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Abstract
Obtaining high surface quality with minimum tool wear values is one of the most important goals of turning process.

Moreover, when it comes to process costs, the volume of material removed is very important and should be considered

when optimizing cutting variables. In this work, gray relational analysis was employed with the aim of simultaneously

optimizing surface roughness, tool wear and volume of material removed. Cutting speed, feed rate and depth of cut were

chosen as process control factors. Optimization results showed that cutting speed of 80 m/min, feed rate of 0.1 mm/rev and

depth of cut of 1.5 mm were the optimum set of cutting parameters. Scanning electron microscope images of worn cutting

edges revealed that depth-of-cut notch, built-up edge, and adhesion are dominant wear mechanisms. Finally, confirmation

test proved the accuracy of the prediction carried out by the optimization process.

Keywords Iron-nickel-base superalloy � Turning � Gray relational analysis � Tool wear mechanism � Surface roughness �
Volume of material removed

1 Introduction

Machining process which consists of removing of material

and modification of part surface is a part of main manu-

facturing processes including casting, metal forming,

powder metallurgy and joining processes. Parts manufac-

tured by latter processes often need machining operations

before using them. In other words, machining processes are

often considered as secondary or finishing operations [1].

Turning process using single-point cutting tool is the most

common used metal cutting operation [2]. A workpiece

being machined by turning process is influenced by various

force and temperature stresses, which, in turn, affect the

final surface properties of the product. Achieving high

accuracy and acceptable surface integrity including surface

roughness, hardness, residual stresses, etc. during turning

process is of primary importance. Surface integrity has

significant effects on performance characteristics of the

final product such as fatigue strength and creep [3]. Surface

roughness is the most widely used surface integrity char-

acteristic [4].

The effects of cutting parameters on surface roughness

have been investigated by several researches. Meddour

et al. [5] showed that the best surface roughness (Ra) was

obtained using small feed rate and large nose radius.

Arunachalam et al. [6] investigated the effects of cutting

parameters on surface roughness and residual stress in

machining of Inconel 718 nickel-base superalloy.

According to their results, machining at low cutting speed

and small depth of cut would lead to compressive or

minimal tensile residual stresses and good surface finish.

Zhou et al. [7] reported the effect of cutting parameters,

tool wear and coolant condition on damage to the machined

surface in finish turning of Inconel 718 with whisker-re-

inforced ceramic cutting tools. It was observed that the

Technical Editor: Márcio Bacci da Silva.

& Behnam Davoodi

bdavoodi@iust.ac.ir

Behzad Eskandari

beskandari89@ms.tabrizu.ac.ir

Hamid Ghorbani

hamid.ghorbani@polymtl.ca

1 Department of Manufacturing Engineering, Faculty of

Mechanical Engineering, University of Tabriz, Tabriz, Iran

2 School of Mechanical Engineering, Iran University of

Science and Technology, Tehran, Iran

3 Department of Mechanical Engineering, École Polytechnique
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type and extent of the surface damage were dependent

upon the cutting parameters, the size of the wear land and

the coolant conditions. Fernández-Valdivielso et al. [9]

defined an inverse methodology to determine the best

cutting tool features turning of Inconel 718 so as to reach

the optimum surface integrity. Some scholars, on the other

hand, have used soft computing to optimize surface

roughness parameters. Sangwan et al. [8] used integrated

ANN-GA approach to determine optimum cutting param-

eters to obtain the best surface roughness.

Cutting tools are subjected to force and temperature

stresses which lead to tool wear. Various parameters affect

tool wear rate and wear mechanisms such as cutting fluid

[10], cutting speed and feed rate [11], as well as cutting

material and geometry [12]. Furthermore, tool wear

increases cutting forces [13] and as a result, worsens sur-

face quality [14]. Seeman et al. [15] studied surface

roughness and flank wear in turning of a kind of hard-to-

machine composite material. In their research, it is shown

that the formation of Built-up edge significantly affects the

surface roughness at low speeds. Wear behavior of the

cutting tool in cryogenic cooling was investigated by Wang

et al. [16] in machining of GH4169 nickel-based superal-

loy. It was found that using liquid nitrogen as the cutting

coolant, tool wear decreases at low and medium cutting

speeds. Moreover, tool service life improves four times as

better as that of the conventional machining.

Various methods have been used to optimize cutting

parameters for improving tool life and achieving better

surface quality such as Taguchi method. Zou et al. [17]

used Taguchi L9 orthogonal array to find optimum

parameters of cutting speed and feed rate in turning of two

kinds of stainless steel to improve surface roughness with

the least tool wear. They showed that cutting speed was the

most significant parameter on both materials. In addition,

crater on the rake face and chipping were the dominant

wear mechanisms. In the same way, Hasçalık and Çaydaş

[18] used this method to optimize tool life and surface

roughness. In this study, two separate optimum parameters

were found for the response parameters. Another com-

monly used optimization method is response surface

method (RSM). Dureja et al. [19] found optimal cutting

parameters such as cutting speed, feed rate, depth of cut

and material hardness to achieve minimum flank wear and

surface roughness using RSM. Camposeco-Negrete [20]

conducted a multi-objective optimization in which energy

consumption and surface roughness were minimized, and

material removal rate was maximized using RSM.

Gray relational analysis (GRA) is one of the effective

approaches for the consideration of two or more response

variables at the same time. This method was first proposed

by Deng [21] and is widely used to estimate the behavior of

an unknown system in which a multi-response problem is

converted to a single-response one. By optimization of the

new single-objective problem, the optimal combination of

response parameters can be found. Previous researches

have shown the effectiveness of this method for multi-

objective optimizations. Pawade and Joshi [22] performed

multi-objective optimization of surface roughness and

cutting force components using Taguchi gray relational

analysis (TGRA) in the high-speed turning of Inconel 718.

It was confirmed that surface roughness was significantly

improved at predicted optimum parameters. Angappan

et al. [23] used Gray Taguchi-based analysis to optimize

the machining parameters in turning of Incoloy superalloy

without using cutting fluids. They showed that the combi-

national parameters (surface roughness, cutting force, and

cutting power) were improved by 48.98%. According to the

research conducted by Varghese et al. [24], a 77%

improvement in GRG parameter was found when using

Gray relational analysis method in the optimization of

combination of cutting parameters in dry turning of

11SMn30 free cutting steel.

It is true that producing good surface roughness is

desirable; however, it should be economically justifiable.

In other words, to have better surface quality, the range of

tool wear criteria should be limited so as to have less worn

tool edges involved in the cutting process. Therefore, it

would be better to have a trade-off between surface

roughness, tool wear and volume of material removed per

unit time.

In this work, gray relational analysis has been used for

simultaneous consideration of tool wear, surface roughness

and volume of material removed in turning of N-155 iron-

nickel-based superalloy. Superalloys are classified as dif-

ficult-to-machine materials because they retain strength at

high temperatures, contain hard carbides in their

microstructures which make them abrasive, have high

dynamic shear strength and work harden during metal

cutting [25]. These properties exacerbate the difficulties

concerning surface quality and tool wear which mentioned

earlier. Iron-nickel-based superalloys possessing lower cost

compared to other kinds of superalloys, namely nickel- and

cobalt-based superalloys, are tough and ductile which suit

them to be utilized in applications where these attributes

are required, such as turbine discs and forged rotors. N-155

(multimet) is an iron-nickel-based superalloy which is only

used in wrought condition [25] in gas turbines engine parts

such as combustors, transition ducts, after-burners, as well

as furnace hardware and industrial fans. Moreover, it is

noteworthy that this material can be used in working

temperatures up to 820 and 1090 �C for high and moderate

stress applications, respectively.
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2 Experimental procedure

Turning experiments were carried out on an Emcoturn 242

TC CNC lathe machine with the following specifications:

maximum power 13 kW, spindle speed range

50–4500 rpm, feed range 0–4000 mm/min, Emcotronic

TM 02 microprocessor-2-axis-Path control. PVD TiAlN-

coated carbide inserts from Sandvik Company were used as

the cutting tool material. The inserts ISO designation is

CNMG 120404, and the grade of the coated carbide is

designated by GC1105. Correspondingly, the inserts were

mounted on a left-hand style tool holder coded PCBNL

2020M12. Average values of flank wear VBa were mea-

sured after the 90s cutting time using a toolmakers

microscope fitted with a digital camera and image analysis

software. The procedure of selection of inserts and tool

holder geometry and measurement of tool wear as well as

the ranges of cutting parameters was done according to ISO

3685:1993 [26] and the manufacturer’s handbook.

N-155 iron-nickel-base superalloy of 250 mm length

and 34 mm diameter was used as the workpiece material.

The chemical composition of the workpiece material is

given in Table 1. The material was solution treated to a

surface hardness around 32 HRc. Each machining

experiment was carried out using a new cutting tool edge

for 90s cutting time and under dry cutting condition.

After each experiment, values of surface roughness,

cutting tool wear, and volume of material removed were

recorded.

Surface roughness parameter, Ra, which is arithmetic

average of absolute roughness determined from deviations

about the center line within the evaluation length [27], was

considered as the surface roughness criteria of the turned

surface. Surface roughness was measured by Mahr-

perthometer M1 within the sampling length of 5.6 mm.

The measurements of the surface roughness were repeated

four times, and subsequently, Ra values were determined

by averaging these values.

3 Multi-objective optimization using gray
relational analysis (GRA)

Experiments were conducted according to Taguchi L9

experimental design. Cutting speed (V), feed rate (f) and

depth of cut (d) were selected as cutting parameters. With

three control factors each in three levels (Table 2),

according to Taguchi L9 orthogonal array, there should be

9 experimental tests. Table 3 shows experimental design

arrangement and the values of response variables, i.e.

surface roughness (Ra), tool flank wear (VBa) and volume

of material removed (VMR). As mentioned earlier, in this

study gray relational analysis (GRA) was used to determine

optimum cutting parameters to achieve optimum response

values. Gray relational analysis is utilized according to the

following steps:

3.1 Step 1: data normalization

The first step in GRA is normalizing the experimental data

between 0 and 1 for each response parameter to avoid the

effect of adopting different units and reduce the variability.

In this step, which is also called gray relational generating,

three types of quality characteristics can be used; the-lar-

ger-the-better, the-nominal-the-better, the-smaller-the-bet-

ter [21] (Eqs. 1–3). Depending on whether the response

variable was to be minimized or maximized, one of the

following quality characteristics was used for each

response:

x�i ðkÞ ¼
x0i ðkÞ �minx0i ðkÞ

maxx0i ðkÞ �minx0i ðkÞ
; the-larger-the-better ð1Þ

x�i kð Þ ¼ 1�
x0i kð Þ � OB
�
�

�
�

max max x0i kð Þ � OB;OB�minx0i kð Þð Þ½ � ;

the-nominal-the-better

ð2Þ

x�i kð Þ ¼ maxx0i kð Þ � x0i kð Þ
maxx0i kð Þ �minx0i kð Þ ; the-smaller-the-better ð3Þ

where x�i ðkÞ is the normalized value for x0i ðkÞ which is the

kth dependent response of ith trial, OB is the target value

and maxx0i kð Þ and minx0i kð Þ are largest and smallest values

of x0i ðkÞ for the kth response, respectively. Since higher

amounts of volume of material removed were desirable,

the-larger-the-better quality characteristic (Eq. 1) was used

for VMR. On the other hand, our goal was to obtain

minimum values of surface roughness and flank wear;

Table 1 Chemical composition

of workpiece material
Chemical composition Fe Cr Ni Co Mo W Nb Mn N C Zr

%wt Balance 21.9 20.3 19.7 3 2.5 1 1.2 0.15 0.15 0.02

Table 2 Experimental control factors and their levels

Control factors Symbol Level 1 Level 2 Level 3

Cutting speed (m/min) V 80 100 120

Feed (mm/rev) f 0.1 0.15 0.2

Depth of cut (mm) d 0.5 1 1.5
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hence, the-smaller-the-better quality characteristic (Eq. 3)

was employed for these responses. Table 4 shows the

normalized data after the application of respective equa-

tions. Basically, higher value of normalized experimental

data indicates better performance and the best one should

be equal to 1.

3.2 Step 2: calculation of gray relational
coefficient (GRC)

After normalizing the experimental results, gray relational

coefficients (GRC) were calculated using Eqs. (4) and (5):

ci kð Þ ¼ Dmin þ f � Dmax

D0iðkÞ þ f � Dmax

ð4Þ

D0i kð Þ ¼ kx�0ðkÞ � x�i ðkÞk ð5Þ

where ci kð Þ is GRC and f is the distinguishing coefficient

varying from 0 to 1 which is generally determined as 0.5

[28]. D0iðkÞ is the absolute value of the difference between
reference sequence, x�0ðkÞ ¼ 1, and comparability

sequence, x�i ðkÞ (Eq. 5). Dmin and Dmax are the smallest and

the largest values of difference between x�0ðkÞ and x�i ðkÞ
which are given by:

Dmin ¼ min
8j2i

kmin
8k

x�0ðkÞ � x�i ðkÞk ð6Þ

Dmax ¼ max
8j2i

kmax
8k

x�0ðkÞ � x�i ðkÞk ð7Þ

Gray relational coefficients denote the relationship

between the ideal and the actual experimental results. The

calculated values of GRCs are shown in Table 5.

3.3 Step 3: calculation of weighted gray
relational grade (WGRG)

Gray relational grade (GRG) is calculated by averaging the

gray relational coefficient values of each performance

characteristic, and it is defined as:

ci ¼
1

m

Xm

k¼1

ciðkÞ ð8Þ

where ci is GRG for ith experiment and m is the number of

response variables. Influence of each response parameter

can be established through assigning weight factors for

each one. Weighted gray relational grades (WGRG) are

computed as follows:

Table 3 Experimental design

arrangement using L9 Taguchi

and the results

Experiment number V (m/min) f (mm/rev) d (mm) Ra (lm) VBa (mm) VMR (mm3)

1 80 0.1 0.5 0.91 0.1 6091

2 80 0.15 1 1.65 0.13 18,562

3 80 0.2 1.5 2.03 0.23 37,748

4 100 0.1 1 0.84 0.14 15,468

5 100 0.15 1.5 1.65 0.17 35,383

6 100 0.2 0.5 1.83 0.3 15,226

7 120 0.1 1.5 1.26 0.2 29,070

8 120 0.15 0.5 1.57 0.17 13,704

9 120 0.2 1 3.14 0.33 37,124

Table 4 Normalized values

Trial no. Ra (lm) VBa (mm) VMR (mm3)

1 0.96956522 1 0

2 0.64782609 0.86956522 0.39394131

3 0.4826087 0.43478261 1

4 1 0.82608696 0.29620621

5 0.64782609 0.69565217 0.92529298

6 0.56956522 0.13043478 0.28856177

7 0.8173913 0.56521739 0.72587421

8 0.6826087 0.69565217 0.24048394

9 0 0 0.98028872

Table 5 Calculated values of GRC

Trial no. Ra (lm) VBa (mm) VMR (mm3)

1 0.942623 1 0.333333

2 0.586735 0.793103 0.452056

3 0.491453 0.469388 1

4 1 0.741935 0.415354

5 0.586735 0.621622 0.870009

6 0.537383 0.365079 0.412733

7 0.732484 0.534884 0.64589

8 0.611702 0.621622 0.396978

9 0.333333 0.333333 0.962073
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cwi ¼
1

m

Xm

k¼1

wkci kð Þ ð9Þ

where cwi is WGRG and wk is weight factor for each

response variable sum of which is equal to 1.

Assigning appropriate weight factor values for each

response has great significance. In many researches, equal

weight is used to determine the WGRGs [29], whereas

some other researchers have selected different values for

each response to increase or decrease the influence of each

one on the optimal results [30]. As Yan and Li [31]

explained these methods are not reasonable approach

regarding determining appropriate weight factors. In this

study, the influence degree of input parameters’ variations

on each response is proposed to establish response weight

factors. In other words, weight factors have been consid-

ered to be dependent on the influence rate of cutting con-

ditions’ variations on response parameters. Therefore, the

weight factor of responses were large when the cutting

parameters’ variations have the high influence on each

response and vice versa.

To do so, first mean values of GRC and then the vari-

ations’ range of it (max–min) were calculated for each

level of each response parameter. The GRC range is

determined as:

Ri;j ¼ max Ki;j;1;Ki;j;2; � � �Ki;j;k

� �

�min Ki;j;1;Ki;j;2; � � �Ki;j;k

� �

;
i ¼ 1; 2. . .m
j ¼ 1; 2. . .p
k ¼ 1; 2. . .l

8

<

:

9

=

;

ð10Þ

where R is the GRC range and m, p and l are the number of

responses, number of cutting parameters and number of

experimental levels, respectively. In this study, values of p,

m, and l are 3. In addition, K is the average GRC for each

cutting parameter’s level at each response. The larger

amount of R indicates that the influence degree of input

parameters’ change on each response is larger. Thus, the

weight factor for each response (w) is determined as

follows:

wi ¼
Pp

j¼1 Ri;j
Pm

i¼1

Pp
j¼1 Ri;j

ð11Þ

In Table 6 mean values of GRC for each level of

response parameters are summarized. In the fourth row of

this table the values of Ri;j for ith response and jth cutting

parameter is depicted. The next row shows the sum of the

GRC range for each response (
P3

j¼1 Ri;j). By dividing this

value by sum of the GRC range values of three responses

(
P3

i¼1

P3
j¼1 Ri;j), weight factor value for each response is

determined (last low). According to the results, for each

experiment WGRG values are expressed as:

WGRG ¼ 0:28GRCRa þ 0:33GRCVB þ 0:39GRCVMR

ð12Þ

where GRCRa, GRCVB and GRCVMR are GRC values of

surface roughness, tool wear and volume of material

removed, respectively. The calculated WGRC values of

responses are given in Table 7 in the descending order.

Thus, experiment number 1 is the best combination of

cutting parameters in terms of WGRG.

3.4 Step 4: optimization of response parameters

Through the steps of 1–3, three response parameters,

namely surface roughness, flank wear and volume of

material removed were converted to a single-response

Table 6 Mean values of GRC
Ra (lm) VBa (mm) VMR (mm3)

Feed Vc Doc Feed Vc Doc Feed Vc Doc

Level 1 0.891 0.673 0.697 0.758 0.754 0.662 0.464 0.595 0.381

Level 2 0.595 0.708 0.64 0.678 0.576 0.622 0.573 0.566 0.609

Level 3 0.454 0.559 0.603 0.389 0.496 0.541 0.791 0.668 0.838

Range (max–min) 0.437 0.114 0.093 0.369 0.257 0.120 0.326 0.102 0.457

RRange 0.645 0.747 0.886

Weight 0.285 0.33 0.39

Table 7 The calculated WGRC

Experiment number WGRG Order

1 0.724 1

2 0.602 6

3 0.681 4

4 0.688 3

5 0.708 2

6 0.432 9

7 0.634 5

8 0.531 8

9 0.577 7
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factor, i.e. WGRG, which was considered as the only

response parameter for the rest of the analysis. By calcu-

lating the average values of WGRG corresponding to each

level of the parameters, the best level of cutting parameters

were identified, as are presented in Table 8 and Fig. 1.

According to the results, higher values of WGRG were

obtained at the first level of cutting speed, 80 m/min, the

first level of feed rate, 0.1 mm/rev, and third level of depth

of cut, 0.5 mm.

321

0.65

0.60

0.55
321

321

0.65

0.60

0.55

Cutting speed (m/min)

M
ea

n 
of

 M
ea

ns

Feedrate (mm/rev)

DOC (mm)

Fig. 1 Weighted gray relational

grade (WGRG) graph

Table 8 Average WGRG for

each input parameters
Cutting parameters Average WGRG Max–min Rank

Level 1 Level 2 Level 3

Cutting speed (m/min) 0.669 0.609 0.581 0.088 3

Feed rate (mm/rev) 0.682 0.613 0.564 0.118 1

Depth of cut (mm) 0.562 0.622 0.674 0.112 2

The bold values are the optimum cutting parameters (green spots in the Fig. 1)

Table 9 ANOVA results for

WGRG
Factors Degree of freedom Sum of squares Mean squares F ratio a = 5% P value

Cutting speed 2 0.01221 0.00611 0.60 0.662

Feed rate 2 0.02109 0.01054 1.04 0.518

Depth of cut 2 0.01885 0.00942 0.93 0.598

Error 2 0.02037 0.01018

Total 8 0.07252

Table 10 Results of calculated

values of WGRGs for initial and

optimum parameters

Initial machining parameter Optimal machining parameter

Prediction Experiment

Level V3f3d2 V1f1d3 V1f1d3

Ra (lm) 3.14 0.89

VBa (mm) 0.33 0.10

VMR (mm3) 37,124 18,870

WGRG 0.577 0.786

Improvement in WGRG 0.209
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3.5 Step 5: analysis of variance (ANOVA)
for WGRG

To determine the significant parameters and the percentage

contribution of each parameter on responses, analysis of

variance (ANOVA) was carried out. Confidence level and

significance of ANOVA analysis is 95 and 5%, respec-

tively. Table 9 shows the results of ANOVA for the

weighted gray relational grade. F values indicates the

significance of control factors. According to this table, feed

rate and cutting speed with the F values of 1.04 and 0.6 are

the most and the least influential variables, respectively;

however, it is observed that none of the cutting parameters

are statistically significant.

3.6 Step 6: prediction of WGRG under optimum
parameters

Once the optimal combination of cutting parameters is

predicted, the next step in GRA is to predict and confirm

the improvement of multiple quality characteristics at the

optimal level of cutting parameters via performing the

confirmation test. The estimated optimum WGRG (copt) is
expressed as:

Fig. 2 SEM images of tool flank face at experimental set based on Table 3 a trial no. 1, b trial no. 2, c trial no. 3
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copt ¼ cm þ
Xn

i¼1

ci � cmð Þ ð13Þ

where cm is the total mean of the WGRG, ci is the mean

WGRG at optimal level, and n is the number of the main

design parameters which significantly affect the quality

characteristics. The results of the confirmation experiment

are presented in Table 10. As shown in the table, it is

observed that WGRG of confirmation test is improved by

0.209.

4 Cutting tool wear analysis

In view of the importance of cutting tool wear in relation to

the final surface quality and machining costs, in this section

tool wear mechanisms are elaborated. Figures 2, 3, 4 and 5

show the scanning electron microscope (SEM) images of

cutting tool flank wear at 80, 100 and 120 m/min cutting

speeds, respectively. According to Fig. 1, the first level of

cutting speed leads to the best overall results. As can be

seen in Fig. 2, at 80 m/min cutting speed, the width of

flank wear is low with slight depth-of-cut notch, and built-

up edge (BUE) formed at the cutting edge. Depth-of-cut

notch is resulted from intermittent cutting contact between

tool and workpiece material on the rake face which con-

tinues down to the flank face causing accelerated wear in

these regions. Abrasion and metal transfer are the most

important factors contributing to notching wear [2].

Detailed image of cutting edge of Fig. 2a shown in Fig. 3a

illustrates the presence of slight chipping and abrasion

wearing as well. Abrasion is the result of hard particles and

impurities existing within the workpiece material [32].

Another mechanism which dominates throughout this

research is adhesion. Formation of adhering layers on the

flank face of the cutting tool is attributed to bonding

between the newly generated surface of workpiece and tool

flank face. Two factors mostly contributing to promote

metallic bonding at tool/workpiece interface are considered

to be plastic deformation and the absence of contamination.

During turning process flow of material across the cutting

tool is unidirectional (Fig. 3b), as a result, contaminants

such as oxide films and lubricants are swept away resulting

in prepared condition for adhesion [2]. Adhering layers on

the flank face shown in Fig. 2a is illustrated in detail in

Fig. 3b. Quantitative data of energy-dispersive X-ray

spectroscopy (EDS) of this zone is presented in Table 11.

The values of atomic percentage of iron and nickel con-

firmed that workpiece material was attached to the tool

flank face and caused adhesion wear. These results of EDS

analysis were observed in almost all the wear zones of this

study.

Figure 4 shows the wear mechanisms occurred at

100 m/min cutting speed. Larger depth-of-cut notch and

built-up edge are observable. Built-up edge is accumulated

strain-hardened work material which alters tool edge

geometry [33]. By formation of BUE, shear plane, in which

intense shear strains occur during metal cutting, transfers

from tool edge to top of the BUE. Amount of adhered layer

attached to the tool flank face is also larger in comparison

to the one at 80 m/min cutting speed.

Fig. 3 Detailed image of a zone A, and b zone B, of Fig. 2a
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At 120 m/min cutting speed, there are large built-up

edge and depth-of-cut notch on the cutting tools (Fig. 5).

Moreover, in Fig. 5c a large amount of chipping can be

observed. One possible reason can be the constant forma-

tion of the built-up edge which is broken away resulting

from lack of rigidity of machine tool at high cutting speed

and feed rates [2], which consequently leads to the worst

surface roughness (Fig. 6).

According to Fig. 1 by increasing in feed rate, overall

quality characteristics deteriorate. Figures 2, 3, 4 and 5

confirm that increase in feed rate results in more wear rate

and larger wear mechanisms at constant cutting speed. This

can be explained that increase in feed rate results in more

heat generation during metal cutting due to higher thermal

loading and larger uncut chip thickness leading to

increased impressive cutting forces on the cutting insert

[34] and less tool life [35].

5 Conclusions

This research tried to investigate the optimization of one of

the most important alloys from different aspects involved

in turning process, i.e., workpiece, cutting tool and

Fig. 4 SEM images of tool flank face at experimental set based on Table 3 a trial no. 4, b trial no. 5, c trial no. 6

Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:233 Page 9 of 12 233

123



machining economics. For this purpose, surface roughness,

flank wear, and volume of material removed were inves-

tigated in turning of N-155 iron-nickel-base superalloy.

Gray relational analysis was utilized so as to evaluate the

effect of cutting speed, feed rate and depth of cut on the

response parameters. Multi-objective optimization was

carried out to determine minimum values of surface

roughness and flank wear with the maximum amount of

material removed. In addition, scanning electron micro-

scope images of tool flank faces were used to closely

examine the flank wear mechanisms. According to the

experiments and subsequently performed analyses, fol-

lowing conclusions can be drawn:

• Cutting parameter set of V1f1d3, i.e., 80 m/min cutting

speed, 0.1 mm/rev feed rate, and 0.5 mm depth of cut,

was determined to be the optimum machining

variables.

• Confirmation of improvement of 0.209 in WGRG value

proved the accuracy of optimum parameters predicted

by GRA.

• SEM images showed that depth-of-cut notch, built-up

edge, and adhesion were tool wear mechanisms which

significantly affected the cutting tool.

Fig. 5 SEM images of tool flank face at experimental set based on Table 3 a trial no. 7, b trial no. 8, c trial no. 9
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• Machining economics has been neglected by most of

the researchers; however, in practice, it is one of the

most decisive factors in selecting the preferred cutting

parameters. This work considered one of its factors

(volume of material removed). However, in the future

works, other parameters such as cutting time and

tooling costs, as well as other cutting factors such as

surface hardness and cutting forces can be incorporated

in the optimization of these alloys so that more accurate

evaluation of machinability of these alloys will be

achieved.
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