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Abstract
The present study investigates the bending, buckling, and vibration responses of shear deformable laminated composite and

sandwich beams using trigonometric shear and normal deformation theory. The most important feature of the present

theory is that it includes the effects of transverse shear and normal deformations, i.e., the effect of thickness stretching.

Therefore, the theory is also called as a quasi-2D theory. The axial displacement uses sine function in terms of the thickness

coordinate to include the effect of transverse shear deformation, and the transverse displacement uses cosine function in

terms of the thickness coordinate to include the effect of transverse normal deformation, i.e., the thickness stretching. The

present theory satisfies the zero shear stress conditions at top and bottom surfaces of the beam without using shear

correction factor. Governing differential equations and associated boundary conditions of the theory are derived by

employing the dynamic version of principle of virtual work. Navier-type closed-form solutions are obtained for simply

supported boundary conditions. The numerical results are obtained for deflections, stresses, natural frequencies, and critical

buckling loads for isotropic, laminated composite, and sandwich beams. Since exact elasticity solutions for laminated

composite and sandwich beams are not available in the literature, the results are compared with those obtained by using

other higher-order shear deformation theories to demonstrate the accuracy of the proposed theory.
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1 Introduction

Laminated composite and sandwich beams are being

widely used in many industries due to their attractive

properties such as high strength and stiffness-to-weight

ratio. The effects of transverse shear deformation and

thickness stretching are more pronounced in the thick

beams. Therefore, static bending, free vibration, and

buckling analysis of laminated composite and sandwich

thick beams have received widespread attention in recent

years. Analysis of composite beams is difficult by using

three-dimensional (3D) elasticity theory due to complex

mathematics. Therefore, still 3D elasticity solutions for the

bending, buckling, and free vibration analysis of laminated

composite and sandwich beams are not available in the

literature. This led to the development of approximate

beam theories for the analysis of beams. Various beam

theories are developed by the researchers for the analysis of

laminated composite and sandwich beams. Recently, these

theories are reviewed by Sayyad and Ghugal [1].

The effects of shear deformation and thickness stretch-

ing are neglected by classical thin beam theory (CBT)

developed by Bernoulli–Euler [2, 3]. Timoshenko [4, 5]

was the first person who considered the effect of shear

deformation in his first order shear deformation theory

(FSDT) which is also called as Timoshenko beam theory

(TBT). But this theory needs shear correction factor and

gives constant shear strain through the thickness. These

limitations of CBT and TBT led the foundation for the
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development of refined beam theories. Several higher-order

shear deformation theories (HSDTs) are developed by

researchers which consider the effect of transverse shear

deformation. These HSDTs are classified as equivalent

single-layer theories, layerwise theories, and zigzag theo-

ries. The present study deals with the analysis of composite

beams using equivalent single-layer theories.

1.1 Motivation of the present study

It can be noted that an initiation of delamination in mul-

tilayered composite structures is caused due to interlaminar

transverse shear and normal stresses. Therefore, any

refinement of classical models is meaningless, in general,

unless the effects of interlaminar continuous transverse

shear and normal stresses are both taken into account in a

multilayered beam theory [6–8]. However, no considera-

tion is given to the effect of transverse normal deformation/

strain (ez 6¼ 0) in higher-order beam theories existing in the

literature when these theories are applied to laminated

composite and sandwich beams in view of minimizing the

number of unknown variables. Therefore, refined theories

which consider the effects of transverse normal deforma-

tions, i.e., thickness stretching, need more attention.

Table 1 shows the review of various beam theories avail-

able in the literature.

1.2 Novelty of the present theory and major
contributions

1. From Table 1, it is pointed out that very few theories

are available in the literature which consider the effects

of transverse normal deformation. Also, most of them

are applied for the analysis of plates. It can be noted

that the well-known theory of Reddy [11] also neglects

the effect of transverse normal deformation. Therefore,

the present study focuses on the study of the effects of

transverse shear and normal deformations on static

deformation, natural frequencies, and critical buckling

loads of laminated composite and sandwich beams

using trigonometric shear and normal deformation

theory.

2. The most important feature of the present theory is that

it includes the effects of transverse shear and normal

deformations, i.e., the effect of thickness stretching.

The axial displacement uses sine function in terms of

the thickness coordinate to include the effect of

transverse shear deformation, and the transverse dis-

placement uses cosine function in terms of the

thickness coordinate to include the effect of transverse

normal deformation, i.e., thickness stretching.

3. The kinematics of the present theory is much richer

than those of the other higher-order shear deformation

theories, because if the trigonometric term is expanded

in power series, the kinematics of higher-order theories

is implicitly taken into account to good deal of extent.

4. In polynomial-type higher-order shear deformation

theories, it needs to be noted that not only every

additional power of thickness coordinate in the

displacement field introduces an additional unknown

variable in those theories, but these variables are also

difficult to interpret physically. Thus, the use of the

sinusoidal function (non-polynomial type) in terms of

thickness coordinate enhances the richness of the

theory and also results in reduction in the number of

unknown variables as compared to other type of

displacement-based higher-order theories without loss

of physics of the problem in modeling.

5. The present theory satisfies the zero shear stress

conditions at top and bottom surfaces of the beam

without using problem-dependent shear correction

factor.

6. The estimation of through-the-thickness distributions

of interlaminar transverse shear and normal stresses

using equations of equilibrium of the theory of

elasticity has not been studied satisfactorily by the

Table 1 Review of various beam theories with and without normal deformation effect (ez)

References Effect of thickness

stretching ezð Þ
Effect of shear

deformation cxz
� �

Bernoulli [2] and Euler [3] Not considered

ez ¼ 0ð Þ
Not considered

cxz ¼ 0
� �

Timoshenko [4, 5], Levinson [9], Krishna Murty [10], Reddy [11], Kant and Manjunatha [12],

Ghugal and Shimpi [13], Sayyad and Ghugal [14], Soldatos and Elishakoff [15], Karama

et al. [16], Sayyad and Ghugal [17], Sayyad [18], Benatta et al. [19, 20], Aydogdu [21], Mahi

et al. [22], Shi and Voyiadjis [23], Sayyad et al. [24–26], Vo and Thai [27], Akavci [28], Ray

[29], Mantari et al. [30–32], Meiche et al. [33], Daouadji et al. [34], Thai et al. [35], etc.

Not considered

ez ¼ 0ð Þ
Considered cxz 6¼ 0

� �

Carrera [6–8], Kant and Manjunatha [36], Zenkour [37, 38], Maiti and Sinha [39], Sayyad and

Ghugal [40], Vo et al. [41], Neves et al. [42, 43], etc.

Considered ez 6¼ 0ð Þ Considered cxz 6¼ 0
� �
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various researchers as can be seen from the open

literature. Evaluation of these interlaminar stresses in

the present study is an important contribution.

7. The study of global response of softcore sandwich

structures is a challenging problem in physical mod-

eling, especially using simplified (1D or 2D) theories,

rather than 3D elasticity. In the present study, deflec-

tions, interlaminar stresses, natural frequencies of

various modes of vibration and critical buckling loads

are obtained for softcore sandwich beams which can be

served as benchmark solutions and can be treated as

another important contribution of the present study.

In the present study, governing differential equations

and associated boundary conditions of the theory are

derived by employing the dynamic version of principle of

virtual work and the fundamental lemma of calculus of

variations. Navier-type closed-form solutions are obtained

for simply supported isotropic, laminated composite, and

sandwich beams. The results of displacements, stresses,

natural frequencies, and critical buckling loads are com-

pared with the theories existing in literature [44–58] to

demonstrate the accuracy of the proposed theory.

2 Beam under consideration

Consider a beam of rectangular cross section (b 9 h) and

span L as shown in Fig. 1. The beam is composed of N

number of thin layers perfectly bonded together. The beam

is assumed in a Cartesian coordinate system where the x-,

y-, and z-axes are taken along the length, the width, and the

thickness of the beam, respectively. The z-axis is taken

downward positive. The beam is subjected to transverse

loading q (x) on the upper surface of the beam in case of

bending and subjected to axial compressive forces (N0
x ) in

case of buckling. The transverse and axial loads are

assumed to be zero for the free vibration analysis.

2.1 Kinematics of the present beam theory

The displacement field of the present trigonometric shear

and normal deformation theory is given as:

u x; z; tð Þ ¼ u0 x; tð Þ þ ub x; z; tð Þ þ us x; z; tð Þ
w x; z; tð Þ ¼ w0 x; tð Þ þ ws x; z; tð Þ

ð1Þ

where u0 is the axial displacement of the neutral axis along

x-axis, ub is the bending component analogous to the

Euler–Bernoulli beam theory, and us is the shear compo-

nent assumed to be sinusoidal in nature with respect to

thickness coordinate. The transverse displacement w in

z direction is assumed to be a function of x and z coordi-

nates. Therefore, the displacement field of the present

trigonometric shear and normal deformation beam theory

takes the following form.

u x; z; tð Þ ¼ u0 � zw0;x þ f �zð Þ/ x; tð Þ;
w x; z; tð Þ ¼ w0 x; tð Þ þ g �zð Þ n x; tð Þ

ð2Þ

where u0; w0; / and n are the four unknown displacement

functions of the neutral axis of the beam, while f �zð Þ and

g �zð Þ represent functions determining the distribution of the

Fig. 1 Beam geometry, lamina material axes, and laminate reference axes
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transverse shear and normal stresses along the thickness of

the beam. When transverse displacement w is a function of

z coordinate, transverse normal strain ez is not equal to zero

which represent the thickness stretching effect. The kine-

matics proposed in Eq. (2) is strongly based on solution of

three-dimensional Navier’s equations of elastostatics for

thick plate under flexure presented by Cheng [59] which

involves transverse shear stress and transverse normal

stress. The kinematics of proposed theory is the reduction

problem from three-dimensional considerations to one-di-

mensional one. Hence, the theory represented by Eq. (2) is

correct deduction from the three- dimensional elasticity for

thick plate.

The nonzero strain components associated with the

present displacement field are as follows:

ex ¼ e0x þ ze1x þ f �zð Þ e2x ;
ez ¼ g0 �zð Þ n;
cxz ¼ g �zð Þc0xz þ f 0 �zð Þ/

ð3Þ

where

e0x ¼ u0;x; e1x ¼ �w0;xx; e2x ¼ /;x; c0xz ¼ n;x;

f �zð Þ ¼ h=pð Þsin p�zð Þ and g �zð Þ ¼ h=pð Þcos p�zð Þ
ð4Þ

where �z ¼ z=h and ‘,x’ represents the derivative with

respect to x. Here, ez 6¼ 0 shows that the present theory

considered the effect of transverse normal deformation,

i.e., thickness stretching. Many well-known theories

neglect this effect as shown in Table 1.

2.2 Constitutive relations

Since the present theory considered the effects of both

transverse shear and normal deformations, a two-dimen-

sional Hooke’s law is used to obtained stress quantities in

the beam domain. The laminate is made of several ortho-

tropic layers. The constitutive relations in the kth layer of

laminate are given as:

rx
rz
sxz

8
<

:

9
=

;

kð Þ

¼
Q11 Q13 0

Q13 Q33 0

0 0 Q55

2

4

3

5

kð Þ ex
ez
cxz

8
<

:

9
=

;

kð Þ

ð5Þ

where rf g kð Þ
is the stress vector, ef g kð Þ

is the strain vector

and Qij

� � kð Þ
is the transformed rigidity matrix. The ele-

ments of transformed rigidity matrix are as follows:

Q11 ¼
E1

1� l13 l31
; Q13 ¼

l13E3

1� l13 l31
;

Q33 ¼
E3

1� l13 l31
; Q55 ¼ G13

ð6Þ

Here Ei;Gij; lij i; j ¼ 1; 3ð Þ are the material properties of

lamina and 1, 2, 3 are the lamina fiber (material) axes, and

x, y, z are the laminate reference axes (see Fig. 1). The

principal material axes of lamina (1, 2, 3) may not coincide

with the reference axes of the laminate (x, y, z) in case of

angle ply laminates. It is therefore necessary to transform

the constitutive relations from lamina fiber axes to laminate

reference axes.

2.3 Equations of motion

The equations of motion of the proposed theory are derived

using dynamic version of principle of virtual work. The

principle of virtual work is applied in the following ana-

lytical form:

XN

k¼1

b

Z hkþ1

hk

Z L

0

rkxdex þ rkzdez þ skxzdczx
� �

dxdz

�
Z L

0

q xð Þdwdxþ q kð Þ
XN

k¼1

Z hkþ1

hk

Z L

0

u;ttduþ w;ttdw
� �

dxdz

�
Z L

0

N0
x w;xdw0;xdx ¼ 0

ð7Þ

where q is the mass per unit volume and d denotes the

variational operator. Substituting expressions for virtual

strains and displacements into the Eq. (7) and introducing

stress resultants, one can write:

Z L

0

Nxdu0;x �Mc
xdw0;xx þMs

xd/;x þ Vzdnþ Vxdn;x
�

þVxd/�dx

�
Z L

0

q xð Þdwdxþ I1

Z L

0

u0;ttdu0 þ w0;ttdw0

� �
dx

� I2

Z L

0

u0;ttdw0;x þ w0;xttdu0
� �

dx

þ I3

Z L

0

u0;ttd/þ /;ttdu0
� �

dxþ I4

Z L

0

w0;xttdw0;xdx

� I5

Z L

0

w0;xttd/þ /;ttdw0;x

� �
dx

þ I6

Z L

0

w0;ttdnþ n;ttdw0

� �
dx

þ I7

Z L

0

/;ttd/dxþ I8

Z L

0

n;ttdndx� N0
x

Z L

0

w;xdw0;xdx

¼ 0

ð8Þ

Integrating the Eq. (8) by parts and setting the coeffi-

cients of du0; dw0; d/ and dn equal to zero, the following
governing equations and boundary conditions are obtained:
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du0:Nx;x ¼ I1u0;tt � I2w0;xtt þ I3/;tt

dw:Mc
x;xx þ q� N0

x w0;xx ¼ I2u0;xtt � I4w0;xxtt

þ I1w0;tt þ I5/;xtt þ I6n;tt

d/:Ms
x;x � Vx ¼ I3u0;tt � I5w0;xtt þ I7/;tt

dn:Vx;x �
p
h
Vz ¼ I6w0;tt þ I8n;tt

ð9Þ

where Nx is the axial force resultant, Mc
x is the moment

resultant analogous to classical beam theory; Ms
x is the

refined moment due to transverse shear deformation effect,

Vx and Vz are the shear force resultants due to transverse

shear deformation and transverse normal deformation

effects, respectively. These force and moment resultants

acting on the cross section of the laminate are defined as:

Nx ¼
XN

k¼1

Z hkþ1

hk

rkxdz ¼ A11u0;x � B11w0;xx þ As11/;x �
p
h
As12n

Mc
x ¼

XN

k¼1

Z hkþ1

hk

rkxzdz ¼ B11u0;x � D11w0;xx þ Bs11/;x �
p
h
Bs12n

Ms
x ¼

XN

k¼1

Z hkþ1

hk

rkxf �zð Þdz ¼ As11u0;x � Bs11w0;xx þ Ass11/;x �
p
h
Ass12n

Vx ¼
XN

k¼1

Z hkþ1

hk

skxzf
0 �zð Þdz ¼ Acc55 /þ h

p
n;x

� �

Vz ¼
XN

k¼1

Z hkþ1

hk

rkzzg
0 �zð Þdz ¼ � p

h
As12u0;x � Bs12w0;xx þ Ass12/;x �

p
h
Ass22n

h i

Qx ¼ Mc
x;x ¼ B11u0;xx � D11w0;xxx þ Bs11/;xx �

p
h
Bs12n;x

ð10Þ

The boundary conditions at the supports (x = 0 and

x = L) of the beam are of the following form:

Either Nx ¼ 0 or u0 ¼ 0 is prescribed ð11Þ
Either Vx ¼ 0 or w ¼ 0 is prescribed ð12Þ
Either Mc

x ¼ 0 or w;x ¼ 0 is prescribed ð13Þ

Either Ms
x ¼ 0 or / ¼ 0 is prescribed ð14Þ

Either Vz ¼ 0 or n ¼ 0 is prescribed ð15Þ

The governing equations in terms of unknown variables

(u0; w0; / and n) are obtained as follows:

�A11u0;xx þ B11w0;xxx � As11/;xx þ As13
p
h
n;x þ I1u0;tt

� I2w0;xtt þ I3/;tt

¼ 0

ð16Þ

�B11u0;xxx þ D11w0;xxxx � Bs11/;xxx þ
p
h
Bs13n;xx þ I2u0;xtt

� I4w0;xxtt þ I1w0;tt þ I5/;xtt

¼ qþ N0
x w0;xx

ð17Þ

�As11u0;xx þ Bs11w0;xxx � Ass11/;xx þ Acc55/þ Ass13
p
h
n;x

þ Acc55
h

p
n;x þ I3u0;tt � I5w0;xtt þ I7/;tt

¼ 0

ð18Þ

� p
h
As13u0;x þ

p
h
Bs13w0;xx �

p
h
Ass13 þ

h

p
Acc55

� �
/;x

� h2

p2
Acc55n;xx þ

p2

h2
Ass33nþ I6w0;tt þ I8n;tt

¼ 0

ð19Þ

where the beam stiffness and inertia constants are defined

as follows:

Aij Bij Dijf g ¼
XN

k¼1

Zhkþ1

hk

Q
kð Þ
ij 1 z z2
� 	

dz; i; j ¼ 1; 3ð Þ;

Asij Bsijf g ¼
XN

k¼1

Zhkþ1

hk

Q
kð Þ
ij f �zð Þ 1 zf gdz; i; j ¼ 1; 3ð Þ;

Assij
� 	

¼
XN

k¼1

Zhkþ1

hk

Q
kð Þ
ij f 2 �zð Þdz; i; j ¼ 1; 3ð Þ;

Accij
� 	

¼
XN

k¼1

Zhkþ1

hk

Q
kð Þ
ij f 0 �zð Þ½ �2dz i; j ¼ 5ð Þ

ð20Þ

I1 ¼
XN

k¼1

q kð Þ
Z hkþ1

hk

dz; I2 ¼
XN

k¼1

q kð Þ
Z hkþ1

hk

zdz;

I3 ¼
XN

k¼1

q kð Þ
Z hkþ1

hk

f �zð Þdz;

I4 ¼
XN

k¼1

q kð Þ
Z hkþ1

hk

z2dz; I5 ¼
XN

k¼1

q kð Þ
Z hkþ1

hk

zf �zð Þdz;

I6 ¼
XN

k¼1

q kð Þ
Z hkþ1

hk

g �zð Þdz;

I7 ¼
XN

k¼1

q kð Þ
Z hkþ1

hk

f 2 �zð Þdz; I8 ¼
XN

k¼1

q kð Þ
Z hkþ1

hk

g2 �zð Þdz:

ð21Þ

2.4 Closed-form solution

The solution which satisfies governing differential equa-

tions at any point of the beam can be either in the form of a

finite or infinite series. The solutions expressed in terms of

finite number of terms are called as closed-form solutions.

In the present study, Navier’s solution technique is

employed to obtain the closed-form solution. Navier’s
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solution for the simply supported laminated composite and

sandwich beam is developed satisfying the following

boundary conditions.

at x ¼ 0 and x ¼ L : Nx ¼ w0 ¼ n ¼ Mc
x ¼ Ms

x ¼ 0 ð22Þ

The transverse distributed load is expanded using the

Fourier sine series as

q xð Þ ¼
X1

m¼1;3;5

q0sinax m ¼ 1ð Þ for sinusoidal loading
4q0

mp
sinax m ¼ 1; 3; 5. . .ð Þ for uniform loading

(

ð23Þ

where q0 is the maximum intensity of the distributed load.

Following the Navier’s solution procedure, the trigono-

metric forms of displacement variables u0; w0; / and n that

satisfy the boundary conditions exactly are given by:

u0 x; tð Þ ¼
X1

m¼1

umcosaxe
ixt; w x; tð Þ ¼

X1

m¼1

wmsinaxe
ixt;

/ x; tð Þ ¼
X1

m¼1

/mcosaxe
ixt; n x; tð Þ ¼

X1

m¼1

nmsinaxe
ixt

ð24Þ

where a ¼ mp/L, i ¼
ffiffiffiffiffiffiffi
�1

p
, x is the natural frequency and

um; wm; /m and nm are the unknown coefficients to be

determined. The time-dependent part of Eq. (24) is used

only for the free vibration problem; otherwise, it is omitted.

The transverse load q xð Þ is used only for bending analysis,

otherwise discarded for the vibration and buckling analysis.

For the buckling analysis of beam, both transverse load and

time-dependent terms are omitted. Substituting this form of

solution into the governing Eqs. (16)–(19) yields a set of

algebraic equations which can be written in matrix form as

follows:

Bending analysis of beam:

K½ � Df g ¼ ff g ðby setting N0
x and x equal to zero) ð25Þ

Free vibration analysis of beam:

K½ � � x2 M½ �
� �

Df g ¼ 0f g
ðby setting N0

x and qðxÞ equal to zero)
ð26Þ

Buckling analysis of beam:

K½ � � N0 N½ �ð Þ Df g ¼ 0f g ðby setting x
¼ qðxÞ = 0 and N0

x¼N0Þ ð27Þ

where [K] is the stiffness matrix, {f} is the force vector,

[M] is the mass matrix, [N] is the geometric matrix due to

the axial forces, x is the natural frequency and N0 is the

buckling load factor. These matrices are defined as follows:

K½ � ¼

A11a2 �B11a3 As11a2
p
h
As13a

�B11a3 D11a4 �Bs11a3 � p
h
Bs13a

2

As11a2 �Bs11a3 Ass11a2 þ Acc55ð Þ p
h
Ass13 þ

h

p
Acc55

� �
a

p
h
As13a � p

h
Bs13a

2 p
h
Ass13 þ

h

p
Acc55

� �
a

h2

p2
Acc55a

2 þ p2

h2
Ass33

� �

2

6666666664

3

7777777775

ð28Þ

Df g ¼

um
wm

/m

nm

8
>><

>>:

9
>>=

>>;
ð29Þ

ff g ¼

0

qm
0

0

8
>><

>>:

9
>>=

>>;
ð30Þ

M½ � ¼

I1 �I2
mp
L

I3 0

�I2
mp
L

I4
m2p2

L2
+ I1

� �
�I5

mp
L

I6

I3 �I5
mp
L

I7 0

0 I6 0 I8

2

6666664

3

7777775

ð31Þ

N½ � ¼

0 0 0 0

0 a2 0 0

0 0 0 0

0 0 0 0

2

664

3

775 ð32Þ

3 Numerical results and discussion

In this section, the efficiency of the present theory is

proved in predicting the displacements, stresses, natural

frequencies, and critical buckling loads of simply sup-

ported laminated composite and sandwich beams. The

numerical results obtained by using the present theory are

compared with those existing in literature. The material

properties shown in Table 2 are used in the various illus-

trated examples. Numerical investigations have been

undertaken on bending, free vibration, and buckling anal-

ysis of isotropic, laminated composite, and sandwich

beams with different material properties and different

lamination schemes, namely:

Problem 1: Bending of isotropic beam

Problem 2: Bending of laminated composite beams.

Problem 3: Bending of sandwich beams.

Problem 4: Free vibration of laminated composite

beams.

Problem 5: Free vibration of sandwich beams.

Problem 6: Buckling of laminated composite and

sandwich beams.
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3.1 Numerical results

Numerical results for these problems are presented in

Tables 3, 4, 5, 6, 7, 8, 9, 10, and 11, and graphically in

Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 followed by

subsequent discussions. Interlaminar transverse shear and

normal stresses cause delamination in multilayered

composite structures. The evaluation of transverse shear

stresses for the layered beam from the constitutive relations

leads to discontinuity at the layer interface. Therefore, in

the present study, these stresses are obtained by integrating

the 2D elasticity equilibrium equations neglecting the body

forces. These equations are as follows:

Table 2 Material properties of isotropic, laminated composite, and sandwich beams

Material References Elastic properties

1 [11, 13] E1 = E2 = E3 = 210 GPa, G12 = G13 = G23 = 80.769 GPa, l12 = l13 = l23 = 0.3

2 [44] E1 = 172.4 GPa, E2 = E3 = 6.89 GPa, G12 = G13 = 3.45 GPa, G23 = 1.378 GPa, l12 = l13 = l23 = 0.25, q = constant

3 [44] E1 = E2 = 0.276 GPa, E3 = 3.45 GPa, G12 = 0.1104 GPa, G13 = G23 = 0.414 GPa, l12 = l13 = l23 = 0.25,

q = constant

4 [47] E1/E2 = Open, E3 = E2, G12 = G13 = 0.6 E2, G23 = 0.5 E2, l12 = l13 = l23 = 0.25, q = constant

5 [53, 54] E1 = 144.80 GPa, E2 = E3 = 9.65 GPa, G12 = G13 = 4.14 GPa, G23 = 3.45 GPa, l12 = l13 = l23 = 0.3,

q = 1389.23 kg/m3

6 [56] E1 = 131 GPa, E2 = E3 = 10.34 GPa, G12 = G23 = 6.895 GPa, G23 = 6.205 GPa, l12 = l13 = 0.22, l23 = 0.49,

q = 1000 kg/m3

7 [56] E1 = 0.2208 MPa, E2 = 0.2001 MPa, E3 = 2760 MPa, G12 = 16.56 MPa, G13 = 545.1 MPa, G23 = 455.4 MPa,

l12 = 0.99, l13 = l23 = 0.00003, q = 70 kg/m3

Table 3 Comparison of axial displacement, transverse displacement, axial stress, and transverse shear stress for isotropic beam of rectangular

cross section

L/h Source Sinusoidal loading Uniform loading

�umax �wmax �rmax
x �smax

xz �umax �wmax �rmax
x �smax

xz

4 Present (ez 6¼ 0) 12.456 1.409 10.135 1.889 16.159 1.782 12.445 2.635

Reddy [11] 12.715 1.429 9.9860 1.897 16.504 1.806 12.263 2.795

Ghugal and Shimpi [13] 12.736 1.429 10.003 1.895 16.540 1.806 12.276 3.778

Kant et al. [44] – 1.410 9.907 1.900 – 1.783 12.200 2.814

Timoshenko [4] 12.385 1.430 9.727 1.910 16.000 1.806 12.000 2.953

Bernoulli–Euler [2, 3] 12.385 1.232 9.727 1.910 16.000 1.563 12.000 2.953

10 Present (ez 6¼ 0) 193.437 1.259 62.077 4.748 249.990 1.596 76.544 7.216

Reddy [11] 194.337 1.264 61.053 4.770 251.270 1.602 75.268 7.304

Ghugal and Shimpi [13] 194.389 1.263 61.069 4.769 251.370 1.601 75.276 7.326

Kant et al. [44] – 1.261 60.990 4.771 – 1.598 75.250 7.244

Timoshenko [4] 193.510 1.264 60.793 4.775 250.000 1.602 75.000 7.383

Bernoulli–Euler [2, 3] 193.509 1.232 60.793 4.775 250.000 1.563 75.000 7.383

20 Present (ez 6¼ 0) 1546.26 1.237 247.606 9.503 1997.77 1.569 305.43 14.648

Kant et al. [44] – 1.239 243.360 9.548 – 1.571 300.24 14.548

30 Present (ez 6¼ 0) 5217.88 1.234 556.822 14.256 6741.24 1.564 686.92 22.017

Kant et al. [44] – 1.235 547.390 14.322 – 1.566 675.36 21.837

40 Present (ez 6¼ 0) 12,367.70 1.232 989.724 19.009 15,978.24 1.562 1221.01 29.375

Kant et al. [44] – 1.233 972.960 19.096 – 1.564 1200.48 29.124

50 Present (ez 6¼ 0) 24,155.11 1.231 1546.31 23.762 31,206.63 1.562 1907.69 36.729

Kant et al. [44] – 1.233 1520.00 23.870 – 1.564 1875.50 36.410
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s kð Þ
xz ¼ �

XN

k¼1

Zzkþ1

zk

or kð Þ
x

ox
dzþ C1 and

r kð Þ
z ¼ �

XN

k¼1

Zzkþ1

zk

os kð Þ
xz

ox
dzþ C2

ð33Þ

The interlaminar stresses of kth lamina can be evaluated

by layerwise integration of Eq. (33) with respect to the

thickness coordinate (z). The C1 and C2 can be determined

by imposing the continuity and boundary conditions at the

appropriate locations. Axial displacement (u), transverse

displacement (w), bending stress (rx), transverse shear

stress (sxz), transverse normal stress (rz), natural

frequencies ( �x), and critical buckling loads (Ncr) are pre-

sented in the following non-dimensional forms available in

the literature.

�u 0;
z

h

� �
¼ E3u

q0h
; �w

L

2
;
z

h

� �
¼ E3100h

3w

q0L4
; �rx

L

2
;
z

h

� �
¼ rx

q0
;

�sxz 0; 0ð Þ ¼ sxz
q0

; �rz
L

2
;
z

h

� �
¼ rz

q0
; �x ¼ xL

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
E3

� �

f

s

and Ncr ¼
N0a

2

E3h3

ð34Þ

Table 4 Comparison of axial

displacement, transverse

displacement, axial stress, and

transverse shear stress for two-

layered (0�/90�) anti-symmetric

laminated composite beam

L/h Source Sinusoidal loading Uniform loading

�umax �wmax �rmax
x �smax

xz �umax �wmax �rmax
x �smax

xz

4 Present (ez 6¼ 0) 1.718 4.396 33.825 2.989 2.268 5.523 40.494 5.078

Reddy [11] 1.711 4.451 33.592 2.977 2.258 5.590 40.239 5.024

Vidal and Polit [45] – 4.682 30.800 2.761 – – – –

Maiti and Sinha [39] – 3.534 25.783 2.846 – – – –

Kant et al. [44] – 4.708 30.002 2.719 – 5.900 36.678 3.848

Timoshenko [4] 1.421 4.797 27.905 2.947 1.836 6.009 34.427 4.557

Bernoulli–Euler [2, 3] 1.421 2.625 27.905 2.947 1.836 3.330 34.427 4.557

10 Present (ez 6¼ 0) 22.935 2.911 180.543 7.385 29.799 3.683 221.402 11.586

Reddy [11] 22.942 2.923 180.189 7.378 29.805 3.697 221.017 11.544

Vo and Thai [27] – – – – – 3.687 – –

Zenkour [37] – 2.974 182.200 6.282 – 3.762 224.600 9.469

Kant et al. [44] – 2.961 176.530 7.255 – 3.744 217.33 10.738

Timoshenko [4] 22.206 2.973 174.405 7.367 28.688 3.759 215.170 11.392

Bernoulli–Euler [2, 3] 22.206 2.625 174.405 7.367 28.688 3.330 215.170 11.392

Table 5 Comparison of axial

displacement, transverse

displacement, axial stress, and

transverse shear stress for three-

layered (0�/90�/0�) symmetric

laminated composite beam

L/h Theory Sinusoidal loading Uniform loading

�umax �wmax �rmax
x �smax

xz �umax �wmax �rmax
x �smax

xz

4 Present (ez 6¼ 0) 0.890 2.716 17.558 1.528 1.195 3.394 20.288 1.761

Reddy [11] 0.865 2.700 16.990 1.557 1.162 3.368 19.671 1.831

Chakrabarti et al. [46] 0.924 2.889 18.260 1.460 – – – –

Kant et al. [44] – 2.890 18.819 1.577 – 3.605 21.584 2.488

Timoshenko [4] 0.514 2.411 10.085 1.769 0.664 2.992 12.443 2.736

Bernoulli–Euler [2, 3] 0.514 0.511 10.085 1.769 0.664 0.648 12.443 2.736

10 Present (ez 6¼ 0) 8.997 0.882 70.836 4.322 11.819 1.106 85.664 6.016

Reddy [11] 8.940 0.875 70.213 4.334 11.734 1.098 85.030 6.090

Vo and Thai [27] – – – – – 1.108 85.66 4.533

Chakrabarti et al. [46] 9.348 0.933 73.610 4.320 – – – –

Kant et al. [44] – 0.933 73.660 4.239 – 1.171 89.120 6.150

Zenkour [37] – 0.873 70.210 – – 1.096 85.060 4.289

Timoshenko [4] 8.026 0.815 63.034 4.423 10.369 1.023 77.767 6.839

Bernoulli–Euler [2, 3] 8.026 0.511 63.034 4.423 10.369 0.648 77.767 6.839
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where E3 is the Young’s modulus of middle layer. Material

properties used in the above problems are shown in

Table 2.

3.2 Discussion of results

3.2.1 Problem 1: Bending of isotropic beam

Table 3 shows comparison of non-dimensional displace-

ments and stresses of thick isotropic beams subjected to

sinusoidal and uniform loadings. The material properties

are given in Table 2 (material 1). The numerical results are

obtained for various aspect ratios (L/h) and compared with

those of Reddy [11], Ghugal and Shimpi [13], Kant et al.

[44], TBT [4], and CBT [2, 3]. The results of axial and

transverse displacements are exactly matching with the

results of exact plane stress elasticity solution given by

Kant et al. [44] due to the inclusion of thickness stretching

effect in the present theory whereas stresses are in good

agreement with other higher-order theories for isotropic

beam with aspect ratio 4 in which shear deformation is very

significant. For moderately thick beams (L/h = 10–50), the

results of displacements and stresses are in excellent

agreement with those provided by Kant et al. [44] due to

normal deformation effect.

Since the effect of thickness stretching is considered in

the present theory, it provides the additional stiffness to the

Table 6 Comparison of axial displacement, transverse displacement, axial stress, and transverse shear stress for three-layered (0�/core/0�)
symmetric sandwich beam

L/h Source Sinusoidal loading Uniform loading

�umax �wmax �rmax
x �smax

xz �umax �wmax �rmax
x �smax

xz

4 Present (ez 6¼ 0) 1.752 10.107 34.668 1.370 2.391 12.463 39.569 2.797

Reddy [11] 1.739 10.034 34.181 1.372 2.365 12.455 39.161 2.662

Kant et al. [44] – 11.060 37.552 1.356 – 13.750 43.488 2.280

Timoshenko [4] 1.012 5.2798 19.898 1.410 1.308 6.548 24.549 2.181

Bernoulli–Euler [2, 3] 1.012 1.007 19.898 1.410 1.308 1.277 24.549 2.181

10 Present (ez 6¼ 0) 17.709 2.483 139.49 3.507 23.307 3.100 168.76 5.265

Reddy [11] 17.670 2.477 138.90 3.509 23.240 3.092 168.13 5.287

Kant et al. [44] – 2.668 143.14 3.504 – 3.330 172.60 5.240

Timoshenko [4] 15.821 1.691 124.36 3.526 20.439 2.121 153.43 5.452

Bernoulli–Euler [2, 3] 15.821 1.007 124.36 3.526 20.439 1.277 153.43 5.452

20 Present (ez 6¼ 0) 130.471 1.378 513.23 7.037 169.480 1.735 629.97 10.779

Reddy [11] 130.277 1.375 512.04 7.044 169.210 1.732 628.55 10.784

Kant et al. [44] – 1.425 516.40 7.040 – 1.793 633.20 10.660

Timoshenko [4] 126.568 1.178 497.46 7.052 163.515 1.488 613.74 10.905

Bernoulli–Euler [2, 3] 126.568 1.007 497.46 7.052 163.515 1.277 613.74 10.905

30 Present (ez 6¼ 0) 433.322 1.173 1136.10 10.562 561.224 1.482 1398.47 16.259

Reddy [11] 432.734 1.171 1133.88 10.573 560.445 1.479 1395.79 16.270

Kant et al. [44] – 1.193 1137.62 10.560 – 1.507 1400.40 16.050

Timoshenko [4] 427.168 1.083 1119.29 10.579 551.86 1.371 1380.92 16.358

Bernoulli–Euler [2, 3] 427.168 1.007 1119.29 10.579 551.86 1.277 1380.92 16.358

40 Present (ez 6¼ 0) 1021.31 1.101 2008.12 14.086 1321.33 1.393 2474.33 21.725

Reddy [11] 1019.97 1.099 2004.45 14.101 1319.58 1.391 2469.87 21.743

Kant et al. [44] – 1.112 2008.64 14.080 – 1.407 2475.04 21.440

Timoshenko [4] 1012.54 1.049 1989.86 14.105 1308.12 1.330 2454.96 21.811

Bernoulli–Euler [2, 3] 1012.54 1.007 1989.86 14.105 1308.12 1.277 2454.96 21.811

50 Present (ez 6¼ 0) 1989.48 1.067 3129.27 17.609 2572.61 1.352 3857.55 27.184

Reddy [11] 1986.91 1.066 3123.75 17.628 2569.26 1.350 3850.80 27.209

Kant et al. [44] – 1.075 3127.50 17.060 – 1.361 3855.00 26.850

Timoshenko [4] 1977.62 1.035 3109.15 17.632 2554.92 1.311 3835.87 27.264

Bernoulli–Euler [2, 3] 1977.62 1.007 3109.15 17.632 2554.92 1.277 3835.87 27.264
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beam, because of which, results predicted by the proposed

theory are higher than those predicted by the Euler–Ber-

noulli theory for low L/h ratios (thick beams) and

approaches to thin beam limits (Euler–Bernoulli theory) for

high L/h ratios. Higher-order theories which do not include

this effect yield a marginal difference in the bending results

compared to those of present theory.

Table 7 Comparison of non-

dimensional vibration

frequencies for laminated

composite beams

Lamination scheme E1/E2 Source a/h

5 10 20 50 100

0�/90� 40 Present (ez 6¼ 0) 6.185 6.999 7.276 7.377 7.413

Khdeir and Reddy [47] 6.128 6.945 – – –

Aydogdu [48] 6.144 – 7.218 – –

Vo and Thai [49] 6.058 6.909 7.204 7.296 –

Vo et al. [50] 6.090 6.918 7.207 – –

Matsunaga [51] 6.144 6.991 – – –

Timoshenko [4] 5.953 6.882 – – –

Bernoulli–Euler [2, 3] 7.124 7.269 – – –

0�/90�/0� 10 Present (ez 6¼ 0) 6.787 8.165 8.682 8.861 8.876

Aydogdu [21] 6.760 8.161 8.684 8.852 8.876

Khdeir and Reddy [47] 6.789 8.176 8.690 8.853 8.876

Karama et al. [16] 6.795 8.176 8.690 8.853 8.876

40 Present (ez 6¼ 0) 9.245 13.675 16.450 17.638 17.647

Aydogdu [21] 9.168 13.552 16.308 17.455 17.641

Reddy [11] 9.252 13.624 16.339 17.463 17.643

Karama et al. [16] 9.208 13.614 16.337 17.462 17.643

Khdeir and Reddy [47] 9.208 13.614 – – –

Vo and Thai [49] 9.206 13.607 16.327 17.449 –

Chalak et al. [52] 9.208 13.611 16.336 – –

Aydogdu [48] 9.207 – 16.337 – –

Vo et al. [50] 9.294 13.616 16.326 – –

Matsunaga [51] 9.817 14.149 – – –

Timoshenko [4] 9.205 13.670 – – –

Bernoulli–Euler [2, 3] 17.421 17.632 – – –

Table 8 Comparison of non-dimensional vibration frequencies for

four-layered (0�/90�/90�/0�) laminated beams

L/h Source Modes of vibration

Mode-1 Mode-2 Mode-3 Mode-4

5 Present (ez 6¼ 0) 1.760 4.358 7.052 9.947

Arya [53] 1.785 4.444 7.181 10.084

Arya [53] 1.783 4.444 7.201 10.147

Rao et al. [54] 1.814 4.530 7.234 9.931

10 Present (ez 6¼ 0) 2.290 7.066 12.225 17.466

Reddy [11] 2.314 6.989 12.070 17.203

Zhen and Wanji [55] 2.314 6.985 12.045 17.113

Matsunaga [51] 2.309 6.975 12.033 17.100

Timoshenko [4] 2.315 6.977 11.980 16.924

15 Present (ez 6¼ 0) 2.513 8.531 15.871 23.635

Arya [53] 2.505 8.569 16.063 23.962

Arya [53] 2.505 8.562 16.048 23.941

Rao et al. [54] 2.513 8.660 16.330 24.436

Table 9 Comparison of non-dimensional vibration frequencies for

three-layered (0�/core/0�) sandwich beams

L/h Source Modes of vibration

Mode-1 Mode-2 Mode-3 Mode-4

5 Present (ez 6¼ 0) 8.14 17.98 27.40 36.98

Chalak et al. [52] 7.83 17.29 26.92 33.40

Vidal and Polit [45] 7.83 17.31 26.97 33.37

Kapuria et al. [56] 7.82 17.27 26.90 –

10 Present (ez 6¼ 0) 12.76 33.24 53.54 73.37

Chalak et al. [52] 12.26 31.33 50.28 69.18

Vidal and Polit [45] 12.26 31.33 50.31 69.26

Kapuria et al. [56] 12.23 31.29 50.21 68.09

20 Present (ez 6¼ 0) 16.04 52.12 94.41 168.79

Chalak et al. [52] 15.41 49.04 87.06 163.43

Vidal and Polit [45] 15.41 49.04 87.07 163.69

Kapuria et al. [56] 15.38 48.94 86.90 163.12
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Table 10 Comparison of non-

dimensional critical buckling

loads for laminated composite

beams

Lamination scheme E1/E2 Source a//h

5 10 20 50 100

(0�/90�/0�) 10 Present (ez 6¼ 0) 4.724 6.804 7.641 7.913 7.953

Aydogdu [48] 4.682 6.788 7.657 7.943 7.985

Khdeir and Reddy [57] 4.736 6.813 7.668 7.948 7.985

Karama et al. [16] 4.736 6.814 7.668 7.948 7.985

Vo and Thai [49] 4.709 6.778 7.620 7.896 –

40 Present (ez 6¼ 0) 8.617 18.833 27.079 30.892 31.527

Aydogdu [48] 8.540 18.662 26.986 30.882 31.536

Khdeir and Reddy [57] 8.613 18.832 27.086 30.903 31.540

Chakrabarti [58] 8.590 18.772 27.039 – –

Karama et al. [16] 8.699 18.865 27.092 30.904 31.536

Vo and Thai [49] 8.609 18.814 27.050 30.859 –

(0�/90�/90�/0�) 10 Present (ez 6¼ 0) 4.481 6.323 7.047 7.280 7.314

Reddy [11] 4.457 6.292 7.018 7.253 7.287

Timoshenko [4] 4.768 6.444 7.065 7.260 7.289

Bernoulli–Euler [2, 3] 7.299 7.299 7.299 7.299 7.299

40 Present (ez 6¼ 0) 8.356 17.794 25.001 28.218 28.747

Reddy [11] 8.315 17.742 24.954 28.177 28.707

Timoshenko [4] 9.316 18.940 25.535 28.294 28.738

Bernoulli–Euler [2, 3] 28.889 28.889 28.889 28.889 28.889

Table 11 Comparison of non-dimensional critical buckling loads for

three-layered (0�/core/0�) sandwich beams

Source a/h

5 10 20 50 100

Present (ez 6¼ 0) 1.476 4.081 7.355 9.491 9.902

Reddy [11] 1.484 4.089 7.365 9.503 9.914

Timoshenko [4] 2.707 5.992 8.600 9.793 9.992

Bernoulli–Euler [2, 3] 10.059 10.059 10.059 10.059 10.059
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Sinusoidal Loading

Uniform Loading

Fig. 2 Through-the-thickness variation of non-dimensional axial

displacement (�u) at (0, z/h) in (0�/90�) beam under sinusoidal and

uniform loadings
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L/h = 4
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Fig. 3 Through-the-thickness variation of non-dimensional bending

stress (�rx) at (L/2, z/h) in (0�/90�) beam under sinusoidal and uniform

loadings
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Fig. 4 Through-the-thickness variation of non-dimensional transverse

shear stress (�sxz) at (0, z/h) in (0�/90�) beam under sinusoidal and

uniform loadings
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3.2.2 Problem 2: Bending of laminated composite beams

Tables 4 and 5 show the non-dimensional displacements

and stresses of (0�/90�) and (0�/90�/0�) laminated beams,

respectively. In both the lamination schemes, layers are of

equal thickness and made up of material 2 (see Table 2).

The displacements and stresses are obtained for aspect

ratios 4 and 10. The present results are compared with

previously published results. The examination of Tables 4

and 5 reveals that the displacements and stresses in two-

layered anti-symmetrically laminated beams are higher

than those in three-layered symmetrically laminated

beams. This is possibly due to presence of bending

extension coupling stiffness which is zero in symmetrically

laminated beams. Since the present theory considered the

effect of transverse normal strain, i.e., thickness stretching,

it provides the additional stiffness to the beam, because of

which, results predicted by the present theory for (0�/90�/
0�) laminated beams (see Table 5) are in excellent
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L/h = 4

Sinusoidal Loading
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Fig. 5 Through-the-thickness variation of non-dimensional transverse

normal stress (�rz) at (L/2, z/h) in (0�/90�) beam under sinusoidal and

uniform loadings
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Fig. 6 Through-the-thickness variation of non-dimensional axial

displacement (�u) at (0, z/h) in (0�/90�/0�) beam under sinusoidal

and uniform loading
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Fig. 7 Through-the-thickness variation of non-dimensional bending

stress (�rx) at (L/2, z/h) in (0�/90�/0�) beam under sinusoidal and

uniform loading
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Fig. 8 Through-the-thickness variation of non-dimensional transverse

shear stress (�sxz) at (0, z/h) in (0�/90�/0�) beam under sinusoidal and

uniform loadings
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Fig. 9 Through-the-thickness variation of non-dimensional transverse

normal stress (�rz) at (L/2, z/h) in (0�/90�/0�) beam under sinusoidal

and uniform loadings
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Fig. 10 Comparison of through-the-thickness variations of non-

dimensional axial displacement (�u) at (0, z/h) in (0�/core/0�) beam
under sinusoidal and uniform loadings
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agreement with those obtained by Chakrabarti et al. [46]

using finite element analysis and plane stress solution given

by Kant et al. [44]. Overall observations on Tables 4 and 5

show that the non-dimensional displacements and stresses

obtained by using the present theory are in good agreement

with those available in the literature. A large discrepancy in

the displacements and stresses for laminated thick beam (L/

h = 4) can be observed with the use of CBT [2, 3] and TBT

[4] due to the neglect of transverse shear and normal

deformations. However, for L/h = 10 results obtained using

CBT [2, 3] and TBT [4] are in good agreement with each

other. The through-the-thickness distribution of displace-

ments and stresses for laminated composite beams under

sinusoidal and uniform loading are shown in Figs. 2, 3, 4,

5, 6, 7, 8 and 9. Here, the through-the-thickness distribu-

tions of interlaminar transverse shear and normal stresses

are obtained using equilibrium equations of theory of

elasticity to ascertain stress continuity at layer interface.

Figures 5 and 9 show that the value of transverse normal

stress at the bottom surface of the beam is zero and equal to

magnitude of transverse load at the top surface.

3.2.3 Problem 3: Bending of sandwich beams

Sandwich beam is a special form of laminated composite

beam in which the modulus of core material is significantly

lower than that of the face sheets. Therefore, study of

global response of softcore sandwich structures is a chal-

lenging problem in numerical computation, especially

using simplified (1D or 2D) theories, rather than 3D elas-

ticity due to severe warping and normal deformation

effects. Therefore, equivalent single-layer theories, which

include effects of transverse normal strain, i.e., thickness

stretching, are more effective for the analysis soft core

sandwich beams. In this study, the present theory is applied

for the bending of three-layered (0�/core/0�) symmetric

sandwich beam. The beam has two face sheets (top and

bottom) of thickness 0.1h each and thick soft core of

thickness 0.8h. The face sheets are made up of material 2

and core is made up of soft material 3. The material

properties are given in Table 2. The comparison of non-

dimensional displacements and stresses of the sandwich

beam subjected to sinusoidal and uniform loading is given

in Table 6. The exact elasticity solution for sandwich beam

is not available in the literature. The examination of

Table 6 reveals that the results of the present theory are in

close agreement with those of plane stress elasticity solu-

tion given by Kant et al. [44]. This is the consequence of

inclusion of the effect of thickness stretching in the present

theory. The results of CBT deviate considerably, compared

to those of refined theories due to the neglect of transverse

shear and normal deformations. TBT showed similar trend

for beams with low aspect ratios due to inclusion of only

constant transverse shear strain in the theory. Comparison

of through-the-thickness variations of non-dimensional

axial displacement, bending stress, and transverse shear

stress is shown in Figs. 10, 11, and 12. Considerable

deviation in through-the-thickness variations of axial dis-

placement is observed in Fig. 10, which shows that the

present theory effectively captures the effect of soft core

material compared to theory of Reddy [11] which neglect

the effect of transverse normal deformation.

3.2.4 Problem 4: Free vibration of laminated composite
beams

The effect of transverse normal deformation is equally

important for the dynamic analysis of beams as in static

bending of a beam. In this study, free vibration analyses of

(0�/90�), (0�/90�/0�) and (0�/90�/90�/0�) laminated beams

have been carried out using the present theory. In all the

laminated beams, the overall thickness is equally dis-

tributed among all the layers. The material properties used

are given in Table 2. The (0�/90�) and (0�/90�/0�) lami-

nated beams are made up of material 4, whereas (0�/90�/

-40 -20 0 20 40
σx
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0.00

0.25

0.50

z/h

L/h = 4

Present (Sinusoidal Loading)

Reddy [11] (Sinusoidal Loading)

Present (Uniform Loading)

Reddy [11] (Uniform Loading)

Fig. 11 Comparison of through-the-thickness variation of non-di-

mensional bending stress (�rx) at (L/2, z/h) in (0�/core/0�) beam under

sinusoidal and uniform loadings
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L/h = 4

Present (Sinusoidal Loading)

Reddy [11] (Sinusoidal Loading)

Present (Uniform Loading)

Reddy [11] (Uniform Loading)

Fig. 12 Comparison of through-the-thickness variation of non-di-

mensional transverse shear stress (�sxz) at (0, z/h) in (0�/core/0�) beam
under sinusoidal and uniform loadings
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90�/0�) laminated beam is made up of material 5. The non-

dimensional natural frequencies are shown in Tables 7 and

8. From the investigation of Tables 7 and 8, it is observed

that the present results are in excellent agreement with

those of refined theories available in the literature. Since

the frequency of vibration is a global quantity with respect

to the neutral axis of the beam, the effect of transverse

normal deformation cannot be exhibited explicitly without

exact solution, which is not available in literature.

3.2.5 Problem 5: Free vibration of sandwich beams

A three-layered (0�/core/0�) simply supported sandwich

beam is analyzed in this problem using the present theory.

The core has a thickness of 0.8h, while it is 0.1h each for

the two laminated face sheets. The face sheets are made up

of material 6, whereas the core is made up of material 7 as

given in Table 2. The values of the first four non-dimen-

sional natural frequencies are presented in Table 9 for

aspect ratios 5, 10, and 20. The present values of natural

frequencies are in good agreement with those reported by

Kapuria et al. [56], Chalak et al. [52], and Vidal and Polit

[45]. Higher values of frequencies of present theory com-

pared to other refined theories may be attributed to the

thickness stretching effect which introduces an additional

stiffness in transverse flexural vibration of beam. Since

exact solution for this case is not available, the effect of

thickness stretching on frequency response cannot be

ascertained at present.

3.2.6 Problem 6: Buckling of laminated composite beams

This section presents the buckling behavior of laminated

beam due to axial compressive forces. A symmetrically

laminated beam is considered for the numerical study.

Table 10 shows the comparison of the critical buckling

load for (0�/90�/0�) and (0�/90�/90�/0�) laminated beams.

The beam is analyzed by considering different modular

ratios (E1/E2) and different aspect ratios (L/h). The beams

are made up of material 4 as shown in Table 2. The results

of present theory are compared with those published by

Khdeir and Reddy [57], Aydogdu [48], Karama et al. [16]

and Vo and Thai [49]. From the examination of Table 10, it

is observed that the critical buckling loads for the four-

layered symmetric beams are less than those of the three-

layered beams. The increase in critical buckling load is

observed with increase in aspect ratio as well as the

modular ratio. The comparison of results with existing

literature indicates that the results of the present theory are

in very good agreement with those of other equivalent

theories and may be due to inclusion of transverse normal

strain effect.

The comparison of the critical buckling load for three-

layered (0�/core/0�) sandwich plate is shown in Table 11.

The composite face sheets are made up of material 2 and

core is of material 3. The thickness of each face sheet is

0.1h and that of the core is 0.8h. For the comparison pur-

pose, results by using HSDT of Reddy [11], TBT of

Timoshenko [4], and CBT of Bernoulli–Euler [2, 3] are

specially generated. From Table 11, it is observed that the

present results are in excellent agreement with those

obtained by using HSDT of Reddy. The CBT results are

independent of the aspect ratio (a/h), shear deformation

being neglected in the theory.

In absence of an exact elasticity solutions for bending,

buckling, and vibration of beams, the three-dimensional

thick plate’s origin of the sine shear function in one-di-

mensional analogue of thick plate, i.e., thick beam and the

infinity of terms in its polynomial representation allow us

to hope that the corresponding beam theory which includes

thickness stretching effect will be accurate, without

increasing the complexity compared to the TBT.

3.3 Recommendation for other boundary
conditions of the beam

All the foregoing solutions are obtained for simply sup-

ported boundary conditions of the beam. For the other

boundary conditions, the present theory can also be

extended.

1. For the built-in boundary conditions, finite element

method is widely used by various researchers. The

present theory is simple and suitable for finite element

formulation.

2. One can use general solution technique for the other

boundary conditions of the beam by decoupling the

governing equations from each other and solving them

independently.

3. One can also use numerical methods such as discrete

singular convolution method, Galerkin method, mesh-

less method, radial basis functions, differential quadra-

ture method, Rayleigh–Ritz method, and state-space

method for the analysis of laminated composite beams

with built-in boundary conditions.

4 Concluding remarks

Present paper deals with the assessment of trigonometric

shear and normal deformation theory on bending, free

vibration, and buckling analysis of isotropic, laminated

composite, and sandwich beams. The present theory con-

siders the effect of transverse shear deformation as well as

the transverse normal strain, i.e., thickness stretching. The
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present theory satisfies the traction free boundary condi-

tions at the top and bottom surfaces of the beam. The

theory is variationally consistent and does not require shear

correction factor. Navier-type closed-form solutions are

obtained for bending, buckling, and vibration of simply

supported beams and numerical results are presented. The

numerical results for the displacements, stresses, natural

frequencies, and critical buckling loads for standard prob-

lems of laminated composite and sandwich beams have

shown the accuracy of the theory. Therefore, it is finally

concluded that the effect of thickness stretching plays an

important role while predicting bending, buckling and

vibration responses of the laminated composite and sand-

wich beams. In the absence of an exact elasticity solution,

numerical trend indicates that the results of present theory

can be served as better reference solutions since the theory

is represented by trigonometric functions which are correct

from three-dimensional elasticity considerations.
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