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Abstract
Here we are concerned with the Oldroyd-B fluid flow resulting from the deformation of a non-isothermal flat surface with

exponentially varying velocity. The objective is to resolve the heat transfer problem by assuming an exponentially varying

wall temperature. A non-Fourier model is followed that enables one to investigate the features of thermal relaxation time

phenomenon. Using local similarity method, the governing system is changed to a set of locally similar equations which

have been tackled by optimal homotopy analysis method. The solution profiles are obtained and elucidated for broad

parameter values. The direction and amount of heat flow are governed by a parameter measuring the exponential growth/

decay rate of wall temperature with horizontal distance. An important implication of this research is that thermal field is

substantially altered by thermal relaxation time. Also, the change in temperature profiles with variation in other parameters

become prominent as thermal relaxation time enlarges. A comparative study of current computations with the existing

literature appears convincing.
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1 Introduction

Non-Newtonian fluids are frequently encountered in daily

life and in industrial processes, for instance, in chemical,

food processing and oil industries. A particular character-

istic of some non-Newtonian liquids is the retention of

fading ‘‘memory’’ upon the removal of stress which is

termed as fluid’s elasticity. Viscoelastic fluids contain

normal stress effects which are an expression of fluid’s

elasticity which is added to the viscous effect when the

fluid is set in motion. There are strong experimental

manifestations to the viscoelastic behavior such as Weis-

senberg or rod-climbing effect. Commonly encountered

examples are clay coatings, food products, inks, detergents,

food gels, gums, emulsions, liquid polymers, liquid crys-

tals, etc. One of the frequently employed viscoelastic

models is the Oldroyd-B fluid model that can predict the

behaviors of relaxation time, creep and normal stress dif-

ferences for many polymeric liquids. In recent past, modest

research is published concerning boundary layer analysis in

Oldroyd-B liquid, compared with its Newtonian counter-

part. Bhatnagar et al. [1] studied the boundary layer for-

mation in Oldroyd-B fluid near a linearly stretched sheet

with stream-wise pressure gradient. In this work, the

authors used perturbation expansions for non-dimensional

velocity and extra stress tensor components in terms of

small viscoelastic fluid parameter. Further, graphical

results addressing the behavior of fluid’s elasticity were

obtained and deliberated. Later, Sajid et al. [2] evaluated

explicit expressions of stress tensor components for Old-

royd-B model. These components were then used to for-

mulate stagnation-point flow of Oldroyd-B fluid near

stretching plate. Finally, they managed to find finite dif-

ference approximations of resulting boundary value prob-

lem. Shehzad et al. [3] considered thermophoretic particle
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deposition in three-dimensional Oldroyd-B fluid flow

adjacent to a bi-directional deforming sheet. Series and

numerical solutions for Oldroyd-B fluid motion over a

stationary plate with stream-wise pressure gradient were

computed by Abbasbandy et al. [4]. Effects of variable

thermal conductivity on the Oldroyd-B fluid motion across

an impulsively stretching surface were deliberated in

Motsa and Ansari [5]. Recent attempts in the area can be

stated through [6–13] and refs. there in.

Heat transfer refers to the transmission of thermal

energy from one region to another as a result of tempera-

ture gradient. This phenomenon is associated with flows in

wide spectrum of industrial and geophysical processes.

Fourier law [14], developed in 1822, gives the relation

between heat flow rate and the temperature gradient and it

is recognized as fundamental law of conduction. This law

gives a paradoxical prediction that any initial change would

instantly alter the medium under observation and, there-

fore, it does not preserve the ‘‘causality principle’’. This

questions whether or not Fourier law gives adequate

description of the heat transport phenomenon. To resolve

this shortcoming, Cattaneo [15] came up with the concept

of heat transmission due to thermal waves travelling at

finite speed. He included a partial time derivative in

Fourier model that rendered a damped hyperbolic energy

equation. Such kind of heat transfer description has

important implications in everyday life, in fields such as

modeling skin burn [16], nanofluid flows [17] and biolog-

ical materials [18]. To ensure objectivity principle, Chris-

tov [19] modified the partial time derivative in Cattaneo

model with frame indifferent objective rate. Cattaneo–

Christov theory still seems incomplete since it does not

account for the thermal retardation time which is the time

required for the build-up of temperature gradient in a

volume element. Straughan [20] investigated the Christov’s

relation for convection heat transfer in Newtonian fluid

with gravity acting downward. Tibullo and Zampoli [21]

proved uniqueness theorem for incompressible fluid flow in

a bounded domain with a non-Fourier heat flux. Haddad

[22] employed the Cattaneo–Christov heat flux theory to

analyze thermal instability threshold for viscous flow

through Brinkman porous space separated by two infinite

plane surfaces. Han et al. [23] made use of analytic and

numeric schemes to deal with slip flow of Maxwell fluid

considering non-Fourier heat conduction. Khan et al. [24]

numerically analyzed heat flux relaxation effect on Max-

well fluid flow near an exponentially deforming non-

isothermal wall. Hayat et al. [25] employed non-Fourier

approach to analyze fluid flow near a surface with variable

thickness. An analytical investigation of Christov’s equa-

tion for unsteady MHD flow between coaxially rotating

disk was made by Hayat et al. [26]. Their computations

revealed that radial stretching rate has a considerable

influence on velocity and temperature between the disks.

Subsequent works in this area can be found in [27–35].

Heat transfer in boundary layer adjacent to continuously

stretching surfaces with a given temperature has been a

widely addressed research topic in fluid mechanics. It is

important in a number of manufacturing processes such as

glass-fiber and paper production, annealing of copper wire,

condensation process, die forging and few others. Fol-

lowing the pioneering work of Crane [36], abundant

material concerning interesting features of this problem is

published. Magyari and Keller [37] described fluid flow

over a non-isothermal surface which stretches in its own

plane with exponentially varying velocity. Their results

depict that structure of temperature curves is controlled by

a parameter (A) measuring the exponential growth/decay of

the wall temperature. After careful analysis, they con-

cluded that meaningful solutions are possible only when

this parameter is greater than a certain critical value. At this

critical value of A, wall temperature gradient becomes zero

illustrating that no heat transfer takes place between fluid

and the surface. Later, Elbashbeshy [38] revisited the

similarity analysis of Ref. [37] by assuming permeable

stretching surface. Viscoelastic fluid flow caused by an

exponentially stretching isothermal wall was analytically

explored by Khan and Sanjayanand [39]. Radiation effects

in viscous flow characterized by exponentially deforming

boundary were elucidated by Sajid and Hayat [40] using

homotopy approach. Bhattacharyya [41] found multiple

solutions for steady flow driven by an exponentially

shrinking wall. Recently, several fascinating heat transfer

problems involving exponentially deforming surfaces have

been published (see, for instance, Liu et al. [42], Mustafa

et al. [43], Weidman [44], Ahmad et al. [45], Patil et al.

[46], Merkin et al. [47], etc.).

To the best of authors’ knowledge, the Oldroyd-B fluid

flow due to exponentially deforming surface has not been

explored in the existence of thermal relaxation effects.

Thus framework of Ref. [9] has been extended by involv-

ing Cattaneo–Christov heat flux theory. We rely on

homotopy analysis approach, proposed by Liao [48, 49], to

find analytical approximations for velocity and temperature

profiles. Additionally, we use the concept of squared

residuals to compute optimal results for convergence con-

trol parameters. Furthermore, we will seek the critical

range of temperature exponent parameter for which the

meaningful solution cannot be found. The main interest is

to elucidate flow and thermal fields in the existence of key

physical attribute of the problem namely thermal relaxation

time. The computational results of wall shear stress and

heat transfer rate are presented and elucidated for certain

values of embedded quantities. The results of this study

might be beneficial in polymer processing and coating-re-

lated applications.
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2 Mathematical model

Consider a two-dimensional Oldroyd-B fluid flow over an

impermeable plane wall at y ¼ 0 expanding with velocity

uw ¼ u0e
x=L. The incompressible Oldroyd-B fluid is con-

tained in the region y[ 0. The resulting motion of the

quiescent fluid is produced solely by the stretching wall

(see Fig. 1). Let the temperature at the wall vary with

horizontal distance x according to Tw ¼ T1 þ T0e
Ax=2L, in

which A is a constant whose value depends on the material

properties of the fluid and T1 is the quiescent fluid tem-

perature. A non-Fourier heat flux model due to Christov

[19] is opted to analyze the thermal field. In view of these

assumptions, the governing equations of Oldroyd-B motion

and energy balance can be put in the following forms:

ux þ vy ¼ 0; ð1Þ

uux þ vuy þ k1ðu2uxx þ v2uyy þ 2uvuxyÞ
¼ m uyy þ k2ðuuxyy þ vuyyy � uxuyy þ uyuxyÞ
� �

; ð2Þ

qCpðviT ;i Þ ¼ �Qi;i; ð3Þ

where m represents the kinematic viscosity of the fluid, q is

the fluid density, k1 stands for fluid relaxation time, k2 for

fluid retardation time, bT is the volumetric expansion

coefficient, Cp represents the specific heat capacity and Qi

denotes the heat flux vector. Christov [19] proposed the

following heat conduction model:

sðQi;t þ vjQi;j � Qjvi;j þ Qivj;jÞ ¼ �Qi � jTi; ð4Þ

in which s denotes the thermal relaxation time defined as

the time lag required for the onset of heat conduction in a

fluid element after temperature difference is assigned

through it. Taking divergence of Eq. (4) and then utilizing

Eq. (3), a simple arrangement yields the following result

(see Han et al. [23], Khan et al. [24], etc.):

ðuTx þ vTyÞ þ s
u2Txx þ v2Tyy þ 2uvTxyþ

uuxTx þ vuyTx þ uvxTy þ vvyTy

� �

¼ aTyy: ð5Þ

where a is the thermal diffusivity. Boundary conditions

for problem under consideration are expressed below:

uðx; 0Þ ¼ uwðxÞ ¼ U0 exp
x

L

� �
; vðx; 0Þ ¼ 0; ð6aÞ

Tðx; 0Þ ¼ TwðxÞ ¼ T1 þ T0 exp
Ax

2L

� �
; ð6bÞ

uðx;þ1Þ ¼ 0; Tðx;þ1Þ ! T1; ð6cÞ

where conditions prescribed in Eq. (6a) indicate no slip and

no penetration at the surface, Eq. (6b) signifies no thermal

slip at the surface and Eq. (6c) shows that velocity and

temperature gradients become zero far from the surface.

Let us introduce a transformation comprising non-di-

mensional quantities w; h and f such that:

f ¼
ffiffiffiffiffiffiffiffi
U0

2mL

r

exp
x

2L

� �
y;wðx; yÞ

¼ ð2mLU0Þ1=2f ðfÞ exp
x

2L

� �
; hðfÞ ¼ T � T1

Tw � T1
: ð7Þ

The axial and transverse velocity components are thus

related to w according u ¼ wy and v ¼ �wx respectively.

Substitution of above variables in Eqs. (2) and (5) gives

rise to the following differential equations:

f 000 � 2f 02 þ ff 00 � b1
2
ð4f 03 � ff 02f 00 þ f 2f 000 � 6ff 0f 00Þ

þ b2
2
ð3f 002 þ 2f 0f 000 � ff ivÞ

¼ 0; ð8Þ

Fig. 1 Physical configuration

and coordinate system
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1

Pr
h00 þ fh0 � Af 0h

þ c
2

Aff 00h� AðAþ 2Þf 02hþ ð1þ 2AÞff 0h0 � f 2h00
� �

¼ 0:

ð9Þ

Here b1 denotes the non-dimensional fluid relaxation

time which measures the ratio of time scale of material’s

response to the observation time scale, b2 represents the

dimensionless retardation time which measures the time

required for the build-up of shear stress in the fluid, c is the
non-dimensional thermal relaxation time and Pr stands for

Prandtl number which is ratio of momentum diffusion to

the thermal diffusion. These parameters are defined as

follows:

Pr ¼ m
a
; b1 ¼

k1uw
L

; b2 ¼
k2uw
L

; c ¼ suw
L

: ð10Þ

The transformed conditions are given below:

f ¼ 0; f 0 ¼ 1; h ¼ 1 at f ¼ 0;

f 0 ! 0; h ! 0 as f ! 1:
ð11Þ

3 Series solutions by HAM

In this section, we look for series solutions of coupled non-

linear equations N f ðf ðgÞÞ ¼ 0 (Eq. 8) and N hðhðgÞÞ ¼ 0

(Eq. 9) subject to the conditions (11) through homotopy

analysis technique. On the basis of so-called ‘‘rule of

solution expression’’ and the conditions (11), it is reason-

able to set following initial approximations f0 and h0 of

functions f and h, respectively:

f0ðfÞ ¼ 1� expð�fÞ; h0ðfÞ ¼ expð�fÞ: ð12Þ

Let us choose the auxiliary linear operators Lf and Lh of

the following forms:

Lf �
o3

of3
� o

of
; Lh �

o2

of2
� 1: ð13Þ

The procedure outlined in Ref. [10] is exactly followed

to reduce non-linear Eqs. (8) and (9) to n linear sub-

problems containing an auxiliary parameter �h. These are

solved exactly by MATHEMATICA for n ¼ 1; 2; 3. . . and

then homotopy series for f and h are constructed as

follows:

f ðfÞ ¼ f0ðfÞ þ
X1

n¼1

fnðfÞ; ð14Þ

hðfÞ ¼ h0ðfÞ þ
X1

n¼1

hnðfÞ; ð15Þ

where fnðfÞ and hnðfÞ denote the solutions for nth-order

deformation equations of Eqs. (8) and (9), respectively. It

is well-known that convergence of homotopy series relies

on the appropriate selection of parameter �h (see Liao [49]).

In some articles [50–54], the method of finding optimal

value of auxiliary parameter �h was introduced. Following

these, we define the squared residuals of Eqs. (8) and (9) as

follows:

Df
Nð�hÞ ¼

Z1

0

N f

XN

j¼0

fjðfÞ
 !" #

df; ð16Þ

Dh
Nð�hÞ ¼

Z1

0

N h

XN

j¼0

hjðfÞ
 !" #

df: ð17Þ

Now we seek the values of �h for which squared residuals

Df
N and Dh

N are minimum. This can be done through the

command Minimize of the software MATHEMATICA as

explained in Liao [50]. In Tables 1 and 2, we enlist the

optimal values of �h for functions f and h at different

parameter values. It can be seen that reasonably accurate

approximation to the exact solution is found for both low

and high values of embedded parameters.

4 Results and discussion

A non-Fourier heat flux theory is utilized to model the flow

and heat transfer of Oldroyd-B fluid bounded by an

exponentially deforming non-isothermal surface. The

arising local similarity equations have been dealt by well-

known homotopy analysis technique. The accuracy of

analytical scheme is validated by comparing the values of

f 00ð0Þ and h0ð0Þ to those reported by Khan et al. [24] via

numerical approach. Table 3 demonstrates excellent cor-

relation between analytical and numerical results which

establishes the correctness of our code. We now turn our

attention to examine the role of physical parameters on the

flow and thermal fields. In Table 4, we provide numerical

results for temperature gradient at the wall for various

parameter values. In accordance with the study [37], the

similarity solutions remain physically realistic for positive

values of A, that is, heat flows from the stretching boundary

towards the ambient fluid when A[ 0. Wall temperature

gradient has a positive value when parameter A is less than

certain value Ac illustrating that temperature distribution is

strictly convex and forms a ‘‘hill-shaped’’ pattern near the

boundary which is referred as ‘‘Sparrow–Gregg hill’’.

Table 2 indicates that magnitude of h0ð0Þ grows with
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increasing thermal relaxation time. Moreover, the effect of

fluid relaxation time is to enhance the wall temperature

gradient.

Figure 2 shows the evolution of similarity profile f 0 for
various values of Deborah number b1. For comparison

purpose, the figure also includes the results for Newtonian

fluid case. All the curves begin from their wall value 1 and

asymptotically decay to zero outside the boundary layer. It

is revealed that velocity at any location above the sheet

decreases for increasing values of b1. It means that, by an

increase in b1, velocity gradient at the surface is increased.

Also, a considerable reduction in boundary layer thickness

is depicted when b1 enlarges. Physically, large values of b1
implies that stress relaxation is slow in comparison with the

observation time scale. Thus boundary layer thickness does

not develop as fast as for small Deborah number.

Figure 3 presents velocity curve as a function of simi-

larity variable f for varying values of Deborah number b2.
As Deborah number b2 grows, u-velocity component is

seen to increase at any location above the surface. This also

means that momentum penetration depth is increased as the

fluid retardation time grows.

Figure 4 plots temperature curves, represented by hðfÞ,
by changing the Deborah numbers b1 and b2. Our numer-

ical results indicate that transverse velocity component v

decreases with increasing b1 above the sheet. It means that

less fluid is extracted from the region of lower temperature

far from the boundary when b1 is increased. This in turn

reduces the heat transfer rate or the wall temperature gra-

dient. The smaller gradient h0ð0Þ yields thicker thermal

boundary layer as found in the Fig. 4. We also found a

Table 1 Optimal values of �h for

function f and corresponding

squared residuals for different

values of b1 and b2 at 13th-

order of approximations when

A ¼ c ¼ 0:5 and Pr ¼ 1

b1 b2 Optimal �h for f ðgÞ Df
N

Optimal �h for hðgÞ Dh
N

0 0.5 - 0.728 4.12 9 10-13 - 0.932 8.60 9 10-9

0.2 - 0.610 4.70 9 10-11 - 0.724 2.77 9 10-9

0.5 - 0.573 1.15 9 10-10 - 0.683 1.38 9 10-9

0.8 - 0.484 7.98 9 10-10 - 0.546 4.42 9 10-9

1.2 - 0.400 3.99 9 10-9 - 0.458 1.06 9 10-6

0.25 0 - 0.721 6.34 9 10-11 - 0.772 1.62 9 10-10

0.2 - 0.701 1.88 9 10-11 - 0.750 2.66 9 10-9

0.5 - 0.679 8.25 9 10-12 - 0.780 6.22 9 10-9

0.8 - 0.578 1.65 9 10-11 - 0.792 4.97 9 10-8

1.2 - 0.457 1.41 9 10-10 - 0.695 5.96 9 10-7

Table 2 Optimal values of �h for functions f and h and corresponding

squared residuals for different values of A; Pr and c at 13th-order of

approximations when b1 ¼ b2 ¼ 0:5

A Pr c Optimal �h for hðgÞ Dh
m

- 2 1 0.5 - 0.795 1.10 9 10-5

- 1 - 0.766 4.85 9 10-7

0 - 0.706 3.49 9 10-9

1 - 0.649 6.14 9 10-10

2 - 0.605 2.06 9 10-9

0.5 0.4 - 0.642 5.10 9 10-6

0.7 - 0.662 2.54 9 10-7

1.5 - 0.708 1.56 9 10-6

2 - 0.745 2.0 9 10-5

3 - 0.806 2.4 9 10-4

0.5 0 - 0.664 4.74 9 10-8

0.2 - 0.642 1.68 9 10-9

0.8 - 0.675 2.64 9 10-8

1.0 - 0.663 1.05 9 10-7

1.2 - 0.655 3.68 9 10-7

Table 3 Comparison of present computations of h0ð0Þ with those of

Khan et al. [24] when A ¼ 1:5 and b2 ¼ 0

Pr b1 c h0ð0Þ

Numerical [24] HAM

1 0 0.5 - 1.55096 - 1.55097

0.5 - 1.46365 - 1.46365

1 - 1.39552 - 1.39538

0.5 0 - 1.06969 - 1.06954

0.5 - 1.46365 - 1.46365

1 - 1.82605 - 1.82605

0.7 0 - 1.22415 - 1.22405

0.5 - 1.14357 - 1.14342

1 - 1.08247 - 1.08224

0.5 0 - 0.84128 - 0.84012

0.5 - 1.14357 - 1.14342

1 - 1.42710 - 1.42701
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slight reduction in temperature profile h for increasing

values of retardation time k2.
Figure 5 is plotted to inspect the change in temperature

distribution hðfÞ as the dimensionless thermal relaxation

time c is varied. A considerable reduction in temperature

profile is found for growing thermal relaxation time.

In Fig. 6, temperature curves are computed for different

values of temperature exponent parameter A. When

A ¼ �2, heat flows from the quiescent fluid towards the

stretching wall, a phenomenon that is signaled in the plot of

h by the existence of Sparrow–Gregg hills. We observe that

temperature profile at f ¼ 0 is strictly convex when

parameter A is strictly less than some negative value Ac

while it is strictly concave for A[ 0, as also noted in [37].

When A ¼ Ac, the temperature curve represents the adia-

batic situation. As expected, heat penetration in the fluid

considerably decreases for increasing values of A.

Figures 7 and 8 portray the impact of Prandtl number Pr

on the near-surface temperature for A ¼ 0:5 and A ¼ �1:5,

respectively. Temperature profile hðfÞ becomes thinner

when Pr enlarges. This is not surprising since increasing

Prandtl number implies slower diffusion rate which in turn

reduces heat penetration into the quiescent fluid. In Fig. 8,

Table 4 Computational results of f 00ð0Þ and h0ð0Þ for various

parameter values at Pr ¼ 1

b1 b2 c A h0ð0Þ

0 0.25 0.25 1.5 - 1.39855

0.2 - 1.36866

0.4 - 1.34187

0.6 - 1.31751

0.25 0.1 0.5 - 0.84531

0.2 - 0.86236

0.4 - 0.89124

0.6 - 0.91478

0.25 0 - 0.77507

0.2 - 0.85515

0.4 - 0.92727

0.6 - 1.00324

0.25 0 - 0.59503

0.7 - 0.97376

1 - 1.23636

1.5 - 1.36171

1 0

1 0.5

1 1.2

1 1.8

2 0.25

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

f'

Fig. 2 Profiles of velocity field f 0ðfÞ for different values of b1

2 0

2 0.5

2 1.2

2 1.8

1 0.25

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

f'

Fig. 3 Profiles of velocity field f 0ðfÞ for different values of b2

2 0, 0.5, 1.2, 2

Pr 1, A 0.5, 0.25
1 0

1 1

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4 Profiles of temperature field hðfÞ for various values of b2

1 2 0.25,
Pr 1, A 0.5

0
0.4
0.8
1.2
1.6

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5 Profiles of temperature field hðfÞ for various values of c
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Sparrow–Gregg hills are evident just in the wall region and

height of these hills increase with increasing Pr. Similar

trend is also noticed in [37] for the Newtonian fluid case.

Figure 9 demonstrates the variation in wall temperature

gradient h0ð0Þ with the change in Prandtl number Pr for

different values of A. The black curve is computed at A ¼
Ac ¼ �0:85 for which h0 0ð Þ ¼ 0. This illustrates that the

stretching surface becomes adiabatic when A ¼ �0:85.

When A\Ac ¼ 0:85, wall temperature gradient h0ð0Þ
becomes positive for any value of Pr which is an indicator

of the reverse heat flow near the wall region. Irrespective of

the choice of A, the profile of h0ð0Þj j continues to grow as

Pr increases.

Figure 10 displays the graphs of h0ð0Þ versus dimen-

sionless thermal relaxation time c for varying Deborah

number b1. The solid and dashed curves correspond to

b2 ¼ 0 and b2 ¼ 1, respectively. Interestingly, a linear

growth in the magnitude of h0ð0Þ with increasing b1 is

apparent. It should be noted here that variation in h0ð0Þ
with b1 increases in magnitude with increasing thermal

relaxation time.

5 Concluding remarks

An analytical study is performed for flow of an incom-

pressible Oldroyd-B fluid bounded by an exponentially

deforming sheet. Oldroyd-B fluid model is considered to be

1 2 0.25
0.25, Pr 1

A 2
A 1
A 0
A 0.5
A 1
A 1.5

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6 Profiles of temperature field hðfÞ for different values of A

Pr 0.4
Pr 0.72
Pr 1
Pr 1.5

1 2 0.25,
A 0.5

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7 Profiles of temperature field hðfÞ for different values of Pr

when A ¼ 0:5

1 2 0.25,
A 1.5

Pr 0.4
Pr 0.72
Pr 1
Pr 1.5
Pr 2

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8 Curves of wall temperature gradient h0ð0Þ for different values
of Pr when A ¼ �1:5

1 2 0.5

A 2, 1.5, 0.85, 0.5, 0, 0.5, 1, 1.5
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adequate in flow description of many polymeric liquids.

Thus current analysis has obvious role in polymer extrusion

and metal working processes. The temperature at the sur-

face is assumed to grow or decay exponentially with the

horizontal distance x. The main motivation was to inspect

thermal field when the Cattaneo–Christov heat flux theory

is involved. Important observations of this work are listed

below:

• Both u-velocity component and boundary layer thick-

ness decrease/increase when stress relaxation/retarda-

tion time is enhanced.

• The curvature of temperature field h near the surface is

strictly convex when temperature exponent parameter A

is chosen beyond a certain value Ac that depends on the

choice of other parameters. In this case, ‘‘Sparrow–

Gregg hills’’ appear in the curves of hðfÞ.
• When A ¼ Ac, the stretching surface is ‘‘adiabatic’’ for

any considered Prandtl number Pr.

• Irrespective of the choice of parameter A, heat pene-

tration depth reduces and wall temperature gradient

grows as Pr enlarges.

• A considerable decrease in temperature distribution is

found when thermal relaxation time is increased.

• For increasing fluid relaxation time, thermal boundary

layer becomes thinner and wall temperature gradient

enlarges.

• The influences of parameters appear similar in both

Cattaneo–Christov and Fourier models. However, the

effects are prominent in Cattaneo–Christov model

when compared with Fourier model.

• Present analytical findings appear to be consistent with

the results of available articles in limiting cases.

• Following studies [55] and [56], current problem can be

investigated for a nanoparticle working fluid in future.

Further, this work can be revisited to focus on optimal

results for drag coefficient and heat transfer rates (see

[57] and [58] for details).
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