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Abstract
Reliable detection and isolation of centrifugal pump (CP) faults is a challenging and important task in the modern

industries. Hence, this paper proposes an artificial intelligence-based multi-fault detection of CPs driven by induction

motor. The intelligent fault detection methodology is developed based on the multi-class support vector machine (MSVM).

The mechanical and hydraulic faults in CPs are mutually dependent and therefore may exist concurrently. Hence, in the

present research, an assortment of various flow instabilities like the suction re-circulation, discharge re-circulation, pseudo-

re-circulation and dry runs are considered coexisting with mechanical faults, like the impeller cracks and pitted cover plate

faults. The power spectrum of the CP vibration and the induction motor line-current data is used for monitoring the CP

condition. The best statistical feature combination is selected based on a wrapper model. Gaussian radial basis function

(RBF) is used for the kernel mapping. In addition, the RBF kernel parameter (width) and MSVM parameters are optimally

selected using a fivefold cross-validation technique. Also, variation of operating speed of the CP drastically changes the

system vibration level owing to the change in fault manifestations; hence, in the present work a methodology that is

independent of CP operation is proposed and tested. Thereafter, it is observed that the proposed methodology is remarkably

robust and successfully classifies multiple individual as well as coexisting CP faults at all the tested CP speeds.
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1 Introduction

In the modern industries, fault diagnosis of the mechanical

equipment is being given great importance [1, 2]. Cen-

trifugal pumps (CPs) are preferred hydraulic turbomachi-

nes for industries with applications ranging from food

processing industries to oil refineries. They are very robust

in design and can cater to versatile flow requirements. It is

estimated that a typical chemical plant operates at an

average of one CP per employee [3]. Also, 20% of the

energy produced globally is said to be consumed in running

CPs [4]. They thus form vital components to sustain the

process course of the plant. Thus, active condition

monitoring of CPs is important to ensure increased avail-

ability of the plant and operators’ safety.

Faults in CPs can be broadly classified as mechanical

faults and fluid-flow-induced faults. Interestingly, these

faults are dependent on each other, which means that one

CP fault type can stimulate the occurrence of the other [5].

(More details on the interdependence of mechanical and

hydraulic faults are given in Sect. 5.) Therefore, it is not

fitting to consider the hydraulic and mechanical CP faults

independent of each other. Hence, to take the combined

effects of these into account, the faults listed in Table 1

need to be considered. Here, re-circulation is defined as the

turnaround of fluid-flow patterns at the inlet or outlet tips of

the impeller blades. This re-entering flow results in the

formation of vortex on the pressure side of the impeller

blade. In case the flow possesses enough energy, the fluid

re-circulation results in the material damage [6].

In Table 1, it is evident that different flow instabilities

have distinct causes and effects on the CP system and its

internal components. Thus, the combined effects of these
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faults may be catastrophic. Bubbles formed due to any of

the aforementioned reasons not only decrease the head

performance of the CP (because the CP has to invest some

of its energy on compressing the air bubbles) but also may

result in a cavitation-like damage on the internal compo-

nents of CP.

Many researchers have worked on the CP fault diag-

nosis. Most of the work emphasized on the identification of

mechanical faults of CP, like bearing faults, seal defects

and impeller faults. Very limited work has been performed

on the hydraulic CP fault diagnosis and/or combination of

various CP faults. Muralidharan et al. [7] researched on

detecting cavitation faults, bearing faults, impeller faults

and both the bearing and impeller faults together. Sakthivel

et al. [8, 9] diagnosed CP bearing faults, seal defects,

impeller defects, cavitation and the bearing and impeller

defects together. Wolfram et al. [10] presented a model-

based approach to detect leakage faults, varying CP

obstructions, cavitation, bearing faults and impeller

defects. Wang et al. [11] investigated on a method to detect

the bearing and impeller wears. In all the aforementioned

studies, the focus majorly was on the mechanical CP faults.

However, since mechanical faults are directly related to

operating speeds of the CP, they can be picked out much

more efficiently than the complex-flow-induced faults.

Some researchers have worked on identifying different

flow-related faults in the CPs. Bordoloi and Tiwari [12]

worked on identifying different levels of suction blockages

on the CP. They reported an average classification accuracy

of 56% at low speed of CP operation. In addition, light

suction flow restriction could be identified with only 10%

accuracy at low CP speeds. The possible reasons for such

low prediction performance could be the (1) inappropriate

choice of the statistical features and/or (2) insufficient

resolution of the sampled experimental signals. Chudina

[13] and Alfayez [14] developed methods to detect the

incipient cavitation. In these papers, the flow instabilities

were diagnosed. However, the researchers have not con-

sidered any combined effects of mechanical faults with

flow-related faults.

Perovic [15] took this aspect into consideration and tried

to develop a technique to classify cavitation faults, dis-

charge blockage faults, impeller defects and both discharge

blockage and impeller defects. The discharge blockage

combined with the impeller defects and the cavitation were

classified at a rate of 83.7%, and the blockage and the

cavitation were classified at a rate of 61%. Rapur and

Tiwari [5] attempted classification of CP with suction

blockage faults and impeller defects, but the results sug-

gested the inability of the algorithm to identify faults at

small suction restrictions, especially at low speeds. This

was attributed to the similarity of the fault signatures of

low levels of suction restriction of CP to that of the healthy

CP.

Concisely, little emphasis has been given to the identi-

fication of coexisting mechanical and flow-induced faults

of CPs. The classification rates obtained were very low

while considering coexisting mechanical and hydraulic

faults [5, 15]. Moreover, the algorithms developed for fault

identification and diagnosis of CPs were limited to a single

CP operating speed. But, in majority of the cases, CP

operation is not confined to a single speed, and in complex

nonlinear systems, it is a great challenge to develop

accurate process models valid over wide operating range

[10].

Table 1 CP fault names, their causes and effects

S.

no.

Fault name Fault cause Fault effect

1. Suction

blockage

[5, 12]

Obstruction in the inlet pipe of the CP due to unclean

liquids/surface damages resulting in reduction in cross

section of suction

Discharge re-circulation [42], cavitation damage on (a) the

pressure side of the vane at the discharge of impeller, axial

movement of shaft and (b) inlet of diffuser vanes of casing,

cracking and failure of impeller shrouds, shaft failures, noise

and excessive vibrations

2. Discharge

blockage

[15]

Flow rates below BEP, closing of throttle valve Suction re-circulation [42], cavitation damage on the pressure

side of the vane at the inlet of impeller and, random

crackling sound in the suction, surging in the suction of

pump, noise and vibrations

3. Impeller

defects

[7, 9–11, 15]

Casting errors of the impeller, cavitation damage,

material corrosion, fatigue

Unbalance, pseudo-flow re-circulation, vibrations and noise

[5]

4. Pitted cover

plate

Manufacturing defects, damages due to cavitation

erosion and material corrosion

Turbulence to the flow pattern

5. Dry run Insufficient priming of the CP Bearing, seal damages, vibrations and noise
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The prediction of defects in mechanical systems can be

done either by the qualitative and statistical analysis of

collected fault data or by developing mathematical models

of the system or by machine learning techniques. In a

qualitative analysis, the characteristic fault frequency

deviations are studied to identify different faults [16].

However, there is a significant amount of human error

involved in it. Some researchers have diagnosed CP faults

using modeling techniques [10, 17]. However, it is very

complex to accurately model the interdependent faults and

identify them. With the advancement of modern compu-

tational capabilities, online machine learning and condition

monitoring techniques are being preferred. There are

numerous popular machine learning techniques including

artificial neural networks (ANNs), fuzzy logic, empirical

mode decomposition (EMD), decision tree, support vector

machine (SVM), deep learning. Researchers have used

various aforementioned machine learning techniques to

diagnose faults in various mechanical systems including

bearings, gears, induction motors and pumps [11, 18–28].

Some recent researches that have been conducted on the

CP fault diagnosis are [5, 7–9, 12, 15, 22, 29]. Of all the

above-mentioned methods, ANN is most popular among

researchers. It utilizes the empirical risk minimization

principle and works fine with large data. But the basic

ANN suffers from local minima traps and complication in

establishing hidden layer sizes and the learning rate [30].

On the other hand, SVM employs structural risk mini-

mization (SRM) principle and has a clear mathematical

formulation. Therefore, it is expected to give better learn-

ing performance as it can arrive at the global minimum

[30, 31]. Taking into account the advantages offered by

SVM, in the present work it is employed for machine

learning and condition monitoring of the CP.

The choice of signal used to monitor the CP condition is

very crucial. Popular signal choices are CP vibration

[5, 9, 32, 33], motor line current [34, 35] and acoustic

emission signals [14, 36]. The change in CP system oper-

ation due to faults also changes the load on the motor, and

therefore, the motor line-current changes. Hence, the motor

current has also been used by researchers to diagnose CP

faults [15]. Vibration signatures are very resourceful, are

sensitive to the fault conditions and are easy to acquire,

thus making them the most preferred signals for the CP

fault diagnosis [37]. Taking into credit the benefits offered

by the vibration signals and also the motor line-current

signals, in this work their combination would be used for

CP fault diagnosis. Researchers have not attempted this

previously.

The signal acquired can be analyzed in time domain,

frequency domain and time–frequency domain. Time

domain is sensitive and provides physical understanding of

the signal, and thus, many researchers use this domain for

the fault diagnosis. However, there are three major

advantages offered by spectral/frequency analysis over that

of the time-domain analysis. The first is that it simplifies

the comprehension of the waveform. Secondly, the physi-

cal property of the signal often depends on the frequency;

thirdly, it is a mathematical tool for solving equations.

Some papers on the fault diagnosis of CP in frequency

domain are [7, 38]. Consequently, this research uses the

frequency domain of the acquired signals for fault diag-

nosis. The acquired signal contains a lot of redundant

information and is of high dimensionality; therefore, it

cannot be directly fed to the machine learning algorithm.

Hence, suitable statistical features need to be extracted

from the raw data. In this paper, the wrapper model is used

to select the best-performing statistical features.

The major contributions of the present work are:

• This paper considers the interdependence of mechan-

ical and hydraulic CP faults. Attempt to classify

mechanical and hydraulic faults in the CP existing

both independently and in combinations is presented.

Section 2 explains the fault dependency, and results of

the classification are presented in Sect. 5.

• To take a suitable corrective action, it is imperative to

identify the fault severity. However, not a lot of

research has been done on identifying varying flow

instabilities of CPs. In this paper, an attempt is made to

isolate various severity levels of the suction and

discharge blockages of CPs. Section 2 gives details of

the suction and discharge blockages. Section 5 gives

results of the classification.

• In this paper, a robust methodology, which works well

at a wide range of CP operations, is proposed to be

developed. In addition, it is attempted to diagnose the

faults at intermediate test speeds. Section 3 gives the

details of the methodology. The results are tabulated in

Sect. 5.1(e).

• The sampling rate of data acquisition plays a significant

effect on the classification performance obtained. A

comparative study of the classification performance

obtained with a high-frequency-resolution sampling

and a low-frequency-resolution sampling is presented

in Sect. 4.

• The CP fault diagnosis traditionally used vibration

signals or acoustic signals, or motor line-current

signals. The effectiveness of using the combination of

the vibration and motor line-current signals is substan-

tiated in this paper in Sect. 5.

• In this research, an attempt has been made to develop a

methodology to classify thirty-three critical CP faults

using SVM as the artificial intelligence technique. The

statistical features/feature combinations that achieve
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the best classification accuracy are identified, and their

performance is demonstrated in Sect. 4.

The rest of this paper is arranged as follows: Section 2

describes the CP fault analysis test setup. A theoretical

understanding of the proposed methodology is given in

Sect. 3. Section 4 describes feature selection and effect of

signal sampling rate on the fault prediction. Classification

results are presented in Sect. 5. The last section gives the

conclusions and future work.

2 CP fault analysis test setup

To perform the fault diagnosis, the faults are artificially

seeded on two geometrically similar Oberdorfer 60P

pumps. The CPs are made to have three operating config-

urations, one with the healthy impeller and the healthy

cover plate, the second with the faulty impeller and the

healthy cover plate and the third with the healthy impeller

and the faulty cover plate. A total of 33 faults are con-

sidered on the CPs, which are broadly classified into ten

fault families, which are (I) healthy pump, (II) suction

blockage faults, (III) discharge blockage faults, (IV)

impeller defects, (V) combination of impeller defects and

suction blockages, (VI) combination of impeller defects

and discharge blockages, (VII) pitted cover plate faults,

(VIII) combination of pitted cover plate faults and suction

blockages, (IX) combination of pitted cover plate faults and

discharge blockages and (X) dry-run faults for all the CP

configurations.

Furthermore, the suction and discharge blockages are

given on the inlet and outlet of the CP, respectively, using

mechanical modulating valves, as shown in Fig. 1a. The

valves are calibrated to give the desired amount of flow

restriction, i.e., 0% (B0) (full flow), 16.7% (B1), 33.3%

(B2), 50% (B3), 66.6% (B4) and 83.3% (B5).

Further, the faults on the impeller are seeded by cutting

through–through notches (2 per vane) on the impeller

vanes, as shown in Fig. 1b. The notches are dissimilar and

are asymmetrically placed. Subsequently, faults are also

given on the cover plate. Pits are artificially created on the

cover plate as shown in Fig. 1c. The nomenclature and

descriptions of faults considered are given in Table 2. In

the table, the tick (4) mark denoted the presence of a fault

and the cross (9) mark denoted the absence of it. The

number alongside every fault abbreviation indicates the

amount of flow restriction, i.e., SBk and DBk denote (k/6)th

of suction blockage and discharge blockage, respectively,

k = 1, 2, 3, 4, 5. When the CP is given (5/6)th flow

restriction on the suction side, there is almost no fluid in the

CP (priming fluid); hence, this case has been considered as

a ‘dry-run’ condition. Here, IF stands for impeller faults;

PC stands for pitted cover plate faults.

The CP under study is installed on a machine fault

simulator (MFSTM) setup, as shown in Fig. 2. The sche-

matic diagram of the experimental setup is given in Fig. 3.

CP is driven by a 3-/ induction motor (4-pole, 1.6 kVA,

4.2 A, 0–240 V output voltage), using a belt-pulley drive.

The vibration and current signatures from the CP and the

motor are measured using two triaxial accelerometers and

three line-current probes, respectively. Accelerometers are

mounted on the CP casing and bearing housing locations.

The CP is operated using a variable speed motor from 30 to

65 Hz in steps of 5 Hz. A wide speed range of the CP

operation is chosen to check whether the developed algo-

rithm shows any speed dependency on the classification

performance. The data are sampled at two different sam-

pling rates—20,000 samples/s (2000 samples/dataset) and

5000 samples/s (5000 samples/dataset). The details of the

amount of data collected for each fault and for all the faults

are specified in Table 3. Table 4 shows the data resolution

obtained in the frequency domain with each of these

sampling rates. It can be observed that both the sampling

Fig. 1 a Mechanical modulating valve with markings; b cracks on the impeller; c pitted cover plate
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rates chosen show different Nyquist frequencies and data

resolutions. This is so chosen to check the reliance of

algorithm’s classification performance on the resolution of

data acquisition. The power spectral density of the raw data

in linear scale, obtained from both high- and low-fre-

quency-resolution data sampling, is plotted in Fig. 4a, b,

respectively. From the figure, it can be seen that the fre-

quency activity is typically within 1000 Hz for the system.

Over that, the high-frequency-resolution sample (Fig. 4a)

tends to carry more details (intricate frequency amplitude

information) of the characteristic fault frequencies,

whereas with the low-frequency-resolution data sampling

(Fig. 4b) data of higher frequencies are obtained but with a

loss of amplitudes at refined characteristic frequencies.

That means, it is safe to say that instead of capturing data at

higher frequencies (where there is not much vibration

activity), a better resolution may be chosen to capture

intricate frequencies.

The following observations were made during

experimentation.

• The suction CP blockage up to SB2 level does not seem

to change the flow pattern in CP. However, there is

bubble formation observed between the SB2 and SB3

levels. The severity of bubble formation and the size of

bubbles keep increasing with the increase in the suction

blockage severity.

• The presence of impeller defects (even without any

suction/discharge blockage) causes bubble formation.

• Pits on the cover plate also seem to disturb the flow

pattern. Tiny bubbles are observed even in PCSB0 at

increased speeds of the CP operation.

• Dry-run faults cause a lot of vibration and associated

noise.

• The presence of discharge blockage reduces the pump

discharge significantly and increases the vibrations.

Table 2 CP faults considered, their nomenclature and description of what they include

Pump

configuration

Fault considered Fault

abbreviation

Suction

blockage

Discharge

blockage

Impeller

defect

Pitted cover

plate

I Healthy CP HP 9 9 9 9

II Only suction blockages SBi* 4 9 9 9

III Only discharge blockages DBi* 9 4 9 9

IV CP with impeller defect IFSB0 9 9 4 9

V CP with both impeller defect and suction

blockages

IFSBi* 4 9 4 9

VI CP with both impeller defect and discharge

blockages

IFDBi* 9 4 4 9

VII CP with pitted cover plate fault PCSB0 9 9 9 4

VIII CP with both pitted cover plate fault and

suction blockages

PCSBi* 4 9 9 4

IX CP with both pitted cover plate fault and

discharge blockages

PCDBi* 9 4 9 4

*i = 1, 2, 3, 4, 5

Fig. 2 Experimental setup of a centrifugal pump with an indication motor
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Fig. 3 Schematic diagram of the experimental setup

Table 3 Total data collected using different sampling rates of data acquisition

Sampling

rate (kHz)

No. of

samples/dataset

in time domain

No. of

samples/dataset

in frequency

domain (a)

No. of

datasets

(b)

No. of

measurements

using two

triaxial

accelerometers

(c)

No. of

measurements

using three

line-current

probes (d)

No. of

faults

(e)

Total data collected per

fault

f = {a 9 b 9 (c ? d)}

Total data

collected

for all faults

g = (f 9 e)

20 2000 1000 350 6 3 33 3,150,000 103,950,000

5 5000 2500 150 6 3 33 3,375,000 111,375,000

Table 4 Details of data

resolution and frequency

content in data acquired with

different sampling rates

Samples to read per dataset (S) 2000 5000

Sampling rate 20,000 Hz 5000 Hz

The time taking for acquiring one dataset (T) 2000/20,000 = 0.1 s 5000/5000 = 1 s

Time taken to acquire single data point (DT) T
S
¼ 0:1

2000
¼ 1

20000
DT ¼ T

S
¼ 1

5000

Resolution in frequency domain 1
T
¼ 1

0:1 ¼ 10 Hz 1
T
¼ 1

1
¼ 1 Hz

Nyquist frequency (N, Hz) 1
2DT ¼ 10000Hz 1

2DT ¼ 2500Hz

Total time (s) 35 150

Total datasets 350 150

Data resolution in frequency Low High
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2.1 Interdependence of faults

The mechanical and hydraulic CP faults are not indepen-

dent of each other. In this section, their symbiosis is

explained.

As mentioned in the experimental observations, the CP

with impeller cracks revealed bubble formation even in the

absence of blockage. This implies that the impeller cracks

act as flow instability inducers. The CP as shown in Fig. 5

runs in the backward curved vane configuration. Figure 5a

shows the flow pattern inside a CP without impeller cracks,

and Fig. 5b shows the flow pattern inside a CP with

impeller cracks. The convex side of the impeller blade is on

a higher pressure than the concave side. In Fig. 5b, the

HPZ stands for high-pressure zone and the LPZ stands for

low-pressure zone. This pressure difference makes the fluid

to flow through the cracks as shown in Fig. 5b. Hence,

some fluid, which is supposed to flow along the convex

vane face, leaks into the LPZ of the following vane as

shown in Fig. 5b. This flow disrupts the flow pattern of the

following impeller blade and may cause a pseudo-re-cir-

culation [5]. Re-circulation is always accompanied by low-

pressure pulsation zones, and hence, this might be the

reason for bubble formation

Any bubble formation inside the CP system results in a

decreased CP performance and material erosion on internal

CP surfaces. The collapse of bubble cloud creates a shock

wave. This wave travels in the fluid, and its magnitude

attenuates as it gets closer to the solid surface. Near the

solid surface solitary bubbles are present. When the shock

wave reaches the bubbles, they oscillate and a micro-jet

phenomenon may occur, as shown in Fig. 6. When this
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Fig. 4 Raw power spectral density data in linear scale from the accelerometer-1 for HP fault at 30 Hz with a high-frequency-resolution data

sampling and b low-frequency-resolution data sampling. The y-axis has the units of ((mm/s2)2/Hz)
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Fig. 5 a Flow pattern over healthy impeller blades; b flow pattern over cracked impeller blades
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high-velocity micro-jet impinges on the solid surface, pit-

ting takes place [39]. Material erosion on the impeller

blades or any internal surface of the CP causes or enhances

the mechanical faults. Therefore, the mechanical and

hydraulic faults form a vicious fault cycle and hence need

to be curbed at their formative stages itself.

To sum it up, the observations suggest that the re-cir-

culation effects in the CP without impeller defects/pitted

cover plate faults are due to the suction flow restriction and

discharge flow restriction governed by the blockage. While

in a pump with impeller defects, the cracks govern a

pseudo-re-circulation. It is also expected that the pits on the

cover plate cause a flow pattern disruption in the CP.

3 CP fault diagnosis methodology

As discussed in the literature review, due to the fair share

of advantages offered by the SVM, it would be adapted as

the artificial intelligence technique for the fault diagnosis

of the CP. A brief description of the working of SVM is

presented in this section. However, for greater under-

standing of SVMs the following works may be referred

[30, 31].

The SVM is a supervised learning technique. Funda-

mentally, SVM is a binary data classifier. From the data

that need to be classified, suitable features are extracted.

Let x represent a feature vector of dimension N extracted

from the data. For every vector x, a class label y is allotted

based on which data category it represents (positive class

or negative class). Consider a binary classification case to

classify p sets of training data ðx1; y1Þ; ðx2; y2Þ; . . .ðxp; ypÞ
into two classes, where xi 2 RN , i = 1, 2, … p, and yi 2
f�1;þ1g specifies its class label. If we presume that the

two classes of data are linearly classifiable by a hyperplane

described by w � xþ b ¼ 0 (where symbol � is the dot

product) in a space H, then the optimal hyperplane is that

which maximizes the margin defined by support vectors.

Let the two classes of data be represented by hollow circles

and hollow squares, as shown in Fig. 7a. There can be

(c)(b)(a)

Fig. 6 a Pressure wave

emission; b micro-jet formation;

c pit formation and material

erosion
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Fig. 7 a Various orientations of the data separating planes; b the optimal orientation of the SVM hyperplane
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infinite orientations of planes separating the two classes of

training data. But, only a hyperplane, which maximizes the

margin between the support vectors denoted by dark

markers, is chosen, as shown in Fig. 7b. The margin is

defined as the Euclidean gap between the sorting hyper-

plane and the support vector of every class. The hyperplane

is found by solving the following optimization problem,

Minimize
1

2
wk k2þC

Xp

i¼1

ni

Subjectto yi w
T � xi þ b

� �
� 1� ni

ni � 0; i ¼ 1; 2; . . .; p

ð1Þ

where ni is the slack variable to account for incorrect

classification, w is the weight vector, b is the bias and C is

cost function which defines a bargain among model intri-

cacy and learning error. In many cases where the data are

not linearly classifiable, the data are transformed from the

input space to a higher-dimensional feature space using a

kernel function. In this transformed space, the data become

linearly separable. Kernel function is given by

K xi; xj
� �

¼ xi � xj. The choice of kernel function plays a

very important role in the accuracy of fault identification.

From the literature, it has been found that Gaussian RBF

kernel is very versatile [40]. Therefore, in the present work,

it is proposed to adopt the Gaussian RBF kernel function. It

is defined as,

Kðxi; xjÞ ¼ exp �c xi � xj
�� ��2

� �
ð2Þ

By introducing a kernel function, the optimization

problem can be written in dual form using Lagrange mul-

tipliers ai (i = 1, 2… p), as

f ðxÞ ¼ sgn
Xp

i¼1

aiyiKðxi; xÞ þ b

 !
ð3Þ

The algorithm is very sensitive to the kernel parameter c
and the SVM penalty parameter, C. The hyperplane, while

using Gaussian RBF parameter, is an arrangement of bell-

shaped curves placed at the support vectors. The width of

each bell-shaped curve is inversely proportional to the

value of c. If the width of the bell-shaped curve is smaller

than the minimum distance between the support vectors,

the classification leads to the over-fitting of the data and

does not capture the tendency of the data. In the other case,

where the width of the bell-shaped curve is greater than the

maximum distance between the support vectors, it leads to

under-fitting. Cost function C marks a trade-off between

the simplicity of the classification curve and the misclas-

sification of the training sample. With the increase in the

value of C, the complexity of the curve also increases. If c
were very high, any amount of fine-tuning of C would not

help in improving the performance of the classification

algorithm. Hence, in this paper the best combination of c
and C is selected using a grid search and cross-validation

(CV) technique. In this technique, the training data are

divided equally into n subsets. The algorithm is first trained

with (n - 1) subsets from these n, and one subset is used

for the testing. This process is repeated such that all the

n subsets test one at a time. The c and C parameters that

give the best cross-validation accuracy (CV accuracy) are

retained. These parameters are then used to train the opti-

mized SVM. The accuracy of SVM is defined as the best

average classification accuracy obtained using the selected

c and C parameters.

It is very unlikely that there would only be two classes

of data that need to be classified. However, SVM is pri-

marily a binary data classifier. Hence, to enable SVM to

deal with more than two classes of data many models were

proposed in the literature, including one-against-one

(OAO) approach, one-against-all (OAA) approach and

direct acyclic graph (DAG) approach. In the present work,

to account for the multi-fault classifications, the OAO is

employed to make the SVM a multi-class data classifier or

multi-support vector machine (MSVM). In OAO for clas-

sifying p categories of data, p(p - 1)/2 binary classifiers

are created. Each one trains data from two different classes.

A voting strategy is used to classify the data while testing.

While testing sample x, if a binary classifier says that the

sample belongs to ith class, then the vote for class i is

incremented by one. Lastly, sample x is classified into that

particular class, which carries the maximum votes for it.

A flowchart of the present methodology is given in

Fig. 8. The proposed methodology consists of the follow-

ing seven steps:

1. The data are acquired from the CP using the

accelerometers and line-current probes.

2. These data are in time domain and are converted to its

power spectrum.

3. Suitable features are extracted from the data, and best

features are selected using the wrapper model.

4. A subset of the acquired data is used for training the

MSVM algorithm. The remaining data are kept aside

and are used for testing the algorithm.

5. Cross-validation technique is used to select the best

MSVM parameters.

6. The final trained algorithm with the optimized MSVM

parameters is then tested with the remaining subset of

the test data.

7. Faults are segregated into their respective groups, and

the performance of the classifier is given by the

percentage classification accuracy.

As a performance measure, the classification accuracy

of the algorithm is calculated. It is given by,
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Classification accuracy¼Number of correctly predicteddata

Total numberof testingdata

�100%

ð4Þ

Apart from the classification accuracy, in the case of a

multi-class classification, the average classification accu-

racy is defined as the average of classification accuracies

obtained for each fault. In addition, another term called the

overall classification accuracy is defined, which is the

average of average classification accuracy over the entire

speed range. The overall classification accuracy gives a

bird’s eye view of the classifier’s performance at all the CP

operating speeds.

The LIBSVM [41] version 3.20 is used as the SVM tool.

This package is tried and tested by many researchers, and it

is proved very effective.

4 Feature selection and effect
of the sampling rate on the fault
predictions

Figure 9 shows the power spectrum of measured data that

are plotted for various CP faults at 30 Hz speed using the

data from accelerometer 1, accelerometer 2 and line-cur-

rent probes. As it can be seen from the figure, these data are

of very high dimensionality and contain redundant infor-

mation. Therefore, if these data are directly used to train

the MSVM classifier, the classification results may not be

satisfactory. Hence, proper statistical features need to be

selected which carry the fault information and are sensitive

to the variation of fault severities. There are many methods

for selection of the best features, namely principal com-

ponent analysis (PCA), genetic algorithm (GA) and

wrapper model. In the present work, the wrapper model is

used for the feature selection. Using it, the best features are

selected based on the classification performance they

demonstrate. Features like the mean (l), variance (l2),
skewness (l3), kurtosis (l4), 5th moment (l5), 6th moment

(l6), 7th moment (l7), standard deviation (r), reciprocal of
standard deviation (1/r), root mean square (RMS), variance

(r2), root sum of squares (RSS), sum of squares (SS), shape

factor (w), impulsion index (I), crest factor (P), tolerance

index (T), power to average (PA) are extracted from the

raw data [2]. The definition of all these features is given in

Table 5. In the table, xx represents the amplitude of fre-

quency spectrum at a frequency of x and N stands for the

Nyquist frequency. Here, it must be noted that all the

features mentioned (except 1/r) have standard definitions.

However, 1/r that has been used in this study is less

common and often referred as precision. This feature

retains the trends of standard deviation, but reduces its

variation. Higher the spread, smaller the value of 1/r would

be. To demonstrate the same, Fig. 10 is plotted between

variation of r and 1/r with each dataset for HP at 30 Hz

speed. From the figure, it can be seen that there is a sig-

nificant decrease in the variation of the feature.

Every fault in the CP contributes to changes in its flow

patterns and thus has a unique effect on the CP signatures

produced. In a multi-fault classification, it is critical to find

feature(s) that is sensitive to every fault. Wrapper model is

a performance-based feature selection technique. There-

fore, to select the best features, a multi-class classification

case of 15 faults is created, using HP, SB2, SB5, DB1,

DB5, IFSB0, IFSB2, IFSB5, IFDB1, IFDB5, PCSB0,

PCSB2, PCSB5, PCDB1, PCDB5 faults. These faults

represent each fault family (as mentioned in Sect. 2) at

intermediate severity (if applicable). The performance of

different features in the aforementioned fault classification

Data
collection

unit

Feature
vectors

extraction
from

power
spectrum

Train
data

Centrifugal Pump
with

accelerometers and
line current probes

Test
data

Is the cross-
validation

over?
MSVM

n fold cross
validation

Best
MSVM

parameters

Trained and
optimized
final SVC

Fault
classification

result

NO

YES

Generating MSVM training
model

Fig. 8 Flowchart of the classification methodology
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at 30 Hz operating speed is shown in Fig. 11. From

Fig. 11, it can be seen that l, r, 1/r, l3, RMS and x give a

prediction performance of more than 85%. The combina-

tions of these good performing features are then taken in

triplets, and it is found that combination of l, r and 1/r
gives the best classification of 99.2%. Upon including an

additional feature to this set of features (l, r and 1/r) also
there is no improvement in the classification performance.

This means that the combination of l, r and 1/r features is

able to precisely distinguish each fault type. Henceforth, a

combination of these three features (l, r and 1/r) would be

used for all the multi-fault classification cases. This feature

selection has been done on the data acquired at the high-

frequency resolution. However, to check the effect of data

sampling resolution on the performance of the classifier,

the same aforementioned faults along with the finalized

features are used for the comparison of performance of

classifier using data sampled at both low- and high-fre-

quency resolutions. The results of classification are given

in Fig. 12. It can be clearly seen that the classification

accuracy has improved significantly (by 8%) by using data

from the high-frequency-resolution sampling. This may be

attributed to the finer details captured by high-resolution

data and thus better adaptation of the statistical features.

Furthermore, owing to the better performance of the

higher-resolution sampling, in the rest of the paper this

would be used for various multi-fault classifications. It

would be interesting to observe the scatter plot of various

faults using these three features to understand their effec-

tiveness in segregating the faults. For this purpose, a scatter

plot of HP, SB2, SB5, DB1, IFSB0, IFSB2, PCSB0,

PCSB2 faults at 45 Hz is shown in Fig. 13. It can be

Fig. 9 Raw data from the accelerometers and the current probes of

HP, SB2, IFSB0, IFSB2, PCSB0, PCSB2, SB5 and DB5 faults. In the

accelerometer plots, magenta color represents radial transverse

direction, green color represents axial direction and blue color

represents vertical transverse direction, whereas cyan, red and black

are the three phases of motor line current

Table 5 Definition of various

statistical features extracted

from the frequency-domain data
l ¼ 1

N

PN

x¼0

xx lk ¼ 1
N

PN

x¼0

xx � lð Þk r ¼ ffiffiffiffiffi
l2

p
; 1r ¼ 1ffiffiffiffi

l2
p

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN

x¼0

xxj j2
s

SS ¼
PN

x¼0

xxj j2 ¼ RSS2
w ¼ RMS

l

I ¼ max xxj j
l P ¼ max xxj j

RMS
¼

ffiffiffiffiffiffiffi
PA

p

T ¼ max xxj j

1
N

PN

x¼0

xxj j1=2

 �2
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observed from the figure that all the faults are very well

segregated in separate clusters. There is a slight overlap of

features from HP, SB2, PCSB0 and PCSB2. This may be

because of the closeness of severity levels of these faults.

Fig. 10 Feature values of r (above) and 1/r (below) for each dataset of HP at 30 Hz
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Fig. 11 Average classification

performance of various features

to segregate HP, SB2, SB5,

DB1, DB5, IFSB0, IFSB2,

IFSB5, IFDB1, IFDB5, PCSB0,

PCSB2, PCSB5, PCDB1 and

PCDB5 faults
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Fig. 12 Performance

comparison of classifier using

data sampled at high-frequency

resolution and low-frequency

resolution to segregate HP, SB2,

SB5, DB1, DB5, IFSB0, IFSB2,

IFSB5, IFDB1, IFDB5, PCSB0,

PCSB2, PCSB5, PCDB1 and

PCDB5 faults
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4.1 Data required for training and testing

An estimate of the amount of data sufficient to train an

MSVM model is critical. If a lot of data is used for training

and less of it is used for testing, it leads to an ‘over-fit’

condition. If too few data are used for training and huge

data are used for testing, it leads to an ‘under-fit’ condition.

Hence, good number of samples needs to be taken each for

the training and the testing of the MSVM algorithm. In the

present investigation, the training/testing data ratios of—

80/20, 70/30, 60/40, 50/50, 40/60, 30/70, 20/80—are taken.

Here again, the fault classification of HP, SB2, SB5, DB1,

DB5, IFSB0, IFSB2, IFSB5, IFDB1, IFDB5, PCSB0,

PCSB2, PCSB5, PCDB1, PCDB5 faults is attempted at

30 Hz speed. It should be noted that the same number of

samples is divided into different ratios in each case. l, r
and 1/r have been taken as a feature to perform the clas-

sification. The results are shown in Fig. 14. It can be seen

from the figure that, as expected, there is a decrease in the

fault classification performance with the decrease in the

number of training samples. In addition, the performance

of the classifier stabilizes at 60/40 and 50/50 sample ratios.

Further, a decrease in training datasets is decreasing the

classifier’s performance drastically. Also, if very less test

samples are taken, the generalization of the algorithm

decreases. Hence, for better generalization a 50/50 train

test sample ratio is chosen for further analysis in this paper.

5 Frequency-domain prediction
performance: results and discussion

In this section, results of the multi-class classification of

various faults are presented. First different categories of

fault classifications are given. Later, the significance of the

considered fault classification category is illustrated and

their results of classification are presented.

5.1 Fault classification cases and results

The multi-fault classifications attempted in this paper are:

(a) pure CP blockage fault (BF) family; (b) CP impeller

defect with blockage faults (IFBF) family, constituting

IFSB0, IFSB1, IFSB2, IFSB3, IFSB4, IFDB1, IFDB2,

IFDB3, IFDB4 and IFDB5; (c) CP with pitted cover plate

and blockage faults (PCBF) family, constituting PCSB0,

PCSB1, PCSB2, PCSB3, PCSB4, PCDB1, PCDB2,

PCDB3, PCDB4 and PCDB5; (d) dry-run fault family,

constituting SB5, IFSB5 and PCSB5 for different config-

urations of the CP; (e) all-fault (AF) classification case

considers HP, SB2, SB5, DB1, DB5, IFSB0, IFSB2,

IFSB5, IFDB1, IFDB5, PCSB0, PCSB2, PCSB5, PCDB1

Fig. 13 Scatter plot of HP, SB2, SB5, DB1, IFSB0, IFSB2, PCSB0, PCSB2 faults at 45 Hz using features l, r and 1/r
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Fig. 14 Performance comparison of classifier to segregate HP, SB2,
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and PCDB5 faults. Here, it is to be noted that AF case has

been considered for the feature selection as well.

(a) BF fault classification

Blockage faults primarily constitute the suction and

discharge blockages with varying severity levels. Both

these faults have very diverse causes of formation. In

addition, their existence results in discharge re-circulation

and suction re-circulation (as explained in Sect. 1) in the

CP. These faults are cumulative in nature and create cav-

itation-like damage on the CP.

In this case, an attempt is made to segregate BFs and

identify their severities. The accurate recognition of these

faults at their commencement will help take corrective

measures to stop their progression. In this classification, ten

faults are considered, four severities of suction blockages,

including SB1, SB2, SB3 and SB4, five severities of dis-

charge blockages, including DB1, DB2, DB3, DB4, DB5,

and a healthy CP condition, HP. All these blockages are

given on a healthy CP one at a time. The training and

testing of the algorithm are done at the same operating

speed of the CP. The results of this classification are pre-

sented in Table 6.

From the table, it can be seen that the average classifi-

cation accuracy at all the speeds is above 91%. The overall

classification accuracy is more than 96%. The best classi-

fication performance of 98.3% is found at 45 Hz speed. It

can also be observed that the average classification accu-

racy is improving with the speed up to a speed of 45 Hz,

after which there is no clear trend. This may be attributed

to the stabilization of faults at higher speeds even though

they are severe. The DB1 fault shows a perfect classifica-

tion at all the speeds. The classification results are

encouraging, and this algorithm seems effective in identi-

fying each blockage fault type and segregates the discharge

re-circulation and the suction re-circulation along with

their severities.

(b) IFBF fault classification

Impeller cracks are mechanical faults; they not only

create the CP unbalance but also disturb the fluid-flow

pattern causing a pseudo-flow re-circulation (as explained

in Sect. 2). They even act as stress-hot spots. If impeller

defect is present in combination with fluid-flow blockages,

it may result in an accelerated CP failure. In this classifi-

cation case, eleven faults are considered, including (1) the

impeller defect alone, (2) four levels of suction blockages

on the CP with impeller defects, (3) five levels of discharge

blockages on the CP with impeller defects and (4) the

healthy pump condition. The reason for considering the HP

condition is to check whether the algorithm is precisely

able to distinguish between the faulty and non-faulty

classes. It may be noted that the algorithm here is

attempting to classify healthy pump (HP), mechanical

faults (IFSB0 at low speeds), mechanical faults and

pseudo-flow re-circulation (IFSB0, at higher speeds of CP

operation), mechanical faults, pseudo-flow re-circulation

combined with discharge re-circulation (IFSB1, IFSB2,

IFSB3 and IFSB4), mechanical faults, pseudo-flow re-cir-

culation combined with suction re-circulation (IFDB1,

IFDB2, IFDB3, IFDB4 and IFDB5).

The fault training and testing are done at the same

operating speed of the CP. The results of the classification

are presented in Table 7. It can be seen from the results that

the average classification accuracy at all speeds is above

92%. The overall classification accuracy is found to be

97.1%. The best classification performance of 99.6% is

found at 60 Hz of CP speed. HP shows a perfect classifi-

cation at all the speeds. IFSB0, IFSB2 and IFSB3 faults

also show near-perfect classifications. It can also be

observed that there is no clear trend in the fault classifi-

cation performance, meaning that the algorithm is inde-

pendent of the operating speeds of the CP. The complex

fluid structure interactions may be the reason for some

Table 6 BF fault classification performance

Train

Speed

(Hz)

Test

speed

(Hz)

Fault classification accuracy CV

accuracy

Avg.

accuracy

log3 C log3 c

HP SB1 SB2 SB3 SB4 DB1 DB2 DB3 DB4 DB5

30 30 92.7 90.2 100 92.7 100 100 100 95.1 60.9 80.5 92.1 91.2 11 - 11

35 35 100 95.1 100 100 92.7 100 97.6 95.1 82.9 78 92.4 94.1 15.25 - 12.5

40 40 97.6 100 100 100 97.6 100 100 95.1 87.8 100 98.3 97.8 8 - 7.75

45 45 95.1 100 100 97.6 100 100 100 100 97.6 92.7 99.3 98.3 14 - 14

50 50 97.6 95.1 97.6 100 100 100 100 95.1 92.7 95.1 98.6 97.3 16.5 - 10.75

55 55 85.4 100 97.6 87.8 95.1 100 100 100 97.6 92.7 97.4 95.6 11 - 10

60 60 97.6 100 100 100 100 100 90.2 100 100 92.7 100 98 16.5 - 7

65 65 100 97.6 100 100 97.6 100 100 100 82.9 80.5 98.3 95.9 16.5 - 12
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faults not being able to achieve a 100% fault classification.

However, the methodology seems to be very effective in

identifying different flow instabilities and mechanical

impeller faults.

(c) PCBF fault classification

Defects on the cover plate may result in turbulence

inside the CP leading to a decrease in the pump perfor-

mance. In addition, a combination of the pitted cover plate

fault with blockage faults may lead to enhancement of the

flow turbulence in the CP. In this case, the suction and

discharge blockages are given individually on the CP with

pitted cover plate faults. These faults are classified with

respect to the HP condition and the PCSB0 condition. Like

in the previous case of fault classification, in this analysis

also mechanical faults and mechanical faults coupled with

different types of re-circulation faults are classified. The

training and the testing of the algorithm are done at the

same operating speed of the CP. The results of the classi-

fication are presented in Table 8. From the table, it can be

observed that at all speeds the classification accuracy is

above 89.6%. In addition, the overall classification accu-

racy at all the speeds is found to be 93.9%. The highest

classification of 98.7% is found at the CP operating speed

of 55 Hz. The SB and PCSB4 faults give perfect classifi-

cation at all the operating speeds. There is no clear trend of

the fault classification, and hence, it can be said that the

developed algorithm is versatile at all the operating speeds

of the CP. The methodology is working desirably in clas-

sifying the mechanical faults as well as flow instabilities.

(d) Dry-run fault classification

In most CPs, priming is very essential. Non-priming of

CP leads to a heat generation, which may result in bearing

and seal failures. Hence, the dry run needs to be identified

instantly. In this case, four faults are classified including

dry run of a healthy CP (SB5), dry run of a CP with

impeller defects (IFSB5), dry run of CP with pitted cover

plate faults (PCSB5) and a healthy pump condition (HP).

The results of the classification are presented in Table 9. It

can be observed from the table that the classification

accuracy at all the speeds is above 99.4%. The overall

classification accuracy for all the speeds is 99.9%. There is

a perfect segregation of faults at speeds of 30, 40, 45, 55,

60 and 65 Hz. The IFSB5 and PCSB5 faults are perfectly

classified at all operating speeds. There is no relation

between the classification performance and the CP oper-

ating speed. Hence, the algorithm can be considered robust

and can be used to readily identify the dry-run conditions.

(e) All-fault classification

All the classification cases presented so far considered

segregation of faults within their specific family/group.

Those cases would be applicable in places where CPs

repeatedly fail due to a particular identified cause and it is

important to recognize the fault severity. However, there

may be cases where the causes of failure may be multiple

and faults may exist simultaneously. In such cases, the

present classification would be useful. In this classification

case, fifteen faults, viz. no blockage, SB2, dry runs, DB1

and DB5, for all the three CP configurations along with HP

condition are considered.

The algorithm is trained and tested at the same operating

speed of the CP. Results of this classification are presented

in Table 10. It can be seen from the table that the classi-

fication accuracy is above 96.9% at all the speeds. The

overall classification accuracy at all the speeds is found to

be 99.1%. DB1, DB5, IFSB2, IFSB5, PCSB0 and PCSB5

faults give a perfect classification at all the speeds. At

speeds of 40 and 60 Hz, there is a 100% fault classification.

There seems to be no correlation between the classification

accuracy and the operating speed. It is interesting to note

that this classification aims at identifying the pure

mechanical faults, discharge re-circulation faults, suction

Table 9 Dry-run fault classification performance

Train speed (Hz) Test speed Fault classification accuracy CV accuracy Avg. accuracy log3 C log3 c

HP SB5 IFSB5 PCSB5

30 30 100 100 100 100 100 100 16.5 - 6.75

35 35 97.6 100 100 100 100 99.4 16.5 - 4.25

40 40 100 100 100 100 100 100 16.5 - 4.5

45 45 100 100 100 100 100 100 16.5 - 5.75

50 50 97.6 100 100 100 100 99.4 16.5 - 5

55 55 100 100 100 100 100 100 16.5 - 5

60 60 100 100 100 100 100 100 16.5 - 3.5

65 65 100 100 100 100 100 100 16.5 - 5.25
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re-circulation faults, pseudo-re-circulation faults and

mechanical faults combined with different aforementioned

re-circulations at varied operating conditions of the CP.

The performance of the methodology is very impressive.

Further, as a separate study the faults of this case are

attempted to be classified at intermediate speeds, i.e., the

algorithm is trained at two distinct speeds and tested at an

intermediate speed. This is important in cases where the

fault training data are not available at the present operating

speed of the CP. For this, the algorithm is trained at 30–40,

40–50 and 50–60 Hz speeds, tested at 35, 45 and 55 Hz,

respectively. The results of the classification are presented

in Table 11. It can be seen from the table that the overall

test classification accuracy is 83.2%. Clearly, the classifi-

cation performance has decreased in comparison with the

same speed training and testing condition. DB1, IFS2 and

IFS5 faults are classified perfectly at intermediate speeds.

At higher speeds, fault signatures get very distinct, and

hence, the classification performance at higher intermedi-

ate speeds is decreasing. However, the results are promis-

ing, and the developed algorithm may be used for the fault

identification at intermediate speeds.

5.2 Results summary

5.2.1 The summary of the results is tabulated in Table 12

To evaluate the competence of proposed methodology,

results of the present work have been compared with other

published literature. The comparison is tabulated in

Table 13. The basis of comparison is sampling rate, signal

domain, statistical features extracted, classifier used and its

efficiency. From the present work, it is proven that the

diagnosis of any possible independent or coexisting faults

can be done using the present methodology with a high

prediction rate. Also, the fault severity level may be esti-

mated accurately. The prediction performance suggests that

the established methodology can be applied to industrial

problems.

6 Conclusions

A flexible algorithm has been proposed to classify the fault

condition of the centrifugal pump based on multi-class

support vector machine with hyperparameters optimiza-

tion. The scope of this study is to find the best-suited

features for the classification of thirty-three faults on the

CP, including the suction and discharge blockage faults,

impeller faults, pitted cover plate faults and dry-run faults.

In this study, the interdependence of mechanical and

hydraulic faults is considered. The hydraulic faults are

considered at varying severities. A combination of cen-

trifugal pump vibration data and the motor line-current data

was used for the online monitoring of the pump condition.

The wrapper model is used for the suitable statistical fea-

ture selection. The selected combined features of l, r and

1/r are showing encouraging fault classification perfor-

mance. Signature of every fault seeded on the CP was

collected at two sampling rates of 20,000 S/s with 2000

S/dataset and 5000 S/s with 5000 S/dataset. Data sampled

at high resolution (5000 S/s with 5000 S/dataset) gave

better performance for fault classification, as it could

capture the characteristic frequencies of the fault with

better efficiency. However, if a higher resolution of data

sampling is attempted to be used, then it must be kept in

mind that both the sampling time and amount of storage

space required for the data would increase substantially.

Hence, 5000 S/s with 5000 samples per dataset seems to be

enough for CP fault diagnosis. To check the robustness of

the developed technique, the methodology is tested at eight

different operating speeds of the CP. The developed

algorithm could classify all the different types of flow

instabilities, mechanical faults and the combination of both

of these with very high precession at all the speeds. The

reported classification performance of this study is much

higher than that of the previous works done on combined

mechanical and flow-induced fault diagnosis of CPs,

making this methodology suitable for industrial applica-

tions. As a future work, an extensive study on the effect of

Table 12 Classification performance summary

Fault

family

Train/test

speed

Max. avg. accuracy/speed

(Hz)

Min. avg. accuracy/

speed (Hz)

Overall

accuracy

Best classifiable fault(s)

BF Same 98.3/45 92.1/30 96 DB1

IF Same 99.6/60 95/50 97.1 HP, IFSB0, IFSB1, IFSB2, IFSB3

PC Same 98.9/55 89.6/60 93.9 HP, PCSB4, PCSB5

Dry run Same 100/30, 40, 45, 55, 65 99.4/35, 50 99.9 SB5, IFSB5, PCSB5

AF Same 100/40,60 96.9/50 99.1 DB1, DB5, IFSB2, IFSB5, IFDB5,

PCSB0, PCSB5

AF Intermediate 91/(30-40), 35 72.5/50, 60 83.2 DB1, IFSB2, IFSB2
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Table 13 Comparison of latest developments on CP fault diagnosis

Paper/

year

Sampling

rate

Types of faults Domain

used

Features considered Classifiers/best

prediction

accuracy

Remarks

Rapur and
Tiwari
[5]

20 kHz Suction blockages and impeller
defects

Time-
domain

Mean, peak to peak, skewness,
kurtosis, standard deviation
and entropy

SVM/99% (high
blockage
level)

1. Vibration
signals used

2. Low suction
blockage
levels show
low
classification
accuracies

Sakthivel
et al. [8]

24 kHz Bearing faults, seal defects,
impeller defects, bearing and
impeller fault together and
cavitation

Time-
domain

Mean, standard error, median,
standard deviation, sample
variance, kurtosis, skewness,
range, minimum, maximum
and sum

Decision tree
and rough set
fuzzy/99.3%
(decision tree
fuzzy)

1. Vibration
signals used

2. Algorithm
tested at only
one operating
speed of the
CP

Sakthivel
et al. [9]

24 kHz Bearing faults, seal defects,
impeller defects, bearing and
impeller fault together and
cavitation

Time-
domain

Mean, standard error, median,
standard deviation, sample
variance, kurtosis, skewness,
range, minimum, maximum
and sum

Decision tree/
100%

1. Vibration
signals used

2. Algorithm
tested at only
one operating
speed of the
CP

Wang
[11]

10.24 kHz Bearing roller wearing, bearing
inner race wearing, bearing
outer race wearing, and
centrifugal pump impeller
wearing

Time-
domain

Sample entropy CEEMD-
SampEn and
Random
forests/97%

1. Vibration
signals used

2. Algorithm
tested at only
one operating
speed of the
CP

Bordoloi
and
Tiwari
[12]

20 kHz Suction blockages with varying
severity

Time-
domain

Standard deviation, skewness,
kurtosis

SVM with GA,
ABCA, GSM
optimization/
94.7% (t–
SVM with
ABCA)

1. Vibration
signals used

2. Classification
accuracy of
low suction
blockages is
10%

Alfayez
et al.
[14]

10 Hz Incipient cavitation Time
domain

N/A N/A Identified
incipient
cavitation
using acoustic
emission

Perovic
et al.
[15]

N/A Cavitation, blockage, impeller
defects with blockage,
impeller defects with
cavitation

Frequency
domain

Slip, current amplitude and
accumulative noise

Fuzzy system/
83.7%

Motor current
spectra was
used

Rapur and
Tiwari
(current
study)

20 kHz
and
5 kHz

Suction blockage (with varying
severity), Discharge blockage
(with varying severity),
impeller defects, impeller
defects together with suction
blockages, impeller defects
together with discharge
blockages, pitted cover plate
faults, pitted cover plate
together with suction
blockages, pitted cover plate
together with discharge
blockages, dry run

Frequency
domain

Mean, variance, skewness,
kurtosis, 5th moment, 6th
moment, 7th moment,
standard deviation, reciprocal
of standard deviation, root
mean square, Variance, root
sum of squares, sum of
squares, shape factor,
impulsion index, crest factor,
tolerance index, power to
average

SVM/100% 1. Vibration
signals and
motor line
current used

2. Combined
mechanical
and hydraulic
faults
considered
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choice of various kernel functions on the fault classification

accuracies obtained may be studied. Since the fault sig-

natures are usually non-stationary in nature, as a future

direction time–frequency analysis using wavelet packets

can be adapted for fault classification to improve the per-

formance of the classifier.
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