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Abstract
Plentiful supply of coolant might enhance the machining cost and also generates environmental hazard. As a result,

substitute methods are required to eliminate the problems encountered during use of coolant. In this investigation, the

impact of cutting speed, feed and lubrication conditions (dry: no lubrication, oil: machining is performed with groundnut

oil and nano fluid: machining performed with copper nano fluid) on surface roughness, tool wear and chip morphology in

turning of H 11 steel with minimum quantity lubrication (MQL) were examined. Experiments were conducted using L18

orthogonal array. The results reveal that copper nanofluids with MQL provide a substitute for dry and oil machining.

Response surface methodology has been used to derive optimal values and mathematical models. Tool wear was reduced

by 66% and surface roughness by 40% while machining with copper nano fluids. The surface roughness and tool wear were

decreased under optimal machining conditions. Generation of large notched tooth in chips has been minimised with copper

nano fluids. Furthermore, the morphology of the chips were analysed for dry, oil and nano fluid under scanning electron

microscope to observe the texture created.

Keywords Copper � Nano fluids � Minimum quantity lubrication � Response surface method

1 Introduction

In paper [1], researchers observed heat generated on the

surfaces machined is eliminated by the use of cutting fluid.

Second, surplus utilisation of cutting fluid has been iden-

tified as contamination to the environment. MQL is a

technique that allows effective lubrication between the

contacted elements in the cutting zone. Investigation of

nanosolid as lubricant is presented in paper [2]. It was

observed that nanosolid lubricant reduces the roughness,

cutting temperatures and tool flank wear in turning on AISI

1040 steel. In paper [3], it was observed that addition of

CaF2 solid lubricant acts as self-lubrication film and paved

a way for reducing the friction coefficient at the tool chip

interface in dry cutting. In paper [4], the effect of surface

roughness in hard turning on bearing steel was executed.

They found surface roughness decreases with use of solid

lubricants. Examinations of MQL under turning were pre-

sented in paper [5]. The authors reported varying the feed

rate and cutting length minimised the wear on the tool.

Further, they also observed excess tool wear at the rake

face is attained through MQL. A research on paper [6]

revealed diamond nano fluid increases the lubrication and

guides a way in reducing the cutting force. Also, ball

bearing effect of bigger size nano particles minimises the

surface roughness in micro grinding SK-41C tool steel.

Assessment with the use of MQL is presented in paper [7].

It was found that cutting temperature, chip reduction

coefficient, tool wear, surface finish and dimensional

deviation were minimised on AISI 1040 steel. They also

observed that cutting force was reduced by 5–15% due to

preservation of cutting edges during machining. It was

found in paper [8] that MQL with vegetable oil minimises

the cutting temperature, sustains the edges of the tool and

surface roughness in turning AISI 1060 steel. A research
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executed in turning AISI 316 was presented in paper [9]. It

was noticed that MQL plays a vital role in obtaining low

tool wear. Further, they suggested that surface roughness

can be reduced as a result of excellent lubrication at the

tool-workpiece zone. A study on use of Al2O3 nano par-

ticles and vegetable oil under MQL in turning inconel

alloys was performed in paper [10]. It was observed that

nano particles have greater influence in reducing the tem-

perature, surface roughness, cutting forces and wear on the

tool. Experimental work with MQL in turning on inconel

718 is presented in paper [11]. They noticed that surface

roughness, cutting forces were reduced and tool life has

been increased with molybdenum disulphide as lubricant.

Investigation of MQL is presented in paper [12].

Researchers identified cutting force and surface roughness

were minimised and improved tool life was detected with

castor oil in turning hardened steel. In paper [13],

researchers observed cutting forces, temperature, tool wear

and surface roughness of machined surface were minimised

with application of graphite nano fluid as coolant in turning

AISI 1040 steel. Examination on effect of various

nanofluids like ZrO2, CNTs, ND, MoS2, SiO2, Al2O3 is

presented in paper [14]. They established Al2O3 reduced

the surface roughness and specific grinding energy in

grinding on nickel alloys. Experimental results in turning

AISI 1040 steel with Al2O3 nanofluids were represented in

paper [15]. They found a reduction in surface roughness

tool wear and cutting force. Assessment on carbon nano

tubes as nano lubricant with MQL is presented in paper

[16]. They observed cutting temperature and tool wear

were reduced by varying the concentration of nanotubes in

turning AISI 1040 steel. In paper [17], researchers noticed

high thermal conductivity of MWCNT as nanolubricant

eliminated the heat generated; hence surface roughness,

tool wear and cutting temperature were reduced in turning

AISI D2 steel. Machining with MQL under MWCNT is

presented in paper [18]. They noticed surface roughness

and tool wear were reduced in high-speed milling of AISI

1050 and AISI P21 because of high thermal conductivity of

MWCNT as nano fluid. A study of use of MoS2 nanofluids

is presented in paper [19]. They exposed cutting force,

cutting temperature and surface roughness lowered in

turning AISI 1040 steel. Assessment of Al2O3 nanofluids

with MQL is presented in paper [20]. They observed Al2O3

nano fluid reduces the grinding force, grinding temperature

and surface roughness in grinding AISI 52100. In paper

[21], authors confirmed nanographite fluids through MQL

minimised surface roughness, tool wear, cutting tempera-

ture and cutting force in turning AISI 1040 steel. Exami-

nation in turning on C45E steel under MQL and high-

pressure jet assisted machining is presented in paper [22]. It

was noticed that surface roughness, tool wear and cutting

force were minimised with high-pressure jet assisted

machining. In paper [23], authors investigated by sus-

pending Al2O3, SiO2 and TiO2 with vegetable oil and water

as emulsion. They noticed thermal conductivity of nano

fluid increases with increase in concentration of nano

particles. Further, SiO2 nano particles disclose maximum

specific heat when compared with Al2O3 and TiO2. A study

in paper [24] on the rheological behaviour of nano fluids

showed nano particles with spherical shape show newto-

nian behaviour and nano tubes exhibit non-newtonian flow

performance. In paper [25], experiments were executed

with hybrid nano fluid of alumina-graphene nanoplatelets

under minimum quantity lubrication (MQL) in turning

AISI 304. It was observed that surface roughness, cutting

force, thrust force and feed force were considerably

reduced. It was observed in paper [26] that inclusion of

copper oxide in water during turning process reduces

temperature and improves the life of the tool. In paper [27],

the impact of alumina-graphene as hybrid nano fluid

reduced flank wear and temperature in turning AISI 304. It

was reported in paper [28] that a considerable reduction in

surface roughness, cutting force, feed force and thrust force

was obtained in turning AISI 304 with alumina–molybde-

num disulphide as hybrid nanofluids. It was concluded in

paper [29] that use of SiO2 nano fluids with MQL has

minimised surface roughness, tool wear and cutting force

in turning AISI 1040 steel. Investigation of MQL is pre-

sented in paper [30]. The authors noticed TiO2 nano par-

ticles minimised surface roughness, tool wear and cutting

fluid in turning AISI 1040 steel.

Earlier analysis manifest that bunch of experimental

work were performed with nanofluids under MQL. Gen-

erally the research was focussed on identifying the thermal

conductivity performance of nanofluids on various envi-

ronmental situations and the experiments were authorised

by performing turning experiments. In turning, tool wear,

surface roughness and chip formation are essential

parameters to be considered. The use of copper nano fluids

in turning on H 11 steel has not been dealt in detail by the

previous researchers. Hence, a requirement to examine

these features for extensively used H 11 steel. Therefore,

the purpose of this manuscript was to explore the optimal

machining condition in turning of H 11 steel with copper

nanofluids under MQL using response surface method.

2 Experimental setup

2.1 Nanofluids

The current research has been executed using copper nano

fluids with ethylene glycol as the base fluid. The compo-

sition includes 38.7% carbon, 9.7% hydrogen and 51.6%

oxygen. The average size of the copper nano particles used
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was 50 nm (Fig. 1). The nano fluid is prepared by adding

500 ml of ethylene glycol with 1 g of copper nano parti-

cles. The sodium dodecylbenzene sulfonate (SDBS) with

1/10 weight of the nano particles was added as surfactant to

enhance the steadiness of the fluid. The constancy of the

mixture was achieved by ultrasonication (Fig. 2) for 1 h.

Further, a magnetic stirring is performed for 30 min. The

nanofluid prepared was uniformly mixed with no settle-

ment of nano particles at the bottom of the tank. The

thermal conductivity of the nanofluids was measured by

hot wire method at temperature at 21 �C was found to be

0.62 W/mK.

2.2 Design of experiments

The governing process parameters selected for experi-

mental work consist of cutting speed, feed and depth of cut.

Initial machining test are performed to minimise the tol-

erable range of process parameters. The two process

parameters are varied at three levels, one parameter varied

at two levels. Hence, an L18 orthogonal array (OA) was

selected. Two trials were recorded for the responses during

machining. The experimental trials were performed hap-

hazardly to minimise the methodical fault. The process

parameters with their levels are listed in Table 1. The

measured responses are listed in Table 2.

2.3 Experimentation

Experiments were performed to examine the performance

of dry, nano fluids and oil in turning process. The experi-

ments were carried out twice and the averages of the values

are considered as responses. The experiments are con-

ducted on a computer numerical control (CNC) turning

centre, of make super jobber with swing over the bed of

500 mm with depth of cut 1 mm as shown in Fig. 3a and

enlarged view of the machining area is enclosed in Fig. 3b.

The details on the experimental work are enclosed under

Table 3.

2.4 Work material

The work material used is H 11 steel with Diameter 20 mm

and Length 100 mm. The chemical composition includes

C = 0.38%, Si = 1%, Mn = 0.4%, P = 0.02% and

S = 0.02%, Cr = 5.1%, Mo = 1.12% and V = 0.4%. It

has an excellent toughness and widely preferred in ejector

pins, tool holders, hot punches, forging dies, hot work

punches, hot shear blades and extrusion tools.

2.5 Instruments used for responses

The surface roughness of the machined surface was mea-

sured using a contact type Taylor Hobson tester of make

‘surtronic S-128’ with cut off length 0.8 mm and traverse

length 4 mm. The average roughness (Ra) is selected as it

is the most preferred roughness. The responses are mea-

sured twice and the averages of the values are considered

for the study. The wear at the flank of the tool insert was

analysed under a Video measuring system (VMS-2010F). It

has integrated exceptional resolution CCD camera, DC

3000 data processor and maximum enlargement ability of

190x. The average flank wear land width (VB = 0.25 mm)

was taken as the tool wear criteria. Further, scanning

electron microscope (SEM) of make HITACHI S-3400N

was used to examine the morphology of the chips gener-

ated under dry, oil and nanofluid environments.

2.6 Minimum quantity lubrication arrangement

MQL comprises a tank, pump, compressor, control valves,

gauges to control pressure, mixing chamber and nozzle

Fig. 1 SEM image of nanoparticles

Fig. 2 Sonicator setup

Table 1 Process parameters and levels

Symbol Factors Unit 1 2 3

f Feed (mm/rev) 0.1 0.2 –

B Environment – Dry Oil Nano fluid

Vc Cutting speed (m/min) 90 149 209
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(Fig. 4). The amount of nano fluid is managed by the

control valve throughout the machining. Air from com-

pressor was mixed with the nano fluids in the mixing

compartment. Therefore, combinations of compressed air

Table 2 Taguchi experimental

design for L18 array (turning)
S. no. Feed (f) (mm/rev) Environment Cutting speed (Vc) (m/min) Ra (lm) Flank wear (mm)

1 0.1 Dry 90 6.2225 0.0632

2 0.1 Dry 149 5.4105 0.1241

3 0.1 Dry 209 3.7105 0.1425

4 0.1 Oil 90 4.1275 0.0392

5 0.1 Oil 149 4.5370 0.0526

6 0.1 Oil 209 1.7525 0.0727

7 0.1 Nano fluid 90 1.3795 0.0215

8 0.1 Nano fluid 149 1.6705 0.0298

9 0.1 Nano fluid 209 0.9617 0.0303

10 0.2 Dry 90 5.7640 0.1027

11 0.2 Dry 149 6.1575 0.1373

12 0.2 Dry 209 4.7945 0.1818

13 0.2 Oil 90 2.1210 0.0574

14 0.2 Oil 149 1.6235 0.0894

15 0.2 Oil 209 1.4115 0.0702

16 0.2 Nano fluid 90 1.4605 0.0335

17 0.2 Nano fluid 149 1.4260 0.0428

18 0.2 Nanofluid 209 1.5025 0.0495

Fig. 3 a CNC machining centre. b Enlarged view of machining area

Table 3 Experimental details

Machining type Turning

Machine details

Machine model Super Jobber

Tool holder PCLNL 2525M 12

Spindle motor power 11 kW

Spindle speed (maximum) 3500 rpm

Cutting tool (insert) employed

Cutting tool (insert) Carbide

Cutting tool (insert) shape C

Relief angle 3�
Nose radius 0.8 mm

Orthogonal rake angle - 6�
Orthogonal clearance angle 6�
Principle cutting edge angle 75�

Sonicator details

Model MAXSELL- MX35SH

Tank size 152 9 87 9 65 mm3

Ultrasonic power 35 W

Operating frequency 50 Hz

Voltage 220 V

Time 360 s

MQL requirements

MQL (wet lubrication) Groundnut oil

MQL (nanofluids) Copper

MQL flowrate 7 mL/min

Air pressure 3 bar
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with nano fluids were focussed between tool and work

piece during machining process.

3 Model and analysing method

Response surface methodology (RSM) is a collection of

mathematical and statistical method, which is used for

modelling and investigation of problems where a response

of interest is disposed by numerous factors and the inten-

tion is to optimise the output considered. RSM is used to

minimise or maximise the quality features and afford a link

involving the process parameters and the output variables

measured [31]. The initial move is RSM to find out an

appropriate estimation for the proper functional link con-

necting response of interest(y) and set of autonomous

variables (X1, X2,… Xn). A polynomial second-order

equation for finding the values of the regression models

through Design Expert 7.0 is [32, 33]

y ¼ b0 þ
Xk

i¼1

bixi þ
Xk

i¼1

bix
2
i � e; ð1Þ

where y is the corresponding response, xi indicates values

of the ith machining parameter, b denotes regression

coefficients and e is the error obtained during machining.

The procedure involved in RSM is shown below.

1. Generate a quadratic model for the responses measured

to identify the performance in system domain.

2. Analysis of variance (ANOVA) is performed to

determine the most dominating parameters.

3. Create 3-dimensional response graphs to identify the

impact of different process parameters on the

responses.

4. Desirability analysis is performed to reveal the optimal

situations.

5. Finally, confirmation test is carried out to validate the

results obtained.

4 Results and discussions

4.1 ANOVA for tool wear

An optimal design technique used to interpret results upon

statistical process is RSM. The backward elimination

technique was adopted to eradicate the control parameters

not significant. ANOVA (Table 4) shows the affect of

control parameters on the responses. From Table 4, the

model 0.0001\ 0.05 implies the model generated had

gained control on the responses. Likewise, control param-

eters such as environment which has an F value of 135.31

choose the responses. The other parameters like cutting

speed and feed are least significant. The capability of the

model was analysed with the nearness of the R2 value.

From Table 5, the R2 = 0.98 close to 1 which is required

[34] and adjusted R2 = 0.95 was attained. Adequate pre-

cision used to calculate the signal-to-noise ratio. Normally,

value[ 4 recommends sufficient signals [32, 35]. The

value achieved was 20.89. The linear model formed in

terms of actual factors for various environments of dry, oil

and nanofluids describing the tool wear is as follows:

Tool wear for dry condition ¼ �0:070794þ 0:36398
� f þ 1:35252E�003

� Vc � 3:83768E�004

� f

� Vc �2:10519E�006

� Vc2

ð2Þ

Tool wear for oil condition ¼ �0:042370þ 0:23231
� f þ 8:81378E�004

� Vc �3:83768E�004

� f

� Vc �2:10519E�006

� Vc2

ð3Þ

Tool wear for nanofluids ¼ 0:053807þ 0:20464� f

þ 7:91445E� 004� Vc

� 3:83768E� 004� f

� Vc � 2:10519E� 006

� Vc2:

ð4Þ

The normal plot of residuals on the tool wear is covered

in Fig. 5. In general, the points that lie or are close to

straight line indicate the residuals show signs of a normal

distribution. Figure 5 shows that the residuals that fall on a

straight line indicate errors are scattered evenly. Thus the

linear model created is originated is good [36]. A graph of

actual Vs predicted value (Fig. 6) is used to locate a value

or set of values that cannot be recognised by the model

Fig. 4 Minimum quantity lubrication method
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which indicates each value is separated consistently by a

line inclined at 45� [34].

4.2 Effect of process parameters on tool wear

The consequences of the process parameters such as cut-

ting speed, feed and environment (dry, oil and nano fluid)

on tool wear, plot consisting of process parameters and tool

wear connecting quadratic model Vs predicted values has

been constructed. The result of environment and feed on

tool wear with constant depth of cut 1 mm is enclosed in

Fig. 7. It is observed that altering in environmental con-

ditions with nano fluid decreases the tool wear.

The 3-dimensional response surface graph achieved for

tool wear on cutting speed and feed (Fig. 8) reveals tool

wear is low for cutting speed 209 m/min with feed 0.1 mm/

rev. The 3-D plot (Fig. 8) shows that increase in feed rate

increases the tool wear. This occur as high feed paves a

way to increase the cutting temperature which causes a

partial machining of the work material resulting in increase

of surface roughness [37]. This rough surface creates an

increase in wear on the insert [38].

Table 4 ANOVA for tool wear
Source Sum of squares DOF Mean square F value P value Remarks

Model 0.0351 10 0.0035 36.9268 \ 0.0001 Significant

f-feed 0.0020 1 0.0020 20.7928 0.0026

B-environment 0.0257 2 0.0129 135.3106 \ 0.0001

Vc-cutting speed 0.0044 1 0.0044 46.0350 0.0003

fB 0.0002 2 0.0001 1.1428 0.3720

fVc 0.0000 1 0.0000 0.1644 0.6972

BVc 0.0026 2 0.0013 13.5169 0.0039

Vc2 0.0002 1 0.0002 2.3350 0.1703

Residual 0.0007 7 0.0001

Cor total 0.0358 17

Table 5 R-squared and adequate precision for TOOL WEAR

SD 9.75E-03 R-squared 0.9814

Mean 0.074 Adj R-squared 0.9548

C.V. % 13.1 Pred R-squared 0.8783

PRESS 4.36E-03 Adeq precision 20.892

Fig. 5 Normal probability plot of residuals for tool wear

Fig. 6 Plot of predicted vs actual value for tool wear
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4.3 Desirability analysis for tool wear

The desirability analysis shifts the response values in the

series connecting 0 and 1. The intention of the analysis to

decrease the tool wear, therefore, ‘lower-the-better’ is

chosen. In desirability approach, ‘‘0’’ signifies response is

poor and ‘‘1’’ suggests response is good [31]. The optimal

machining values were attained for turning process with

maximum value of desirability index. The ramp graph

(Fig. 9) with desirability value B 1 is selected. The

selected levels of optimal turning process were

Feed = 0.1 mm/rev, Environment = 3 (nano fluids) and

cutting speed = 209 m/min. The requisite height for each

turning parameters was designated by a point (Fig. 9) on

each ramp and its elevation emphasises the significance of

desirability. The values positioned at an utmost height on

the plot signify an exceptional desirability value attained.

The bar graph (Fig. 10) expresses a desirability value of

0.96 close to 1.

4.4 Effects of environments on tool wear

Tool wear results in failure in the unique structure of the

tool which results in poor finish or breakage of the tip of

the tool. The most important wear which determines the

life of the cutting tool is the flank wear, as it plays an

essential position on cost incurred due to machining and

quality of the component [39]. Further, it increases the

surface roughness, cutting forces and other problems [40].

The tool wear considered in the current research is flank

Fig. 7 Effect of environment

and feed on wear

Fig. 8 3D response surface plot

for wear
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wear. The temperature formed in the primary zone and

secondary zone produces wear and breakage in the cutting

tool. In dry conditions, machining is performed for optimal

conditions Feed = 0.1 mm/rev, cutting speed = 209 m/

min; due to non-availability of the cutting fluid, constant

abrasion of the work material on the cutting tool favours

formation of flank wear (Fig. 11a) [41]. The major con-

stituent of vegetable oil is triglyceride that has

monomolecular glycerol and three molecular fatty acids.

The fatty acids are of two types: one is saturated and other

one in unsaturated fatty acid. Generally, vegetable oil has

excess amount of unsaturated bond which reduces the

temperature. In oil conditions, machining is performed for

optimal conditions feed = 0.1 mm/rev, cutting

speed = 209 m/min. During machining, the presence of

unsaturated bond minimises the temperature at the flank

face. This paves a way in minimising the wear by abrasion,

thereby preserving the rigidity of the tool. This tends to

lessen the development of flank wear [42] under MQL as

shown in Fig. 11b.

Under nanofluid conditions, machining is performed for

optimal conditions Feed = 0.1 mm/rev, cutting

speed = 209 m/min. It is observed that machining with

nano fluid under MQL shows that it has heat diffusion

movement with the base fluids. This movement improves

the heat transfer ability during machining [42]. Addition-

ally, copper has better thermal conductivity and improved

heat transfer coefficient [43]. Further, it has excellent

conduction and convection properties compared to oils.

Thus it provides a good lubrication to the cutting tool and

reduces the flank wear [41] as shown in Fig. 11c.

4.5 ANOVA for surface roughness

RSM utilises a statistical technique to connect the turning

parameters with the responses and form second-order

polynomial equations [44]. ANOVA (Table 6) was calcu-

lated using backward elimination method to eliminate the

process parameters that are not important connecting the

turning process with the responses. The value of

P[F (Table 6) for model is 0.0001\ 0.05 suggests the

developed model contains significant impact on surface

roughness. Similarly, P[F for parameters like environ-

ment and cutting speed are significant. But, value of

P[F for feed attained[ 0.05 suggests that it is the least

dominating parameter on reducing the surface roughness.

ANOVA (Table 6) discloses that environment is the most

important parameter on reducing the surface roughness and

Fig. 9 Ramp plot for optimised trial

Fig. 10 Bar graph for optimized

trial
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cutting speed offers minimal involvement on reducing the

surface roughness. The F value of the model obtained for

surface roughness is 19.83 (Table 6). This result illustrates

the significance of process parameters on the quality

characteristics in turning process. The ability of the model

was scrutinised with the closeness of the R2 value. From

Table 7, the R2 = 0.95 close to 1 which is enviable [34]

and adjusted R2 = 0.90 was obtained. Adequate precision

used to evaluate the signal-to-noise ratio and the value

achieved was 12.33. Generally, value[ 4 suggests enough

signals [32, 35]. The linear model created in terms of actual

factors for different environment of dry, oil and nanofluids

describing the surface roughness is as follows:

Surface roughness Rað Þ for dry condition

¼ 9:15392� 10:81068� f � 0:030113� Vc

þ 0:10303� f � Vc ð5Þ

Surface roughness Rað Þ for oil condition
¼ 9:47429� 32:92234� f � 0:028448� Vc

þ 0:10303� f � Vc ð6Þ

Surface roughness Rað Þ for nanofluids
¼ 3:75667� 14:12801� f � 0:017044� Vc

þ 0:10303� f � Vc: ð7Þ

The normal plot of residuals on the surface roughness is

enclosed in Fig. 12. Generally, if the points fall on a

straight line, it suggests that residuals exhibit a normal

distribution. Figure 12 shows that the residuals fall on a

straight line means that the errors are circulated normally.

Fig. 11 Tool wear

Table 6 ANOVA for surface

roughness
Source Sum of squares DOF Mean square F value P value Remarks

Model 60.6 9 6.73 19.83 0.0002 Significant

f-feed 0.68 1 0.68 2.02 0.1933

B-environment 49.05 2 24.53 72.24 \ 0.0001

Vc-cutting speed 4.04 1 4.04 11.89 0.0087

fB 4.27 2 2.13 6.28 0.0229

fVc 1.13 1 1.13 3.32 0.1059

BVc 1.43 2 0.72 2.11 0.1836

Residual 2.72 8 0.34

Cor total 63.32 17

Table 7 R-squared and adequate precision for surface roughness

SD 0.5827 R-squared 0.9571

Mean 3.1130 Adj R-squared 0.9088

C.V. % 18.7177 Pred R-squared 0.7912

PRESS 13.2196 Adeq precision 12.3300
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This implies linear model generated is found to be agree-

able [36]. A plot of actual Vs predicted values are given in

Fig. 13. This assists to find a value or set of values that

cannot be identified by the model. From Fig. 13 it is

noticed that all the values divided uniformly by inclined

line at 45� [34].

4.6 Effect of process parameters on Surface
roughness

To examine the impact of the process parameters such as

cutting speed, feed and environment (dry, oil and nano

fluid) on surface roughness, graph involving process

parameters and surface roughness linking quadratic model

predicted values has been created. The effect of environ-

ment and cutting speed on surface roughness (Ra) are

enclosed in Fig. 14. It reveals that change in environmental

conditions mainly with nano fluid decreases the surface

roughness. Further, increase in cutting speed (level 3) also

favours reduction in surface roughness. The surface

roughness value is minimised at cutting speed of 209 m/

min and environment (nano fluid). Figure 15 shows the

interaction of environment and feed on surface roughness.

The surface roughness increases with increase in feed

because high feed enhances the chatter. This paves a way

to increase in roughness values on the machined part. The

surface roughness value is minimised at feed of 0.1 mm/

rev and environment (nanofluid). Hence from the plot

(Figs. 14, 15) it was noticed that surface roughness values

are reduced at cutting speed of 209 m/min, feed 0.1 mm/

rev and environment (nano fluid).

The 3-dimensional response surface plot obtained for

surface roughness on cutting speed and feed (Fig. 16)

shows that surface roughness is low for cutting speed

209 m/min with feed 0.1 mm/rev. ANOVA suggests cut-

ting speed are secondary dominating variables on reducing

the surface roughness. The 3-D plot shows that increase in

cutting speed paves a way in reducing the surface rough-

ness [38, 45]. The formation of built-up-edges (BUE) plays

a vital role in minimising the surface roughness. During

machining, chip generated from the work material stuck to

the face of the tool and becomes rigid resulting in BUE.

Increase in cutting speed generates high temperature

together with stress developed eliminate the BUE. This

results in minimising the surface roughness value [38, 45].

4.7 Desirability analysis for surface roughness

The desirability analysis transfers the response values in

the range connecting 0 and 1. The objective of the analysis

was to reduce the surface roughness; hence ‘lower-the-

better’ is preferred. In desirability approach, ‘‘0’’ indicates

response is poor and ‘‘1’’ suggests response is good [31].

The optimal machining values were obtained for turning

process with high value of desirability index. The ramp

graph (Fig. 9) with desirability value B 1 is selected. The

selected levels of optimal turning process were

Feed = 0.1 mm/rev, Environment = 3(nano fluids) and

cutting speed = 209 m/min. The required level for each

Fig. 12 Normal probability plot of residuals for Ra value

Fig. 13 Plot of predicted vs actual response for Ra value
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turning parameters was designated by a point (Fig. 9) on

each ramp and its tallness implies the importance of

desirability. The values located at a maximum height on

the plot imply an excellent desirability value attained. The

bar graph (Fig. 10) directs to a desirability value of 0.96

close to 1 is attained.

4.8 Effect of environments on surface roughness

From the response surface method the optimal machining

conditions (Fig. 9) obtained were Feed = 0.1 mm/rev,

Environment = 3(nano fluids) and cutting speed = 209 m/

min. ANOVA (Table 6) shows that environment is the

most dominating factor among the parameters considered.

For the study dry, oil and nano fluids are measured. The

machining is performed for optimal conditions

Feed = 0.1 mm/rev, cutting speed = 209 m/min and

environment (dry) condition. Due to absence of coolant,

high abrasion and excessive stress are generated between

tool and the work material [46]. Further, the tool loses its

sharpness rapidly due to absence of coolant [41]. These

factors tend to increase the surface roughness on the

machined part. The roughness profile obtained for dry

conditions which has a roughness value of 3.71 lm

Fig. 14 Effect of environment

and cutting speed on Ra

Fig. 15 Effect of environment

and feed on Ra
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(Table 2) is shown in Fig. 17. The roughness value is

increased by 56% compared to oil and 75% compared to

nanofluids.

Machining is executed with oil under MQL found that

surface roughness is reduced compared to dry conditions.

In MQL, the oil has the ability to penetrate deeper at the

tool-chip interface and thus reduces the temperature.

Additionally, low tool-chip contact duration makes MQL

in front of tool-chip contact area and provides effective

lubrication [47]. The roughness profile obtained for oil

conditions which has a roughness value of 1.62 lm
(Table 2) is shown in Fig. 18. The roughness value is

decreased by 56% compared to dry machining.

Nanoparticles have properties like tiny size and more

surface power. Nanoparticles once mixed with base fluids

form a thin liquid film with numerous atoms [48]. The

thermal conductivity of this liquid film is stronger than of

base fluid used. This paves way in increasing the thermal

conductivity and removes the heat generated on the

machining zone [42]. Additionally, copper nanoparticles

exhibit high thermal conductivity and good heat transfer

coefficient [46]. This provides a way in creating an even

contour achieved (Fig. 19) during machining process and

has a roughness value = 0.96 lm. The surface roughness

has been decreased by 74 and 56% compared to dry and oil

conditions.

4.9 Effects of environments on chip morphology

The photographs of the chips taken under scanning electron

microscope (SEM) for optimal settings under dry

machining for Feed = 0.1 mm/rev, cutting

Fig. 16 3D response surface

plot for surface roughness

Fig. 17 Surface roughness

profile for dry machining
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speed = 209 m/min as shown in Fig. 20a. The chip

attained is twisted with blue in colour due to increase in

temperature. This result in wear of the inserts and creating

a flank wear [47]. Further, bulky ragged teeth (Fig. 20a)

attained revealing a huge cutting process at the machining

areas [49] which favours for increase in surface roughness

value. Machining with optimal settings for

Feed = 0.1 mm/rev, cutting speed = 209 m/min under oil

lubrication with MQL shows that oil has the ability to form

a slim boundary [50] on the tool-work zone, resulting in

minimising the temperature at the cutting zone. Thus, a

notched tooth smaller (Fig. 20b) compared to dry

machining is generated. The existence of MQL under

nanofluids with optimal settings (Feed = 0.1 mm/rev,

cutting speed = 209 m/min) shows that chips were white

in colour showing good cooling and effective lubrication

[47] of the nanofluids. Further, nanoparticles improve the

chilling action and have good wettability [51]. These fac-

tors reduce the temperature and produce a smaller notched

tooth (Fig. 20c) compared to dry and oil machining.

4.10 Effect of on process parameters
on the responses

The flank wear increase with increase in feed rate

(Fig. 21a). It was believed that high feed rate results in

Fig. 18 Surface roughness

profile for oil machining

Fig. 19 Surface roughness

profile for nano fluid machining
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built up edges (BUE) developed at the flank face, hence the

tool not capable to execute effective machining and thus

increasing the width of flank. Similarly, it was observed

that increase in feed rate increases the roughness value

(Fig. 21a). This is due to more friction, maximum contact

area and large amount of normal forces acting on the work–

tool interface. These factors make the chip adhere to the

face of the tool and thereby decreasing the material

removal action, hence increasing the surface roughness on

the machined part.

Increase in cutting speed increases the flank wear

(Fig. 21b). Initially, during machining the chip from the

work material grab on the rake surface of the tool and in

due course gets toughened. Finally, BUE is produced [52].

These BUE protects the tool to some extent. On the other

hand, increase in cutting speed creates high temperature

and stress, thus eliminates the BUE developed. Therefore,

an increase in wear at the flank at the tool in noticed [53].

The surface roughness decreases with increase in cutting

speed [54] as shown in Fig. 21b. When cutting speed

increases, the unsteady BUE are eradicated and simulta-

neously chip fracture are minimised [52]. Thus, an efficient

material removal mechanism is obtained which pave a way

in reducing the roughness value. Generally it is noticed that

BUE has the control on surface finish and wear on the tool

[55].

Figure 21c shows the effect of environment such as dry,

oil and nano fluids on the responses. Under dry condition,

due to absence of lubrication, high friction and stress are

induced. These lead to increase in roughness value of

5.4 lm (Fig. 21c). With oil lubrication, the fatty acids in

oil form a thin film at the tool–work interface [48] and

these protect the edges of the wear to some extent and

reduces the surface roughness to 2.5 lm (Fig. 21c). With

nano fluids, it was believed that copper nano fluids roll

between the tool and the work material. This rolling action

provides a way in decrease of friction in the machining

area, thereby reducing the roughness value to 0.96 lm.

5 Validation test

The validation test was conducted to approve the technique

of RSM. The group of machining parameters related to

setting f2B2VC2 was selected as the initial machining sit-

uation. The responses (surface roughness and tool wear)

attained with initial parameter condition were evaluated

against with optimal parameter settings determined by

RSM (Table 8). The initial parameter setting (f2B2VC2)

Fig. 20 Chip Morphology
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has roughness value of 1.62 lm which favours in

increasing the roughness value. The surface roughness

value attained with optimal trial (f1B3VC3) is 0.96 lm
which favour in reducing the roughness value. A reduction

in surface roughness of 40% noticed with optimal settings.

The tool wear (Flank) attained with initial settings are

0.089 mm. In addition, the flank wear observed with

optimal conditions is 0.03 mm. A reduction of 66% on tool

wear was achieved with optimal settings. Hence, a con-

siderable reduction in surface roughness and tool wear

under optimal conditions were noticed.

6 Conclusions

In this research, numerical and experimental findings have

been performed in turning on H 11 steel. RSM was dis-

closed to calculate the optimal machining parameters.

Based on the results obtained, the main conclusions were

drawn:

1. ANOVA disclose that environment is the significant

factor which influences the responses. While, cutting

speed and feed is not found significant.

2. The mathematical models which can assess the surface

roughness and tool wear for dry, oil and nanofluids

were recommended with RSM. Further, relationship

linking the predicted and measured values was closely

attained.

3. The surface roughness is decreased by 40% while

machining with copper nano fluids with optimal

settings of feed = 0.1 mm/rev and cutting

speed = 209 m/min. The penetrating ability of nano

fluids in the machining zone direct to good cooling and

efficient lubrication causing a reduction in surface

roughness.

4. The tool wear were minimised by 66% due to copper

nano fluids. The excellent conduction and convection

properties of copper nano fluids provide a good

lubrication to the cutting tool and reduce the flank

wear.

5. Copper nano fluids under MQL enhance cooling and

providing efficient lubrication paves a way in reduction

of machining temperature which results in small

amount of notched tooth generated.

Thus, the application of MQL with copper nanofluids in

turning of H 11 steel considerably reduces the surface

roughness, tool wear and reducing the large teeth formed,

which is essential in manufacturing sectors to minimise the

Fig. 21 Effect of process parameters on responses

Table 8 Validation test
Parameter settings Predicted value Experimental value

SR (lm) Tool wear (mm) SR (lm) Tool wear (mm)

Initial trial (f2B2VC2) 1.7047 0.0776 1.6235 0.0894

Optimal trial (f1B3VC3) 0.935 0.0321 0.9617 0.0303

Percentage improvement 45.15 58.63 40.76 66.1
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production cost. Further, the research findings also provide

an alternate source of coolant in turning process.
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