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Abstract
Currently, energy management control mainly focuses on single-objective optimization (SOO). Even if multi-objective

optimization (MOO) problem is studied, it is often converted into an SOO problem by using the weighted sum method.

Obviously, it cannot really reflect the essential strengths of MOO. In this paper, a parallel hybrid electric vehicle is taken as

the research object. The fuel economy, emissions, and drivability performance are taken as optimization objectives. The

parameters of energy management and driveline system are optimized. Considering the constraint conditions of the

dynamic performance and charge balance, the fast non-dominated sorting differential evolution algorithm (NSDEA) is

proposed to solve the multi-objective optimization problem. Then multi-group sets of Pareto solutions with good distri-

bution and convergence are obtained. The simulation results of NSDEA show that the fuel economy is increased by 20.26%

on average. The emissions evaluation index is optimized by 11.33% on average, and the maximum carbon monoxide (CO)

optimization value reaches 21.9%. The average of drivability evaluation index (jerk) is up to 20.84%, and 40.32% for

maximum. Obviously, the above obtained results are discrete points. They only represent some optimal solutions. Based on

the above sets, the locally weighted scatter plot smoothing method is used to fit continuous curve and surfaces. Then, the

multi-objective Pareto trade-off optimal control surface is established to further obtain the optimal solutions. This study

can provide more reference for the optimal control strategy and lay a foundation for multi-objective energy management of

the actual vehicle.
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List of symbols
Ai Fitting coefficient of the external

characteristic mathematical model

Ak Fitting coefficient matrix of the universal

characteristic mathematical model

cl_n Engagement times of clutch

CR Crossover probability

CRmax Maximum value of the crossover

probability

CRmin Minimum value of the crossover

probability

DN Equation index of components’ action

times

dmax–min Maximum value among the minimum

distance between individual vectors

dmin
i Minimum distance between individual

i and j

Di Crowding distance

E Rate of pollutant emissions

ECO Emission rate of carbon monoxide (CO)

EHC Emission rate of hydrocarbon (HC)

ENOx
Emission rate of nitrogen oxides (NOx)

f m dimensional target vector

F Variation constant

f2 Comprehensive evaluation index of

emissions

fc_n Starting times of engine
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F(x) Target vector

Fmin Minimum value of zoom factor

Fmax Maximum value of zoom factor

f(Ui
t) Target value of test individuals

f(Xi
t) Fitness value of target individuals

fm
i (�) The mth target function of individual i

fm
j ( � ) The mth target function of individual j

|fm
i (x) - fm

j (x)| The distance between individual i and j

G Current generation number

Gmax Maximum generation number

gb_j Jerk generated by gearbox

gb_n Shifting times of transmission

ge Specific fuel consumption

gj j dimensional inequality constraint vectors

hk k dimensional equality constraint vectors

i Order of engine speed variable for engine

torque fitting

j Order of engine speed fitting

k Fitting order

k2 Fitting coefficient matrix of emission

characteristic for pollutants

k(t) The gear ratio of transmission

l Order of engine speed variable for

universal characteristic fitting

m The number of target vectors

n the nmber of decision variables which

constitute x decision space

ne Engine speed (r/min)

nm Motor speed (r/min)

nw Wheel speed (r/min)

Np Population number

Nobj Target number

N Population size

Pm Motor power (kW)

Pe Engine power (kW)

Pw Vehicle power (kW)

qm Motor speed ratio

q(k(t)) Total drive ratio of the corresponding

gears

QCO Emission amount of CO pollutant (g/L)

QHC Emission amount of HC pollutant (g/L)

QNOx
Emission amount of NOx pollutant (g/L)

Qfc Fuel consumption of the engine (L/

100 km)

randij The random number of corresponding

genes

s Model order

sgn Symbol function

SOC State of charge

SOCmax Maximum value of SOC

SOCmin Minimum value of SOC

t Driving time (s)

T Required torque (N m)

Tchg Preset charging torque (N m)

Tchgs Additional actual charging torque (N m)

Tcl Clutch torque (N m)

Te Engine torque (N m)

Tm Motor torque (N m)

Tw Total of engine and motor torque (N m)

Ui
t Test individual

uij
t The jth gene of individual i of the tth

generation

vij
t Mutated individual gene

vi
t?1 The ith variant individual generated by

the tth generation

w1 Input power of clutch (kW)

w2 Output power of clutch (kW)

W Weighting coefficient

x Decision space

xmin Minimum value of the optimized vector

xmax Maximum value of the optimized vector

xr1
t The target individual 1 of the tth

generation

xr2
t The target individual 2 of the tth

generation

xr3
t The target individual 3 of the tth

generation

xij
t Target individual gene

Xi
t Target individual

Xi
t?1 Selected individual

y Objective evaluation index

gc Charger efficiency

gd Final drive efficiency

ge Engine efficiency

gm Motor efficiency

gt Transmission efficiency

1 Introduction

Hybrid electric vehicle (HEV) can achieve optimal energy

consumption through controlling the reasonable power

distribution of the engine and motor. The key to its per-

formance is the energy management control strategy.

Currently, most researches mainly focus on fuel economy,

but pay less attention to emission and drivability for energy

management control, for example, some instantaneous

optimization algorithms such as SOC closed loop control

strategy [1], equivalent consumption minimization strate-

gies (ECMS) [2], real-time control strategy based on

approximate minimum principle [3], and global optimiza-

tion methods such as dynamic programming (DP) [4] and

stochastic dynamic programming (SDP) [5]. Both of them
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were proposed to enhance fuel economy for HEV energy

management control. However, emission and drivability

performance also have significant impact on energy man-

agement [6–8]. In view of this, some scholars considered

trade-off control between fuel economy and emission

[9–13]. A few scholars further considered drivability as the

suboptimal parameter for energy management based on

optimization of fuel economy and emission [14–17]. But

they mainly adopted weighted sum method to deal with the

trade-off control for the multi-objective optimization

problem. Essentially, weighted sum method may hide the

real situation of each target and cannot reflect the coupling

relation between different targets [18]. Obviously, it still

belongs to a single-objective optimization algorithm.

Actually, the results of multi-objective optimization prob-

lem should be mutually independent and balanced. The

performance optimization of one single target may inevi-

tably damage the other targets. The optimization results

should be multiple sets of solutions rather than a single

optimal solution. Unfortunately, current control strategies

rarely follow this essential characteristic of multi-objective

problem. As a result, the dimension of optimization targets

are reduced, and the mapping relationship between inde-

pendent variables and objective targets is weakened.

As we know, the theory of Pareto optimality is very

good at solving the multi-objective optimization problem.

It can better reflect the essential characteristic of the multi-

objective problem. Therefore, the evolutionary algorithm

based on Pareto principle is proposed to solve the multi-

objective optimization problem. A group of non-inferior

Pareto solution sets is obtained to overcome the short-

comings of traditional weighting methods. However, not

only the Pareto optimality, but also the evolutionary

algorithm needs a great deal of iterative calculation. So, the

locally weighted scatter plot smoothing (LOWESS)

method is adopted to fit the obtained optimal discrete

points into continuous surfaces. Then they are used to

establish the trade-off control curve surfaces of HEV and

the existence of the optimal solution sets is further studied.

2 Parallel hybrid electric vehicle (PHEV)

A typical parallel hybrid electric vehicle (PHEV) is taken

as the studied object. The structure of PHEV is shown in

Fig. 1. The main parameters of PHEV are illustrated in

Table 1.

2.1 Working modes of PHEV

The working modes of PHEV include pure electric driving

mode, engine driving alonemode, combined drivingmode of

engine and assisted motor, charging mode and regenerative

braking mode. The relationships between power, torque and

speed under each working mode are as follows.

2.1.1 Pure electric driving mode

Under this mode, the required power is small. The motor

can drive the vehicle alone. The relationships between

torque and speed are as shown as follows:

nwðtÞ ¼ nmðtÞ=qm
TwðtÞ ¼ qmTmðtÞ
PwðtÞ ¼ gmgtgdPmðtÞ

8
<

:
: ð1Þ

2.1.2 Engine driving alone mode

Under this condition, the engine drives the vehicle alone.

Namely, the engine provides all the required power alone.

The engine can be controlled to work within the optimal

working region:

nwðtÞ ¼ neðtÞ=qðkðtÞÞ
TwðtÞ ¼ pðkðtÞÞTeðtÞ
PwðtÞ ¼ gegtgdPeðtÞ

8
<

:
: ð2Þ

2.1.3 Combined driving mode of engine and assisted
motor

At this moment, both the engine and motor work together

to drive the vehicle. However, the engine provides the main

driving force, while the motor only provides the auxiliary

power:

nwðtÞ ¼ neðtÞ=qðkðtÞÞ ¼ nmðtÞ=qm
TwðtÞ ¼ pðkðtÞÞTeðtÞ þ qmTmðtÞ
PwðtÞ ¼ gegtgdPeðtÞ þ gmgtgdPmðtÞ

8
<

:
: ð3Þ

2.1.4 Charging mode

Right now, the vehicle runs with light load. The provided

power of the engine exceeds the required power of the

Fig. 1 The structure of the parallel hybrid electric vehicle
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entire vehicle. The SOC of the battery is lower. At this

moment, the engine not only provides the required power

for the entire vehicle, but also can charge the battery

through a generator and power converter. When the SOC

reaches the predefined threshold value, the battery is not

charged. Namely, the engine stops charging:

nwðtÞ ¼ neðtÞ=qðkðtÞÞ ¼ nmðtÞ=qm
TwðtÞ ¼ pðkðtÞÞTeðtÞ � qmTmðtÞ
PwðtÞ=ðgtgdÞ ¼ gePeðtÞ � PmðtÞ=gc

8
<

:
: ð4Þ

2.1.5 Regenerative braking mode

When the vehicle decelerates or brakes, the motor works as

a generator to charge the battery through the power

converter:

nwðtÞ ¼ nmðtÞ=qm
TwðtÞ ¼ qmTmðtÞ
PwðtÞgtgdgc ¼ PmðtÞ

8
<

:
: ð5Þ

2.2 Electric-assisted control strategy for PHEV

In this paper, we mainly focus on the multi-objective

optimization (MOO) algorithm and pay less attention to the

control strategy. Thus, the typical parallel electric-assisted

control strategy is adopted to verify the proposed MOO

algorithm. The working principle of the electric-assisted

control strategy is illustrated in Fig. 2.

The parameter SOCmin means lower limit value of SOC,

which should be predefined to avoid overcharging and

overdischarging. The detailed control rules of electric-as-

sisted control strategy are described as follows.

1. When the SOC is below the lower limit value

(SOC\ SOCmin), the battery needs to be charged.

That means the engine not only provides power for the

vehicle, but also charges the battery through the

motor/generator.

2. When the SOC is larger than the lower limit value

(SOC[ SOCmin), the required torque should be

between the maximum torque and the engine closing

torque.

3. If the required speed is lower than the engine idling

speed, the engine is closed and the motor works alone

to start the vehicle.

4. If the required speed is greater than the idling speed

and the required torque is smaller than the engine

maximum torque, the engine works alone.

5. Otherwise, the motor starts working to supply the

auxiliary power.

The relationship of different torques is shown as

follows:

T ¼ Tm þ Te: ð6Þ

Table 1 Main parameters of

PHEV
Component Parameter Value

Entire vehicle Curb weight (kg) 1200

Total mass (kg) 1600

Length 9 breadth 9 height (m) 4.41 9 1.75 9 1.64

Wheel base (m) 2.6

Engine Displacement (L) 1.0

Rated power (kW/(r/min)) 41/5700

Max torque ((N m)/(r/min)) 81/3477

Motor Max power (kW) 75

Max speed (r/min) 10,000

Transmission Type MT

Ratio range 0.75–3.56

Battery Type Lead-acid battery

Nominal voltage (V) 308

Nominal capacity of unit (Ah) 26

engine closed 
torque curve

motor starting speed required speed engine speed

engine 
on

max torque curve

min torque curve

engine speed

engine 
off

engine 
off

max torque curve

engine 
on

attached 
charging torque

engine 
off

attached 
charging torque

SOC >  SOCmin SOC < SOCmin

en
gi

ne
 to

rq
ue

En
gi

ne
 to

rq
ue

Fig. 2 Parallel electric-assisted control strategy
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When the SOC is smaller than the lower limit value

(SOC\ SOCmin), the battery needs to be charged. At this

moment, there are two modes. If the required driving tor-

que is between the minimum and maximum engine torque,

an additional actual charging torque Tchgs will be gener-

ated. The attached charging torque is proportional to

[0.5 * (SOCmax ? SOCmin) - SOC] [19], as shown in

Eq. (7). Tchg is the preset charging torque in the simulation

model according to engineering experiences. In this paper,

we adopt the preset value in Advisor simulation platform.

When the SOC is small, the battery is forced to charge. At

this moment, the preset charging torque Tchg is firstly used

to charge the battery. Then the actual attached charging

torque Tchgs is obtained to charge the battery according to

the SOC variation. When the SOC is lower, the battery

needs to be quickly charged. That means the actual

attached charging torque should be larger. If the required

driving torque is less than the minimum torque of the

engine, the attached torque is used to charge the battery. No

matter what the condition may be, the engine torque is

equal to the sum of the generated charging torque and the

required torque of the entire vehicle. If the sum is too

small, the engine will run along with the minimum working

curve. The relationships of different torques are illustrated

as follows:

T ¼ Te � Tchgs

Tchgs ¼ Tchg �
ðSOCmax þ SOCminÞ

2
� SOC

� �

8
<

:
: ð7Þ

3 Multi-objective optimization (MOO)
algorithm for energy management of HEV

3.1 MOO problem

Compared with the general optimization problem, the

MOO problem has many optimized objectives. Any deci-

sion variable may influence any optimization target. Tak-

ing the typical minimum optimization for example, the

MOO problem can be described with target vectors,

equality and inequality constraint vectors, and n dimen-

sional decision variables:

min y ¼ f ðxÞ ¼ ðf1ðxÞ; . . .; fmðxÞÞ
s:t: gjðxÞ� 0 j ¼ 1; 2; . . .; j

hkðxÞ ¼ 0 k ¼ 1; 2; . . .; k
d:v: x ¼ ½x1; x2; x3. . .xn�:

ð8Þ

Obviously, the essential MOO problem is to solve the

mapping relationship of function. The mapping relation-

ship between the decision space and the objective space is

not the common one-to-one relationship. There also exists

a mapping relationship between each independent variable

of decision space and each target of objective space. In

other words, the mapping relationship between the decision

space and objective space belongs to a complex many-to-

many relationship. Therefore, the solution set of the multi-

objective problem belongs to vector optimization in nature.

As we know, the vector sets are different in order relations.

The solution set can be divided into absolute optimal

solution, strong efficient solution, more efficient solution,

fuzzy efficient solution, satisfactory solution, Pareto opti-

mal solutions and other solutions. Among them, the Pareto

optimal solution is the best solution of the multi-objective

mapping relation.

3.2 MOO mathematical modeling

3.2.1 Establishment of optimization targets

According to the multi-objective principle, the mathemat-

ical models for fuel economy, emission and drivability are

established as follows:

1. Fuel economy

In general, the simulation and calculation of fuel econ-

omy and pollutants emission is based on the mathematical

model of the engine. According to the experimental data of

the engine under steady-state conditions, the external

characteristic model and universal characteristic model of

the engine are established as follows [19]:

ge ¼
Ps

j¼0

Pj

l¼0

AkT
l
en

j�l
e

Te ¼
Pk

i

Ain
i
e

k ¼ ðjþ 1Þ � ðjþ 2Þ � j� 1þ i

8
>>>>><

>>>>>:

: ð9Þ

The fuel consumption of the engine can be calculated

according to the above obtained effective specific fuel

consumption [20]:

Qfc ¼
Z t

0

geðneðiÞ; TeðiÞÞPeðiÞdi: ð10Þ

The evaluation index of fuel economy is defined as

follows:

f1ðxÞ ¼ QfcðxÞ: ð11Þ

2. Emission

In the same way, the universal characteristic model of

emission also can be gained according to the experimental

data of emission test. The emission characteristic of pol-

lutants is calculated as follows [19]:
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E ¼
Xs

j¼0

Xj

l¼0

k2
1

2
ðjþ 1Þðjþ 2Þ � j� 1� l

� �

Tl
en

j�l
e : ð12Þ

For gasoline engine, the pollutants mainly include CO,

HC and NOx. So we only consider the three pollutants as

evaluation indexes of emission. The emission amount of

pollutant can be computed as follows:

QCO ¼
Z t

0

ECOðneðiÞ; TeðiÞÞdi

QHC ¼
Z t

0

EHCðneðiÞ; TeðiÞÞdi

QNOx
¼
Z t

0

ENOx
ðneðiÞ; TeðiÞÞdi

8
>>>>>>><

>>>>>>>:

: ð13Þ

According to existing experimental data and emission

characteristics, we find that the CO value is almost an order

of magnitude bigger than the other two indexes. We adopt

the normalization method to deal with orders of magnitude

for the three objectives [21]. We enlarge ten times the HC

and NOx so as to be of the same magnitude as the CO

index. Then the comprehensive evaluation index of emis-

sion can be illustrated as follows:

f2ðxÞ ¼ 10� QHCðxÞ þ 10� QNOx
ðxÞ þ QCOðxÞ: ð14Þ

3. Drivability

It is hard to objectively reflect the real drivability with

subjective evaluation methods. Therefore, the objective

indexes closely related with fuel economy and emission are

selected as evaluation indexes of drivability, such as jerk,

slipping work, tip-in/out response, and times of key com-

ponents. The comprehensive evaluation of drivability is

built as follows:

f3 ¼ gb jþW þ DN

gb j ¼
R ts
0
jðtÞ dt

W ¼
R t2
t1
Tclðw1 � w2Þ dt

DN ¼ w1 � fc nþ w2 � gb nþ w3 � cl n

8
>><

>>:

: ð15Þ

Obviously, drivability contains many evaluation

indexes. Some indexes are hard to obtain. In this paper, we

only choose jerk as the evaluation index of drivability. The

MOO problem is as follows:

f3 ¼ gb j: ð16Þ

4. Multi-objective evaluation model

The evaluation mode of MOO is built as follows:

min y ¼ FðxÞ ¼ ðf1ðxÞ; f2ðxÞ; f3ðxÞÞ: ð17Þ

As we know, there are many parameters which can

influence fuel economy, emission and drivability. If all

parameters are designed to be optimized, the optimization

process will be very complicated. Therefore, it is crucial to

select suitable parameters for optimization. In this paper,

we select the parameters of control strategy and powertrain

as optimized targets, which significantly influence opti-

mization according to the past experiments and experi-

ences. Some evaluation indexes of drivability, which is

most closely to fuel economy and emission, are also

selected. The specific parameters are as shown in Table 2.

The maximum engine power not only embodies the

dynamic performance and fuel economy, but also influ-

ences the drivability. Similarly, the overload coefficient

and gear ratio of motor can also affect the fuel economy

and drivability. Battery is a very important component of

HEV. Its parameters directly influence the fuel economy,

emission and drivability performance of HEV, such as

battery block number, upper limit of electric quantity for

battery, lower limit of electric quantity for battery and

battery charging torque. In addition, some control param-

eters such as minimum engine torque coefficient, engine

closing coefficient, lower limit of engine speed and initial

temperature for three way catalytic converter (TWC)

directly affect the fuel economy and emission performance.

Then, the constrain condition of the dynamic perfor-

mance and battery charge balance are treated as the con-

strain conditions, as shown in Table 3.

Thus, the mathematical model of MOO problem is

established as follows:

min y ¼ FðxÞ ¼ ðf1ðxÞ; f2ðxÞ; f3ðxÞÞ
f1ðxÞ ¼ QfcðxÞ
f2ðxÞ ¼ 10QHCðxÞ þ 10QNOx

ðxÞ þ QCOðxÞ
f3ðxÞ ¼ gb j

s:t: gjðxÞ� 0; j ¼ 1; 2; . . .; J:

ð18Þ

3.2.2 MOO simulation model

According to Eq. (18), the simulation model of MOO

based on Advisor platform is established, as shown in

Fig. 3. The model includes engine model, emission after

treatment model, clutch model, torque coupler model,

transmission model, final drive model, wheel model, bat-

tery pack model, motor model, control system model and

so on.

4 MOO algorithm for PHEV energy
management

For the MOO problem, it is difficult to directly judge the

merits and demerits of each individual. It needs a com-

prehensive index to evaluate all objectives. Fast non-

dominated sorting genetic algorithm-II (NSGA-II) can
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build solution sets with fast non-dominated sorting and

crowd distance computing method. In addition, the most

prominent evolutionary algorithm is differential evolution

(DE) algorithm in recent years. It is an adaptive global

optimization algorithm. Compared with typical genetic

algorithm (GA), DE has better performance such as faster

convergence speed, better convergence effect, better

robustness and adaptive ability. Therefore, we propose a

non-dominated sorting differential evolution algorithm

(NSDEA) based on NSGA-II and DE algorithm.

4.1 Non-dominated sorting differential
evolution algorithm (NSDEA)

4.1.1 The characteristics of NSDEA structural solutions

1. Fast hierarchical non-dominated sorting

The target vectors of each individual are compared. The

non-dominated individuals of the whole population are

identified and then listed as the first layer. The same

operation is performed for the remaining population. The

non-dominated individuals within residual population are

identified as the second layers. Similarly, when the sorting

operations are completed for all individuals, the obtained

layer number represents the quality of the individual.

2. Method for maintaining population distribution and

diversity

The crowding distance which reflects the individual

distribution is improved as follows:

Di ¼
XNp

j¼1;j 6¼i

sgn dmax�min �
XNobj

m¼1

f imðxÞ � f jmðxÞ
�
�

�
�

 !

: ð19Þ

It can be further revised as follows. The mutual rela-

tionships between multiple indexes are converted into the

evaluation indexes, which follow Pareto optimal principle

and achieve multi-objective evaluation:

Table 2 Optimization

parameters
Type Parameter Range

Powertrain Maximum engine power (kW) Pe [ [20, 50]

Motor overload coefficient Ro [ [1, 3]

Final drive Fd [ [0.55, 0.9]

Control strategy Battery block number (block) Nb [ {15, 16…50}

Upper limit of electric quantity for battery (%) Hsoc [ [0.55, 0.9]

Lower limit of electric quantity for battery (%) Lsoc [ [0.1, 0.55]

Battery charging torque (N m) Tchg [ [10, 30]

Minimum engine torque coefficient Kmin [ [0.4, 1]

Engine closing coefficient Toff [ [0, 0.5]

Initial temperature for TWC (�C) EXt [ [10, 30]

Lower limit of engine speed (r/min) Nn [ [80, 110]

Table 3 Constraint conditions
Constraint condition Description Range

Dynamic performance Acceleration Acceleration time from 0 to 100 km/h B 14 s

Acceleration time from 40 to 100 km/h B 10 s

Gradient Gradient C 30%

Battery charge balance The difference of state of charge before and after the cycle B 0.5%

Fig. 3 Simulation model for the MOO problem
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dmax�min ¼ max d1min; d
2
min; . . .; d

n
min

� �

dimin ¼ min
PNobj

m¼1

f imðxÞ � f jmðxÞ
�
�

�
�

8
<

:
: ð20Þ

4.1.2 Analysis of differential evolution algorithm

1. Population initialization

The initial individual of N population size is randomly

generated within the feasible region:

X ¼ fx1; x2; . . .; xN jxmin � x� xmaxg: ð21Þ

2. Mutation

According to individual difference information, the

population individual is performed by mutation operation:

vtþ1
i ¼ xtr1 þ F � ðxtr2 � xtr3Þ: ð22Þ

3. Crossover

The test individual is decided to be variation individual

or target individual through crossover probability:

utij ¼
vtij randij\CR

xtij others

�

: ð23Þ

4. Selection

The excellent individuals are selected as new population

from test individuals and target individuals with greedy

strategy:

Xtþ1
i ¼ Ut

i f ðUt
i Þ� f ðXt

iÞ
Xt
i others

�

: ð24Þ

Obviously, population number, coefficient of variation

and crossover probability are the key control parameters of

the DE algorithm. The population number is generally set

according to experience, which has small impact on the

performance of the DE algorithm. However, the coefficient

of variation and crossover probability greatly affect the

ability of the global and local search for the population.

Therefore, it is difficult to set the values. In this paper, we

build a function of adaptive variation to solve the param-

eter sets as follows:

F ¼ Fmin þ
ðFmax � FminÞ � G

1� G=Gmax

CR ¼ CRmin þ
ðCRmax � CRminÞ � G

1� G=Gmax

8
>><

>>:

: ð25Þ

Then, the multi-objective optimization algorithm

NSDEA is established as shown in Fig. 4.

4.2 Simulation analysis of NSDEA

Under urban dynamometer driving schedule (UDDS)

cycle, population value, maximum generation value,

maximum and minimum value of crossover probability,

and maximum and minimum value of mutation probability

are set to be 40, 100, 0.7, 0.3, 0.9 and 0.5, respectively.

Then, the NSDEA algorithm is embedded into the above

established MOO simulation model. Multi-groups of Par-

eto optimal solution sets can be obtained. The ten most

representative groups are selected to analyze, as shown in

Table 4. The 11th group represents the setting value and

performance index before optimization. The indexes from

the 2nd row to the 12th row indicate the optimized

parameters. The meanings of variables have been illus-

trated in Table 2. The parameters of the last six rows stand

for the results of optimization.

Obviously, the 10 groups of Pareto optimal solutions are

optimized compared with the 11th group. For fuel econ-

omy, the average optimization index increases by 20.30%

and the maximum value enhances by 22.30%. For driv-

ability, the average optimization performance increases by

20.84% and the maximum value reaches 40.32%. For

emission, the comprehensive performance index increases

by 9.16% on average. QHC, QNOx
and QCO increase by 7.24,

8.25 and 13.36%, respectively. The specific optimization

indexes are shown in Table 5.

starting

Initiation vehicle model 
parameters

Initiation simulation 
model parameters

Initiation initial 
population P

Modifying optimization 
parameters

Running simulation 
model

Post-processing, output 
three-objectives evaluation 

indexes

Fast non-dominated 
sorting and computing 

crowding distance for P
Evolution, t=1

Selection, cross and mutation 
operation for Pt , generating 

progeny population Qt

Modifying optimization 
parameters

Running simulation 
model

Post-processing, output 
three-objectives 

evaluation indexes

Fast non-dominated sorting and 
computing crowding distance 

for Pt and Qt

Elitist strategy, obtaining new 
population Pt+1 and Pareto 

solution set

Satisfy with 
ending condition

Yes

No
Obtaining optimal 

solution set

SimulinkNSGA-II algorithm

t++

Fig. 4 The HEV-NSGA-II optimization algorithm processes
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To illustrate the rationality of the obtained Pareto opti-

mal solution sets, one of the Pareto solution sets is selected

to further analyze vehicle performance.

As shown in Fig. 5, the actual speed can accurately

follow the required speed with a small error, which meets

the speed requirement under the UDDS cycle.

As shown in Fig. 6, the error of SOC at the beginning

and end of simulation is less than 0.5%. The amplitude of

SOC fluctuation is also small (the maximum value is less

than 0.005). The SOC change curve is reasonable.

As shown in Fig. 7, the engine and motor can coordinate

well with each other and the power variations can meet the

vehicle requirement.

The efficiency of the engine and motor before and after

the optimization is comparatively analyzed as shown in

Figs. 8 and 9, respectively. It can be seen that the distri-

bution for engine working points has changed a lot. After

optimization, the working points of engine within the low-

Table 4 Optimal results and

optimized parameter values
No. Pe (kW) Nb (block) Fd Hsoc (%) Lsoc (%) Tchg (N m) Kmin Toff

1 68.71 18 1.16 0.68 0.40 21.73 0.87 0.18

2 68.96 18 1.29 0.66 0.37 22.44 0.95 0.20

3 67.04 17 1.44 0.66 0.36 22.69 0.96 0.21

4 64.35 17 1.31 0.67 0.40 22.29 0.90 0.21

5 65.11 17 1.15 0.67 0.43 22.11 0.88 0.20

6 69.95 20 1.18 0.70 0.37 21.48 0.85 0.17

7 70.00 19 1.17 0.70 0.41 21.46 0.85 0.16

8 65.55 17 1.45 0.66 0.36 22.69 0.96 0.21

9 45.17 17 1.91 0.79 0.21 20.24 0.59 0.24

10 41.43 15 2.50 0.64 0.10 23.04 1.00 0.22

11 41.01 2 1.00 0.70 0.60 15.25 0.40 0.00

EXt (�C) Nn (km/h) Ro QHC (g/km) QNOx
(g/km) QCO (g/km) f1 (g/km) f2 (L/km) f3 (m/s3)

14.24 80.00 2.53 0.37 0.33 2.09 6.05 9.15 165.53

15.01 80.00 2.56 0.37 0.32 2.62 5.84 9.47 159.34

15.38 80.00 2.55 0.37 0.33 2.23 5.95 9.29 195.48

14.35 80.00 2.59 0.37 0.32 2.71 5.93 9.66 157.54

14.23 80.00 2.65 0.37 0.33 2.13 5.96 9.19 164.27

14.21 81.23 2.42 0.37 0.33 2.07 6.14 9.15 165.53

14.20 81.29 2.46 0.37 0.33 2.04 6.10 9.06 166.48

15.53 80.02 2.53 0.37 0.33 2.22 5.94 9.28 194.67

14.31 91.02 1.52 0.38 0.38 2.98 6.34 10.62 147.87

19.98 80.00 1.87 0.47 0.40 7.65 12.51 16.36 129.01

20.00 99.48 1.80 0.40 0.36 2.61 7.51 10.22 216.16

Table 5 Optimization indexes
Index QHC QNOx

QCO f1 f2 f3

Max optimization ratio (%) 7.33 11.89 21.90 22.30 11.33 40.32

Average optimization ratio (%) 7.24 8.25 13.36 20.26 9.16 20.84
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efficient region are obviously reduced. Those points within

the high-efficient area are greatly increased. Obviously,

fuel economy is significantly improved. The main reason is

that the control strategy only regards the fuel economy as

the single control target before optimization. Of course, it

only reduces fuel consumption, but cannot apparently

decrease emission. As we know, the low fuel consumption

region of engine is not consistent with the low emission

area and there exists obvious conflicting relationship

between fuel economy and emission. In addition, driv-

ability is also in conflict with fuel economy and emission.

Furthermore, the enhancement of high-efficient working

points for motor after optimization is another factor.

Therefore, only by comprehensively considering fuel

economy, emission and drivability, trade-off optimization

distribution points of engine and motor can be obtained.

According to the above analysis, the obtained optimal

solution sets can meet the design requirements of HEV. To

further reflect the distribution of each objective from

optimization results, 40 groups of Pareto optimal solution

sets are plotted and analyzed, as shown in Fig. 10. The

selected 40 groups of solution sets are the final Pareto

optimal solution sets obtained by simulation. For those

sets, there may be a phenomenon that another objective is

deteriorated when one objective is optimized. However, it

will not happen for the former ten groups of solution sets. It

can be concluded from Fig. 10 that the fuel economy,

emission and drivability are all optimized. There also exists

a conflicting relationship between the three objectives for

optimal solution sets, namely, another objective is deteri-

orated when one objective is optimized.

To show the conflicting relationship between the three

objectives more clearly, Fig. 10 can be converted into a

two-dimensional map for analysis. As shown in Fig. 11,

the evaluation indexes of drivability and fuel economy are

comparatively analyzed. The red ‘‘?’’ expresses
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performance index before optimization, while the blue ‘‘*’’

indicates the performance index after optimization. Com-

pared with the performance before optimization, the fuel

economy and emission are improved for most optimal

points. For a few points, fuel economy deteriorates as a

result of further optimization of drivability. In the pursuit

of extreme drivability, the engine even may run along with

the deteriorated points of fuel economy.

As shown in Fig. 12, the evaluation indexes of driv-

ability and emission are analyzed. After optimization,

drivability is improved, but emission performance shows

partial deterioration.

As shown in Fig. 13, the evaluation indexes of fuel

economy and emission are analyzed. After optimization,

the most optimal points of fuel economy are improved,

while a few points have deteriorated due to the influence of

drivability.

Although there is a conflicting relationship among the

three objectives, the trade-off optimal solution sets for the

multi-objective problem can be obtained according to the

above distribution maps.

5 Pareto trade-off optimal control surface

The above obtained Pareto optimal solution sets consist of

a series of discrete points. To obtain more points, it needs

more substantial calculation, which causes more complex

operations. Therefore, we can adopt interpolation fitting

method to fit the discrete optimal points into the optimal

surface. When the optimization range contains all regions,

the corresponding results should also contain the range of

all solutions. For interpolation fitting, all solution sets can

be expressed with finite results. Obviously, curved surface

fitting is the further utilization and mining of the discrete

solution sets. The results of surface fitting are not accurate,

but close to the real solutions. Sometimes, this optimal

solution may not exist, but we have maximum possibility

to search the optimal solution by further excavating results.

For curved surface fitting, the analytical relationship

between data is established according to the limited data

obtained by the experiment. There are many methods for

curved surface fitting, such as least squares method,

COONS surface fitting, cubic spline interpolation and

artificial neural network. The locally weighted scatter plot

smoothing (LOWESS) is a non-parametric fitting method.

There is no need to know the dependent variables and

independent variables. It can fit the smooth surface with

some given data. Moreover, LOWESS has good robustness

to deal with the poor fitting effect condition. Therefore, we

adopt the LOWESS method to fit the curved surface.
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5.1 Surface fitting and result analysis

According to the former 40 groups of the Pareto optimal

solution sets, the corresponding trade-off control curved

surface for fuel economy, emission and drivability can be

obtained. The relationship between the three objectives can

be further explored. However, there are many optimized

variables. The target function also includes three variables.

If fitting all the optimized variables and target variables, we

may obtain the hypersurface relationship. The complexity

of the MOO problem will be greatly increased. Therefore,

we do not consider the influence of optimized variables to

reduce the complexity of fitting. We adopt nonparametric

regression method to fit the relationship between target

variables. Then, a trade-off control surface for fuel econ-

omy, emission and drivability performance can be

established.

To build the surface fitting relationship between the

three objectives, it is necessary to convert these objectives

into the dependent and the independent variables. Because

of the obvious conflict between the objectives, emission

and fuel economy are selected as the independent vari-

ables, while drivability is selected as the dependent vari-

able. According to the sample data (Table 6), the curved

surfaces are obtained with LOWESS method, as shown in

Fig. 14.

The LOWESS method has two important parameters for

fitting effect. One is the smoothing parameter (H), also

called window. It describes the ratio of observation number

and total data number within an interval. The greater the

H value is, the smoother the fitting surface becomes. The

other is the order of fitting polynomials (P). P is usually set

to be 0, 1, or 2. When P = 0, local polynomial estimation is

same as the kernel estimation. When P = 1, any window is

fitted to be a straight line. When P = 2, each window can

be fitted to be a curve. Obviously, the higher the order of

fitting polynomials is, the smoother does the curve change,

but the fitting process becomes more and more compli-

cated. In this paper, the order of fitting polynomials (P) is

set to be 1. In addition, the effect of the smoothing

parameter on the fitting results is greater than the order of

the fitting polynomial. Therefore, different smoothing

parameters need to be adopted to fit the surface. While

other parameters such as order of fitting polynomials can

be set to be the default value, in this paper the smoothing

parameters are set to be 10, 20, 30, 40, 50, 60, 70 and

100%, respectively. The corresponding effect of surface

fitting is shown in Fig. 14.

It can be seen from Fig. 14a, b that the effect of the

curved surface is not ideal. The reason is that the selected

smoothing parameter is small. Although the fitting error is

small, the smoothness still needs to be further improved.

However, the smoothness may be damaged during surface

fitting to reduce the fitting error. What is worse, some fitted

points of surface may exceed the range of the coordinate

axis.

As shown in Fig. 14c, when smoothing parameter

H reaches 30%, the smoothness is greatly enhanced. The

Table 6 Sample data
No. f1 (g/km) f2 (L/km) f3 (m/s3) No. f1 (g/km) f2 (L/km) f3 (m/s3)

1 9.29 13.45 137.56 11 6.05 9.16 165.48

2 10.15 13.89 135.39 12 11.38 14.59 133.12

3 9.33 13.39 138.63 13 5.93 9.66 157.54

4 6.05 9.15 165.53 14 11.23 14.86 133.62

5 12.51 16.36 129.01 15 9.62 13.53 137.54

6 12.25 16.20 129.10 16 8.91 12.45 142.53

7 6.74 11.10 145.87 17 9.62 13.52 136.56

8 6.10 9.06 166.48 18 10.79 13.56 133.73

9 6.88 11.08 144.69 19 12.32 15.83 129.33

10 5.96 9.19 164.27 20 11.36 14.71 130.66

21 12.09 16.17 129.28 31 13.13 136.88 10.06

22 9.60 13.64 136.29 32 13.14 134.12 10.29

23 11.87 15.57 129.65 33 12.58 138.81 9.50

24 12.24 16.46 128.99 34 9.43 158.41 5.85

25 7.30 11.34 144.30 35 12.11 144.25 8.60

26 8.55 12.69 140.47 36 9.47 159.34 5.84

27 12.33 16.26 129.03 37 12.33 143.77 8.17

28 9.26 12.97 138.70 38 12.98 139.49 8.37

29 6.81 11.31 145.07 39 10.62 147.87 6.34

30 5.84 9.40 158.77 40 9.29 195.48 5.95
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numbers of fitted points exceeding the range of coordinate

axis are greatly declined, but the error of surface fitting is

greatly increased.

As shown in Fig. 14d, when the smoothing parameter H

increases up to 40%, the effect of surface fitting is further

improved. The change trend of entire surface gets more and

more smooth. The fitting error just increases a little com-

pared with Fig. 14c (H = 30%).

It can be seen from Fig. 14e–h that the effect of surface

fitting also becomes much more and more smooth. Almost

all fitting points are within the range of the coordinate axis.

However, the fitting error becomes larger and larger.

Obviously, there is a conflict between smoothness and fit-

ting error. It is very significant to obtain a smoother curved

surface with reasonably acceptable error through further

study.

The above analysis focuses on qualitative illustration.

To further evaluate the effect of surface fitting, we adopt

the quantitative analysis method. We select sum of squares

due to error (SSE), coefficient of determination (R-square),

degrees of freedom (DFE), degree-of-freedom adjusted

coefficient of determination (Adj R-sq), and root mean

squared error (RMSE) as the performance indexes to

evaluate the effect of surface fitting. The closer SSE is to 0,

the better is the effect of surface fitting. On the contrary,

the closer R-square or Adj R-sq is to 1, the better is the

effect of surface fitting. The smaller DFE is, the better is

the effect of surface fitting. The smaller the RMSE, which

means the smaller error, the more closer is the fitting value

to the real value. According to Fig. 14, the above five

performance indexes can be computed and concluded as

shown in Table 7.

As shown in Table 7, when H increases gradually, SSE

becomes larger, while R-square, DFE and Adj R-sq show a

gentle change. The fitting surface becomes more and more

smooth. However, the effect of surface fitting becomes

better in the beginning, but then rapidly declines. Espe-

cially when H varies between 20 and 30%, this downtrend

is more obvious. When H is equal to 20%, R-square

reaches a maximum value (0.998). Adj R-sq also gains

optimal value (0.997). At this moment, the effect of surface

fitting is best and the fitting error is the smallest. But the

smoothness is not good and even some fitted points exceed

the effective range. When H is closer to 30%, SSE, DFE

and RMSE show a great change. The fitting error increases

rapidly. When H changes from 30 to 100%, the smoothness

changes better and better, and the fitting error becomes

larger and larger at the same time. Obviously, the results of

quantitative analysis can verify the qualitative conclusions.

In summary, the obtained fitted surface can reflect the

distribution of the optimal solutions to some extent. The

undiscovered optimal solutions can be predicted according

to the change rule of the fitted surface. Through the

existing results, the continuous change relationship

between the fuel economy, emission and drivability can be

established. The trade-off Pareto optimal control curved

surface can be constructed. According to the performance

requirements of the design, the appropriate control points

can be selected based on the curved surface. Moreover, the

rationality of the established optimal control strategy can

also be evaluated by the fitting surface.

6 Conclusions

In this paper, the non-dominated sorting differential evo-

lution algorithm (NSDEA) is proposed for the multi-ob-

jective optimization problem. Then, the locally weighted

scatter plot smoothing (LOWESS) method is adopted to fit

the Pareto optimal solutions to obtain the trade-off control

curved surface.

1. Aiming at the multi-objective optimization for HEV,

the fuel economy, emission and drivability are taken as

optimization objectives. The control parameters which

can greatly influence target variables are selected as

optimization objects. Then the mathematical model of

multi-objective optimization problem for HEV is

established with constraints of dynamic performance

and charge balance.

2. Combined with NSGA-II and DE algorithm, NSDEA

is proposed to solve the multi-objective optimization

problem. Multi-groups of Pareto solution sets with

good distribution and convergence are obtained.

3. The NSDEA simulation results under UDDS cycle

show that the evaluation index of fuel economy

declines by 20.26% on average. The evaluation index

of emission is improved by an average of 11.33%, and

the maximum value of CO reaches 21.9%. The

evaluation index of drivability is optimized by

Table 7 Fitting performance indexes

H parameter % SSE R-square DFE Adj R-sq RMSE

10 18.87 0.89 28 0.997 0.82

20 18.87 0.998 28 0.997 0.82

30 559.92 0.93 31.33 0.91 4.23

40 767.02 0.90 33 0.89 4.82

50 962.22 0.88 34 0.86 5.32

60 983.43 0.88 34.67 0.86 5.33

70 988.29 0.88 35.14 0.86 5.30

80 1007.03 0.87 36 0.86 5.29

90 1006.88 0.87 35.78 0.86 5.30

100 1007.03 0.87 36 0.86 5.29
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20.84% on average, and the maximum value reaches

40.32%. All the evaluation indexes of fuel economy,

emission and drivability are enhanced. Moreover, the

obtained multi-groups of Pareto optimal solution sets

are reasonable and effective.

4. To reduce the searching and calculating complexity of

optimal solutions, the LOWESS method is adopted to

fit the Pareto optimal solutions. The multi-objective

trade-off control curved surface is finally obtained. It

can guide energy management for the actual vehicle.
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