¼ 2:7006 KIII

K�
0

¼ 1:8004 KIII

K�
0

¼ 0:9002 KIII

K�
0

¼ 0

Lee et al. [5]: PZT5: aluminum: epoxy KIII

K�
0

¼ 3:8007 KIII

K�
0

¼ 2:8591 KIII

K�
0

¼ 1:8969 KIII

K�
0

¼ 0:9381 KIII

K�
0

¼ 0

*Normalized by K0 ¼ s0
ffiffiffi
a

p
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Fig. 2 Stress distribution along the crack tips (Uniform loading Case

II, g ¼ 1:25, jh2 ¼ 0, kh2 ¼ 0, PZT4, d ¼ �h2=2)
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Fig. 3 Normalized stress intensity factors versus dimensionless crack

length for various orthotropic non-homogeneity parameter (Uniform

loading Case II, jh2 ¼ 1, PZT4, g ¼ 1:25, d ¼ �h2=2)
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Fig. 4 Normalized stress intensity factors versus dimensionless crack

length a (Uniform loading Case I, jh2 ¼ 1, PZT4, d ¼ �h2=2). b
(Uniform loading Case II, jh2 ¼ 1, PZT4, d ¼ �h2=2)
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studied. Orthotropic and isotropic materials are also taken

into account to study this effect. The crack is rotated

around its center which is fixed on the center line of the

orthotropic layer. The maximum amount of SIFs occurs at

h ¼ 0. As can be seen the effect of the applied traction on

SIFs vanishes at h ¼ p=2. The results also show that the

SIFs for orthotropic material have less values than the SIFs

for the isotropic material at vicinity of the crack tips.

Moreover, since the crack rotates in an FG layer, the left

and right crack tips have different values. As expected, it

shows that the left tips have less values than the right tips.

In the next example, in Fig. 8, two parallel cracks that

are located in d1 ¼ �h2=2 and d2 ¼ �h2=4 are investi-

gated. Three different types of loadings, i.e., uniform loads

cases I and II and point load, are considered. Uniform loads

and point load are normalized by K0 ¼ s0
ffiffiffi
a

p
and

K0 ¼ s0=
ffiffiffi
a

p
, respectively. As can be seen Case II allocates

by far the most amount of SIFs values as opposed to Case I.

It is also evident that the SIFs for crack tips, R1 and L2
increases and then decreases which are obviously under the

effect of materials and non-homogeneity parameters.

Figures 9 and 10 depict the variation of the dimen-

sionless SIFs of two equal-length straight cracks with

length a=h2 ¼ 0:4 are located on the centerline of the FG

orthotropic substrate. Left crack is fixed and the right crack

rotates around its center. Uniform loading, Case II, is

applied on the boundaries. The variation of the SIFs at

crack tips L1 and R1 is not significant compared to the other

crack tips. Also, at h ¼ p=2 SIFs have by far the least

amounts and are almost zero.

As can be seen in Fig. 11, the stress intensity factors for

two centric elliptical cracks are under two kind of tractions

are investigated. The elliptical crack sectors are increasing

as the degree between the crack tips and the vertical axis

grows. Case II uniform loading and point load are nor-

malized by K0 ¼ s0
ffiffiffiffiffi
a2

p
and K0 ¼ s0=

ffiffiffiffiffi
a2

p
respectively,

where a2 is the length of the semi-major axis of ellipse. It

can be seen that the crack tips L1 and R1 have higher SIFs

values than crack tips L2 and R2. Besides, the applied

traction, Case II, results in a far more SIFs values than the

applied point load. As expected physically, crack tips show

a symmetric behavior.

In the next example, Fig. 12, three elliptical periodic

cracks are taken into account. Besides, the stress intensity

factor values are normalized by K0 ¼ s0
ffiffiffi
a

p
where a is the

half length of the major axis of the ellipse. The result

illustrates that the middle curve crack has more SIFs values

due to the higher interaction between the cracks tips. On

the contrary, the outer crack tips L1 and R3 have slightly

Table 4 Comparison of different types of loading on the SIFs for

PZT4 and g ¼ 1:25

Loading kh2 ¼ 0 kh2 ¼ 1

Case I* jh2 ¼ 0 5:6367� 10�4 jh2 ¼ 0 5:6061� 10�4

jh2 ¼ 1 5:6165� 10�4 jh2 ¼ 1 5:5938� 10�4

Case II* jh2 ¼ 0 1:1711 jh2 ¼ 0 1:1638

jh2 ¼ 1 1:1669 jh2 ¼ 1 1:1622

Point load** jh2 ¼ 0 0:1771 jh2 ¼ 0 0:1457

jh2 ¼ 1 0:1769 jh2 ¼ 1 0:1459

*Normalized by K0 ¼ s0
ffiffiffi
a

p

**Normalized by K0 ¼ s0=
ffiffiffi
a

p

a/h2

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

K
II

I/K
0

0.95

1

1.05

1.1

1.15
κh

2
=0, PZT4

κh
2
=1, PZT4

κh
2
=0, PZT5

κh
2
=1, PZT5

Fig. 6 Normalized stress intensity factors versus crack length (Uni-

form loading Case II, kh2 ¼ 1, g ¼ 1:25, d ¼ �h2=8)
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less amounts than other crack tips. Furthermore, as

expected the outer and inner crack tips experience the same

behavior. In the last example two edge cracks namely

straight edge crack and curved edge cracks are stud-

ied (Figs. 13, 14). It can be seen that for the straight edge

crack, so long as isotropic material is utilized, SIFs allo-

cate significantly more values compared to orthotropic

materials, i.e. crack propagation occurs in the medium.

However, the trend for the curved edge crack is different.

In this case, SIFs values correlate positively with the

orthotropic parameter as opposed to the straight edge

crack. Finally, as expected the SIFs values drop as thick-

ness of the layer increases.

6 Conclusion

An analytical solution for an FG orthotropic strip con-

taining a Volterra-type screw dislocation reinforced by an

FG piezoelectric coating is presented. The layers are under

different types of loadings. The stress fields in an FG
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Fig. 8 Normalized stress intensity factors for two parallel cracks

versus dimensionless cracks length a (Uniform loading Case I,

jh2 ¼ 1, kh2 ¼ 1, PZT4, d1 ¼ h2=4, d2 ¼ h2=2). b (Uniform loading

Case II, jh2 ¼ 1, kh2 ¼ 1, PZT4, d1 ¼ h2=4, d2 ¼ h2=2). c (Point

load, jh2 ¼ 1, kh2 ¼ 1, PZT4, d1 ¼ h2=4, d2 ¼ h2=2)
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orthotropic containing a screw dislocation are obtained.

With the help of Fourier transform the stress fields are

reduced to a system of integral equations with a Cauchy-

type singularity. Then, by utilizing the distributed dislo-

cation technique several examples are solved numerically

to show the effects of non-homogeneity parameters, cracks

configurations, and material properties on the stress

intensity factors. It is concluded that

1. By increasing the orthotropic non-homogeneity param-

eters the SIFs decreases.

2. Isotropic material allocates considerably more SIFs

values than the orthotropic material.

3. Case I loading has approximately zero SIFs values due

to the simultaneous effect of mechanical and dielectric

loadings.

4. By applying the point load on the boundaries, SIFs

obtain far less values compared to Case II.

5. The effect of traction on SIFs vanishes when crack

rotates to be in vertical position. The maximum

amount of SIFs occurs when crack is straight.

6. The SIFs for curve cracks increases as the degree

between crack tips and the vertical axis escalates.
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Appendix A

The functions Tij given in Eq. (17a) and (17b)

T11 ¼ eðyþgÞk sinh½ðh2 þ gÞv1�
T12 ¼ Gyv2 coshðh1v2Þ½v1 coshðyv1Þ þ k sinhðyv1Þ�
T13 ¼ Gyjv1 coshðyv1Þ þ Gyjkþ s2a1

	 

sinhðyv1Þ

� �
sinhðh1v2Þ

ð32Þ

T21 ¼ eðyþgÞks sinh½ðh2 þ gÞv1�
T22 ¼ Gyv2g

2 coshðh1v2Þ sinhðyv1Þ
T23 ¼ a1v1 coshðyv1Þ þ Gyjg

2 � a1k
	 


sinhðyv1Þ
� �

sinhðh1v2Þ
ð33Þ

T31 ¼ eðyþgÞkðv1 cosh½ðh2 þ yÞv1� þ k sinh ½ðh2 þ yÞv1�Þ
T32 ¼ v2Gyg

2 coshðh1v2Þ sinhðgv1Þ
T33 ¼ a1v1 coshðgv1Þ þ Gyjg

2 � a1k
	 


sinhðgv1Þ
� �

sinhðh1v2Þ
ð34Þ

T41 ¼ eðyþgÞks sinh½ðh2 þ gÞv1�
T42 ¼ g2Gy v2 coshðh1v2Þ sinhðgv1Þ
T43 ¼ a1v1 coshðgv1Þ þ Gyjg

2 � a1k
	 


sinhðgv1Þ
� �

sinhðh1v2Þ
ð35Þ

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

φ (degrees)

K
II

I/K
0

L
3
, R

1

L
1
, R

3

L
2
, R

2

Fig. 12 Normalized stress intensity factors for three elliptical cracks

(Uniform loading Case II, jh2 ¼ 1, kh2 ¼ 1, PZT4)
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Appendix B

The functions Ai;Ci and F given in Eqs. (20) and (21)

A1 ¼ 2v2yðv1 � kÞðe�ðh2þyÞv1þyk�h1j þ eðkþv1Þyþh2v1�h1jÞ
A2 ¼ eðh2�yÞk�yv1�h1v2ðv2 þ jÞ ðv2 � jÞa1 þ yðk� v1Þ½ �
A3 ¼ eðh2þyÞk�yv1�h1v2ðv2 � jÞ ðv2 þ jÞa1 � yðk� v1Þ½ �
A4 ¼ eðh2þ3yÞk�yv1þh1v2ðv2 � jÞ ðv2 þ jÞa1 � yðkþ v1Þ½ �
A5 ¼ eðh2þyÞkþyv1�h1v2ðv2 þ jÞ ðv2 � jÞa1 þ yðkþ v1Þ½ �

A6 ¼ e�ðh2þyÞv1þyk�h1j2D0e15y �1þ e2 h2þyð Þv1
� �h

kþ 1þ e2 h2þyð Þv1
� �

v1
i

A7 ¼ ð� v2 þ eh1j½v2 coshðh1v2Þ � j sinhðh1v2Þ�Þ
ð36Þ

C1 ¼ 2g2s2v2yðeðkþv1Þyþh2v1�h1j � eðk�v1Þy�h2v1�h1jÞ
C2 ¼ eðh2þyÞkþyv1þh1v2 ½a1ðv2 þ jÞ � yðkþ v1Þ�ðv2 � jÞðv1 � kÞ
C3 ¼ eðh2þyÞkþyv1�h1v2s2½g2ðv2 þ jÞyþ a1ðv1 � kÞ�
C4 ¼ eðh2þyÞk�yv1þh1v2s2½g2ðv2 � jÞyþ a1ðv1 þ kÞ�
C5 ¼ eðh2þyÞk�yv1�h1v2s2½g2ðv2 þ jÞy� a1ðv1 þ kÞ�

C6 ¼ e�ðh2þyÞv1þyk�h1j2D0 � 1þ e2ðh2þyÞv1
� �

e15g
2s2y

C7 ¼ ð� v2 þ eh1j½v2 coshðh1v2Þ � j sinhðh1v2Þ�Þ
ð37Þ

F ¼ 4d11psGy g2Gyv2 coshðh1v2Þ sinhðh2v1Þ
	

þ a1v1 coshðh2v1Þ þ a1k� g2jGy

	 

sinhðh2v1Þ

� �

sinhðh1v2ÞÞ
ð38Þ

Appendix C

The kernels mentioned in Eq. (24) are given as

kij ¼ � 1

p
g2Gy

Zþ1

0

T21

E
½T22 � T23� �

e�sgðyi�yjÞ

2

� �2
4

0
@

sin½sðxi � xjÞ�dsþ
ðxi � xjÞ

2½ðxi � xjÞ2 þ g2ðyi � yjÞ2�

#
cos h

� Gx

Zþ1

0

T11

E
½T12 � T13� þ

e�sgðyi�yjÞ

2

� �2
4

cos½sðxi � xjÞ�ds�
gðyi � yjÞ

2½ðxi � xjÞ2 þ g2ðyi � yjÞ2�

#
sin h

!

kij ¼
1

p
g2Gy

Zþ1

0

T41

E
½T42 � T43� �

esgðyi�yjÞ

2

� �2
4

0
@

sin½sðxi � xjÞ�dsþ
ðxi � xjÞ

2½ðxi � xjÞ2 þ g2ðyi � yjÞ2�

#
cos h

� Gx

Zþ1

0

T31

E
½T32 � T33� �

esgðyi�yjÞ

2

� �2
4 cos½sðxi � xjÞ�

dsþ gð�yi þ yjÞ
2½ðxi � xjÞ2 þ g2ðyi � yjÞ2�

#
sin h

!

ð39Þ
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