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Abstract
This paper presents a mathematical approach for applying the nano-scale effects on higher-order nonlocal boundary

conditions for exact buckling strains of nano-beams based on a modified nonlocal Timoshenko beam theory (MNTBT) for

various end conditions. Researchers usually neglect these higher-order boundary conditions in their analysis. Hence, the

strain gradient approach and variational method are implemented in MNTBT for deriving these higher-order boundary

conditions and exact closed-form critical buckling strains for different end conditions. On this basis, exact numerical

results are presented for buckling analysis of single-walled carbon nanotubes (SWCNTs). It is investigated that nonlocal

boundary conditions have the effect of reducing the critical buckling strains. This effect is the most significant for doubly

clamped nano-beams and the least significant for cantilever nano-beams. Furthermore, it is shown that presented model

based on higher-order nonlocal boundary conditions can capture correctly the length-dependent buckling strains of

SWCNTs as compared with the other nonlocal beam theories. Finally, the results are compared with molecular dynamics

simulations and the Eringen’s nonlocal coefficient (e0) is calibrated for buckling problems of SWCNTs with good accuracy

as compared with literatures.
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1 Introduction

After discovering carbon nanotubes (CNTs) [1], many

investigations have concentrated on the proper and accu-

rate analysis of single-walled carbon nanotubes (SWCNTs)

and their industrial applications. A considerable amount of

research is focused on different engineering properties of

SWCNTs, due to their superior thermal and electrical

conductivity, and mechanical strength. Based on these

remarkable properties, SWCNTs may be used for different

applications such as nano-probes, nano-composites, nano-

sensors, and nano-vessels for in vitro and in vivo imple-

mentations [2].

For nano-scale structures, the lengths are in the order of

inter-atomic distances, so the nonlocal and small-length

scale effects can be significant. There have been many

experimental and theoretical studies of SWCNT based on

atomistic and molecular simulations and also classical

continuum mechanics. However, laboratory and computer

experiments are expensive and time-consuming processes.

Additionally, classical continuum theories are found to be

inadequate because of their scale-free constitutive equa-

tions and also atomistic simulations like molecular

dynamics (MD) are limited for very small structures with

lower number of atoms. Therefore, length-dependent con-

tinuum theories have received more attention in modeling

of nano-scale structures and devices. Among these, theory

of nonlocal continuum mechanics presented by Eringen

[3–6] and Eringen and Edelen [7] has been widely used in

nano-mechanics to account for the small-length scale

effects such as the internal length-scale and inter-atomic

forces. In fact, nonlocal continuum mechanics has been

implemented in different areas such as lattice dispersion of

phonon waves, fracture mechanics, dislocation mechanics,

and surface tension in fluids [5].

Technical Editor: Paulo de Tarso Rocha de Mendonça.

The original version of this article was revised: In the Tables 1–4 the

columns were out of order.

& Reza Hosseini-Ara

HosseiniAra@pnu.ac.ir

1 Department of Mechanical Engineering, Payame Noor

University, Tehran 19395-3697, Iran

123

Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:144
https://doi.org/10.1007/s40430-018-1076-x(012 3456789().,- volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-018-1076-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-018-1076-x&amp;domain=pdf
https://doi.org/10.1007/s40430-018-1076-x


For this end, Peddieson et al. [8] for the first time devel-

oped a nonlocal Euler–Bernoulli beam model to study the

nonlocal effects on the static behavior of micro- and nano-

beams. Then, many researchers investigated small-length

scale effects on buckling analysis of nano-beams using

nonlocal theory [2, 9–13]. Also, Sudak [14] and Zhang et al.

[15] investigated the small-length scale effects on buckling

of multi-walled carbon nanotubes (MWCNT). In addition,

the modified Euler–Bernoulli beam model, based on nonlo-

cal continuum theory and strain gradient approach, was

developed to account for small-length scale effects in

buckling analysis of SWCNTs [16]. Moreover, Wang et al.

[17] investigated the buckling of Timoshenko gradient

elasticity beam model and also Ma et al. [18] presented a

microstructure-dependent Timoshenko beam model based

on a modified couple stress theory. Recently, some

researchers investigated the free vibration and wave propa-

gation of SWCNTs using nonlocal beam theories [19–22].

In fact, the governing differential equation of nano-

beams modeled by nonlocal Timoshenko beam theory is

sixth-order and consequently requires six dependent

boundary conditions including four classic (local) and two

non-classic (nonlocal) boundary conditions. However, the

absence of non-classic boundary conditions leads to

approximate critical buckling strains. Researchers usually

solve this equation without considering nonlocal boundary

conditions by neglecting the highest-order term in the

differential governing equation, because the nonlocal

boundary conditions are not derived from a variationally

consistent formulation [12]. The aim of this paper is to

introduce a novel and more definitive method to derive

nonlocal higher-order boundary conditions based on the

nonlocal Timoshenko beam theory, strain gradient elas-

ticity and variational method, simultaneously. In previous

studies, the necessity of the variational approach based on

the nonlocal theories was emphasized for deriving the

boundary conditions by different researchers [8, 23].

However, a combination of these two methods gives only

four boundary conditions and is not adequate for nonlocal

buckling and vibration analysis of CNTs which require six

boundary conditions. In the authors’ opinion, the best way

for overcoming this problem is to combine the strain gra-

dient elasticity with nonlocal equations and then using the

minimum total potential energy principle and the varia-

tional method to extract the higher-order terms.

The remainder of this paper is organized as follows: in

Sect. 2, the nonlocal elasticity and its constitutive relations

are discussed and then the equations for nonlocal

Timoshenko beam theory are derived. In Sect. 3, the

governing equations and boundary conditions for buckling

of a nonlocal Timoshenko beams are derived using varia-

tional method. In Sect. 4, the nonlocal boundary conditions

and critical buckling strains are presented for different

beam types such as simply supported, clamped, cantilever,

and propped cantilever beams. In Sect. 5, the numerical

results for the axial buckling of SWCNTs are derived and

the proposed beam model based on nonlocal boundary

conditions is validated through comparison with results

from MD simulations, and consistent value for the Erin-

gen’s nonlocal constant of SWCNTs is calibrated. Finally,

in Sect. 6, the conclusions are summarized.

2 Nonlocal elasticity and constitutive
relations

According to Eringen [3], for homogeneous and isotropic

linearly elastic solids, the linear nonlocal theory is

expressed by the following constitutive relations:

tklðxÞ ¼
Z

V

að x� x0j j ; sÞ rklðx0Þ dvðx0Þ ; ð1Þ

rklðx0Þ ¼ kerrðx0Þdkl þ 2leklðx0Þ; ð2Þ

where tkl is the nonlocal stress tensor at the field point x in the

body. rklðx0Þ is the macroscopic (classical) stress tensor at x0

which is related to the linear strain tensor eklðx0Þ in domain V

at any point x0 with Lamé constants, k and l. In addition,

a ð x0 � xj j ; sÞ is defined as a nonlocal kernel, depending on

the characteristic length ratio a
l
, where a is an internal char-

acteristic length (e.g., a lattice parameter, granular distance)

and l is an external characteristic length (e.g., a wave length,

crack length). Thus, nonlocal parameter is defined as below:

s ¼ e0 a

l
; ð3Þ

where the Eringen’s nonlocal constant, e0, is a nondimen-

sional material property determined by experiments.

Combining the constitutive Eq. (1) with Hooke’s law, the

nonlocal constitutive relation for a Hookean solid is

derived, but this integro-partial differential equation is

mathematically intractable. Thus, the constitutive equation

is converted into a partial differential equation by some

simplifications as follows:

ð 1� s2l2r2Þ rij ¼ Cijklekl: ð4Þ

In this paper, we are adopting this notation for engi-

neering customary: rij denotes the nonlocal stress tensor

field.

2.1 Nonlocal beam theory

The following coordinate system is set up for establishing

boundary value problem of nonlocal Timoshenko beam

theory. The x-coordinate is taken along the length of the

beam and the z-coordinate along the thickness. We
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consider instability-induced bending in the xz-plane (See

Fig. 1).

According to Timoshenko beam configuration in Fig. 1,

the assumed displacement field is

u1ðx; y; z; tÞ ¼ uðx; tÞ þ z/ðx; tÞ ; u2ðx; y; z; tÞ ¼ 0 ;
u3ðx; y; z; tÞ ¼ wðx; tÞ ; ð5Þ

where / denotes the rotation of beam cross section as

indicated in Fig. 1. The remaining non-zero axial and

transverse shear strains are given by Eqs. (6a), (6b) as

follows:

exx ¼
ou

ox
þ z

o/
ox

; ð6aÞ

2exz � c ¼ /þ ow

ox
: ð6bÞ

Using Eq. (4), the non-zero nonlocal stress tensor

components of Timoshenko beam theory are assumed as

rxx � ðe0aÞ2
o2rxx
ox2

¼ Eexx ; ð7aÞ

rxz � ðe0aÞ2
o2rxz
ox2

¼ 2KSGexz ¼ KSGc : ð7bÞ

where KS is the shear correction factor to account for

constant shear strain over the cross section of the beam in

Timoshenko beam model. The nonlocal axial and shear

force and bending moment are derived from the above

equations, respectively, as

NNL � ðe0aÞ2
o2NNL

ox2
¼ EA

ou

ox
; ð8Þ

QNL � ðe0aÞ2
o2QNL

ox2
¼ KSGAc ; ð9Þ

MNL � ðe0aÞ2
o2MNL

ox2
¼ EI

o/
ox

; ð10Þ

where E, G, A, and I are the Young’s modulus, shear

modulus, cross-sectional area of beam and area moment of

inertia of beam cross section, respectively.

3 Governing equations

The axial and shear stresses in Eqs. (7a), (7b) can be solved

to determine nonlocal stress state as a function of strain

field. Assuming ðe0aÞ2\\1, and neglecting the higher

powers of ðe0aÞ2, the solution could be simplified to

rðx; zÞ ¼ E eðx; zÞ þ ðe0aÞ2
o2eðx; zÞ
ox2

� �
; ð11Þ

sðxÞ ¼ KSG cðxÞ þ ðe0aÞ2
d2cðxÞ
dx2

� �
: ð12Þ

Hence, we obtain the stress resultants from Eqs. (11)

and (12) based on the strain gradient theory as follows:

NSG
NL ¼ NCL þ ðe0aÞ2

o2NCL

ox2
; ð13Þ

QSG
NL ¼ QCL þ ðe0aÞ2

o2QCL

ox2
; ð14Þ

MSG
NL ¼ MCL þ ðe0aÞ2

o2MCL

ox2
; ð15Þ

where the classical (local) form of axial force, shear and

bending moment acting on the beam cross section are

NCL ¼ EA
ou

ox
; ð16Þ

QCL ¼ KSGAc; ð17Þ

MCL ¼ EI
o/
ox

: ð18Þ

Considering static conditions, for a Timoshenko beam

subjected to an external compressive and conservative

force field, N0, and laterally distributed load, pðxÞ, the total
potential energy, P, which is given by Kumar et al. [16] is

generalized in the presence of shear effect as follows:

P ¼
Z

V

Ee2ðx; zÞ
2

� ðe0aÞ2
E

2

oeðx; zÞ
ox

� �2
" #

dv

þ
Z

V

KSGc2ðxÞ
2

� ðe0aÞ2
KSG

2

dcðxÞ
dx

� �2
" #

dv

þ
ZL

0

N0

du

dx

� �
dx�

ZL

0

pwðxÞdx� 1

2

ZL

0

N0

dw

dx

� �2

dx :

ð19Þ

Substituting Eqs. (6a), (6b) into Eq. (19) and integrating

over the beam cross-sectional area, the following expres-

sion is obtained for P:

Fig. 1 Beam configuration and coordinate system
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P ¼ 1

2

ZL

0

EA
du

dx

� �2

þEI
d/
dx

� �2

þKSGA
dw

dx
þ /

� �2
" #

dx

� 1

2
ðe0aÞ2

ZL

0

EA
d2u

dx2

� �2

þEI
d2/
dx2

� �2

þKSGA
d2w

dx2
þ d/

dx

� �2
" #

dx

þ
ZL

0

N0

du

dx

� �
dx�

ZL

0

pwðxÞ dx� 1

2

ZL

0

N0

dw

dx

� �2

dx :

ð20Þ

Using the definition for NCL and ignoring the laterally

distributed loads, pðxÞ, for a buckling analysis, we apply

the variational operator, with respect to uðxÞ, to the func-

tional P. Inserting the equilibrium condition of dP ¼ 0

results to

duðPÞ ¼
ZL

0

NCL d
du

dx

� �
� ðe0aÞ2

dNCL

dx
d
d2u

dx2

� ��

þN0 d
du

dx

� ��
dx ¼ 0 :

ð21Þ

Integrating by parts and using Eq. (16), we obtain the

governing equation and boundary conditions for uðxÞ as
d

dx
ðNNL þ N0Þ ¼ 0; ð22Þ

ðNNL þ N0Þ dujx¼L
x¼0 ¼ 0; ð23aÞ

�ðe0aÞ2
dNCL

dx

� �
d
du

dx

����
x¼L

x¼0

¼ 0: ð23bÞ

Operating the variation with respect to wðxÞ on P in

Eq. (20) and equating dP to zero, it gives

dwðPÞ ¼
ZL

0

KSGA
dw

dx
þ /

� �
d
dw

dx

�

�ðe0aÞ2KSGA
d2w

dx2
þ d/

dx

� �
d
d2w

dx2

�
dx

�
ZL

0

N0

dw

dx

� �
d
dw

dx

� �
dx ¼ 0 :

ð24Þ

Integrating by parts, we obtain the governing equation

for wðxÞ as
d

dx
QNL � N0

dw

dx

� �
¼ 0; ð25Þ

and the following boundary conditions are derived:

QNL � N0

dw

dx

� �
dw

����
x¼L

x¼0

¼ 0; ð26aÞ

ðe0aÞ2
dQCL

dx

� �
d
dw

dx

����
x¼L

x¼0

¼ 0: ð26bÞ

In the same way, applying the variational operator to

/ðxÞ for P in Eq. (20) and equating the result to zero, we

obtain

d/ ¼
ZL

0

EI
d/
dx

� �
d
d/
dx

� ðe0aÞ2EI
d2/
dx2

� �
d
d2/
dx2

�

þKSGA
dw

dx
þ /

� �
d/

�
dx

�
ZL

0

ðe0aÞ2KSGA
d2w

dx2
þ d/

dx

� �
d
d/
dx

� �
dx ¼ 0 :

ð27Þ

Using integration by parts, the governing equation for

/ðxÞ is given by

dMNL

dx
¼ QNL; ð28Þ

and the following boundary conditions are derived

MNL � ðe0aÞ2
dQCL

dx

� �
d/

����
x¼L

x¼0

¼ 0; ð29aÞ

ðe0aÞ2
dMCL

dx

� �
d
d/
dx

����
x¼L

x¼0

¼ 0: ð29bÞ

Substituting the nonlocal shear force and bending

moment defined in Eqs. (9) and (10) into the governing

Eqs. (25) and (28) and eliminating / from these two

equations, the transverse equilibrium equation in terms of

lateral displacement for an axially loaded beam using a

nonlocal strain gradient theory is obtained as

ðe0aÞ2
EI

KSGA

� �
d6w

dx6
þ EI

N0

� EI

KSGA
� ðe0aÞ2

� �
d4w

dx4
þ d2w

dx2

¼ 0;

ð30Þ

where N0 is an external axial compressive load. This

equation is similar to that obtained by Reddy and Pang [12]

for buckling of the nonlocal Timoshenko beam using the

Hamilton’s principle.

In this case, neglecting the nonlocal parameter may

result the classic Timoshenko beam model and neglecting

the nonlocal parameter and shear deformation gives the

buckling equation for Euler–Bernoulli beam model.

In addition, for solving the above equation, six boundary

conditions are required (three for each end) but four

boundary conditions appear in Eqs. (26a), (26b) and (29a),

(29b). It means that there is one additional boundary con-

dition for each end. So, the main objective is to select three

144 Page 4 of 12 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:144

123



independent boundary conditions which can satisfy all

boundary conditions for each end. In the next part, the

boundary conditions for various beam supports are

obtained.

The dimensionless form of Eq. (30) using the length of

the beam, L, as a nondimensionalizing parameter can be

rewritten as

ð �l �XÞ d
6 �w

d�x6
þ 1

p2r
� �X� �l

� �
d4 �w

d�x4
þ d2 �w

d�x2
¼ 0; ð31Þ

where �w, �x,r, �X and �l are the nondimensional forms of the

deflection, displacement, ratio of the critical buckling

loads, shear deformation, and nonlocal parameter, respec-

tively, as follows:

�w ¼ w

L
; �x ¼ x

L
; r ¼ NNL

cr

NCL
cr

; �X ¼ EI

KSGAL2
;

�l ¼ s2 ¼ e0a

L

� �2

;

ð32Þ

where NNL
cr is obtained by solving Eq. (30) and NCL

cr is the

buckling load given by classic Euler columns for simply

supported end conditions.

We may simply switch to nonlocal Euler–Bernoulli

beam model by ignoring the shear deformation terms. Also,

the local Timoshenko beam model is obtained by letting

the nonlocal parameter to be zero and by setting both the

shear deformation and nonlocal parameters to zero, the

local Euler–Bernoulli beam model appears.

Also, using the strain gradient form of the nonlocal

shear force and bending moment (i.e., the weak form of the

nonlocal theory) defined in Eqs. (14) and (15) into the

governing Eqs. (25) and (28) and eliminating / from these

two equations, the differential equation of buckling in

terms of wðxÞ for an axially loaded Timoshenko beam is

obtained as

ðe0aÞ2EI
d6w

dx6
þ EI � EI

KSGA
N0

� �
d4w

dx4
þ N0

d2w

dx2
¼ 0:

ð33Þ

The above equation may result the nonlocal Euler–

Bernoulli beam model by neglecting the shear deformation

term as derived in the literatures [8, 16]. However, using

the strain gradient form of the nonlocal shear force and

bending moment leads to miss a few terms in Eq. (33) in

comparison to its exact form in Eq. (30). It is because of

neglecting the higher-order terms of ðe0aÞ2 in strain gra-

dient theory and that is why the present study can capture

the size effects more exact as compared with other

literatures.

4 Nonlocal boundary conditions

We obtain four sets of boundary conditions for each end in

Eqs. (26a), (26b) and (29a), (29b). However, one set is

redundant for the sixth-order differential equation of

buckling in the case of nonlocal Timoshenko beam model.

Thus, the main point is to specify six boundary conditions

which can satisfy all the boundary conditions in Eqs. (26a),

(26b) and (29a), (29b). On the other hand, we have both the

essential and natural boundary conditions for each set.

Therefore, it is very important to choose essential and

natural boundary conditions with respect to the type of the

beam supports. In the sequel, we study boundary conditions

for various nano-beams with different end conditions by

means of the mathematically and variationally consistent

formulations.

4.1 Simply supported nano-beams

Considering the classic continuum mechanics for simply

supported boundary conditions, the deflection and bending

moment are zero at each end (x ¼ 0; L).

w ¼ 0; MCL ¼ 0 : ð34Þ

It should be noticed that the essential boundary condi-

tions are the same for the local and nonlocal boundary

conditions. However, the natural boundary conditions

should be transformed to the nonlocal form, in order to be

used in higher-order theories. Hence, the first boundary

condition for deflection in Eq. (34), which is an essential

boundary condition, is unchanged for this case. By sub-

stituting this condition in Eq. (26a), the first set of

boundary conditions will be satisfied at each end. Fur-

thermore, for hinged supports, the slope of the beam axis at

each end should be non-zero and as we have homogeneous

boundary conditions, thus we obtain d dw

dx
6¼ 0. Therefore, in

order to satisfy the second set of boundary conditions in

Eq. (26b), we should have

ðe0aÞ2
dQCL

dx

� �����
x¼L

x¼0

¼ 0: ð35Þ

The above end condition is called a nonlocal boundary

condition, because it is length dependent. Inserting this

boundary condition in Eq. (29a), and considering that the

rotation of transverse normal at two ends should be non-

zero for a simply supported beam, (i.e., d/ 6¼ 0), so we

obtain MNL ¼ 0 in order to satisfy this boundary condition

which was predictable from the previous points about the

nonlocal form of the natural boundary conditions like

bending moment in Eq. (34).

In order to satisfy the last set of boundary conditions in

Eq. (29b), we should set either d d/
dx

or ðe0aÞ2EI d
2/
dx2

to be
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zero. In this regard, another point is that when the nonlocal

bending moment is zero, the classic bending moment

should be zero as a special case. In fact, for each value of

the nonlocal term, the nonlocal bending moment is zero.

Thus, by neglecting the nonlocal term, the nonlocal bend-

ing moment for the Timoshenko beam model is trans-

formed to the classic value as follows:

MCL ¼ EI
d/
dx

: ð36Þ

According to the above equation and in order to have

zero bending moment at each end, we obtain d/
dx

¼ 0, which

leads to the following equation for the homogeneous

boundary conditions:

d
d/
dx

¼ 0: ð37Þ

Substituting the above result in the last set of boundary

conditions, Eq. (29b) will be satisfied. We can simplify

Eq. (35), using Eq. (37), as follows:

d2w

dx2
¼ 0: ð38Þ

As a result, the generalized boundary conditions for

simply supported beams at x ¼ 0; L are given as

w ¼ 0; ð39aÞ

d2w

dx2
¼ 0; ð39bÞ

d/
dx

¼ 0: ð39cÞ

However, we should have the boundary conditions in

terms of the dependent variable of boundary value prob-

lem, i.e., displacement wðxÞ in order to solve the buckling

differential equation. Using the governing equations, we

find

d/
dx

¼ N0

KSGA
� 1

� �
d2w

dx2
� ðe0aÞ2

N0

KSGA

� �
d4w

dx4
¼ 0:

ð40Þ

By substituting Eq. (39b) in the above equation, one

obtains

d/
dx

¼ �ðe0aÞ2
N0

KSGA

� �
d4w

dx4
¼ 0: ð41Þ

Finally, the generalized boundary conditions in terms of

only wðxÞ for simply supported beams at x ¼ 0; L are given

by

w ¼ 0 ;
d2w

dx2
¼ 0 ; ðe0aÞ2

N0

KSGA

� �
d4w

dx4
¼ 0: ð42Þ

These homogeneous boundary conditions are similar to

those obtained in the literature for Euler–Bernoulli beam

models using higher-order theories [23]. Based on MNTBT

and applying these boundary conditions into Eq. (30), the

closed-form critical buckling strains for simply supported

nano-beams becomes

ecr ¼
p2I
AL2

1

1þ p2ð �lþ �X Þ þ p4ð�l� �X Þ

� �
: ð43Þ

4.2 Clamped nano-beams

The classic boundary conditions for clamped beams are

defined for the deflection and the rotation of transverse

normal at the boundaries (x ¼ 0; L) as follows:

w ¼ / ¼ 0 : ð44Þ

The above boundary conditions satisfy two sets of end

conditions in Eqs. (26a) and (29a), respectively. In addi-

tion, we know that the slope of the beam axis should be

zero at the fixed point, (i.e., d dw

dx
¼ 0), and thus the second

set of boundary conditions in Eq. (26b) will be satisfied.

Unlike the simply supported beams, the bending

moment should be non-zero at each end. So, the local

bending moment in Eq. (36) has to be non-zero. It means

that

d/
dx

6¼ 0 : ð45Þ

Using the above inequality constraint in the last set of

boundary conditions in Eq. (29b) and in order to satisfy

this homogeneous boundary condition, we have the non-

local boundary condition as

ðe0aÞ2EI
d2/
dx2

����
x¼L

x¼0

¼ 0: ð46Þ

Therefore, the general boundary conditions are

w ¼ 0 ; ð47aÞ
dw

dx
¼ 0; ð47bÞ

ðe0aÞ2EI
d2/
dx2

¼ 0: ð47cÞ

Again, in order to have boundary conditions in terms of

wðxÞ, we eliminate / by differentiating Eq. (40) and

inserting in Eq. (47c) as follows:

d2/
dx2

¼ N0

KSGA
� 1

� �
d3w

dx3
� ðe0aÞ2

N0

KSGA

� �
d5w

dx5
¼ 0:

ð48Þ
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The above equation is called the nonlocal boundary

condition because the nonlocal term, ðe0aÞ2, appears in it

and for clamped beams, the boundary conditions in terms

of wðxÞ at x ¼ 0; L are given by

w ¼ 0 ;
dw

dx
¼ 0 ;

N0

KSGA
� 1

� �
d3w

dx3
� ðe0aÞ2

N0

KSGA

� �
d5w

dx5
¼ 0:

ð49Þ

It is worth noting that unlike the simply supported

boundary conditions, the odd derivatives of wðxÞ are

appeared in clamped boundary conditions. This result is

similar to that obtained by Lim and Wang [23] for Euler–

Bernoulli models using higher-order theories.

Solving Eq. (30) using nonlocal boundary conditions

derived in Eq. (49), we obtain closed-form critical buck-

ling strains for doubly clamped nano-beams based on

MNTBT as follows:

ecr ¼
4p2I
AL2

1

1þ 4p2ð �lþ �X Þ þ 16p4ð �l� �X Þ

� �
: ð50Þ

4.3 Cantilever nano-beams

The boundary conditions for the fixed end of a cantilever

beams are exactly the same as the clamped boundary

conditions derived in Eq. (49). Moreover, we have the

classic natural boundary conditions for shear force and

bending moment at the free end of a cantilever at x ¼ L as

follows:

QCL � N0

dw

dx
¼ 0 ; MCL ¼ 0 : ð51Þ

As mentioned before, we have to transform these classic

natural boundary conditions to nonlocal ones as follows:

QNL � N0

dw

dx
¼ 0 ; ð52aÞ

MNL ¼ 0 : ð52bÞ

In the other words, the deflection at the free end should

be non-zero, (i.e., dw 6¼ 0). Thus, we find Eq. (52a) in

order to satisfy the first set of boundary conditions in

Eq. (26a).

Moreover, we know that the slope of the beam axis at

the free end should be non-zero, (i.e., d dw

dx
6¼ 0). Therefore,

in order to satisfy the second set of boundary conditions in

Eq. (26b), we should have

ðe0aÞ2
dQCL

dx

� �����
x¼L

x¼0

¼ 0: ð53Þ

Applying this boundary condition in Eq. (29a), and

considering that the rotation of transverse normal at the

free end should be non-zero, (i.e., d/ 6¼ 0), we find MNL ¼
0 in order to satisfy Eq. (29a), which was obvious from the

previous points in Eq. (52b).

In order to satisfy the last set of boundary conditions in

Eq. (29b), either the natural boundary condition is zero (i.e.,

ðe0aÞ2EI d
2/
dx2

¼ 0) or the essential boundary condition (i.e.,

d d/
dx

¼ 0). Considering Eq. (52b) for the special case, when

the nonlocal parameter is neglected, and in order to have zero

bendingmoment at the free end, we should have d/
dx

¼ 0, (i.e.,

d d/
dx

¼ 0 for the homogeneous boundary conditions), as a

boundary condition for satisfying the last set of boundary

conditions. Combining this conditionwith Eq. (53) results to

d2wðx ¼ LÞ
dx2

¼ 0 ; ð54Þ

Thus, the general boundary conditions for the free end

of a cantilever beam at x ¼ L are

QNL � N0

dw

dx
¼ 0 ; ð55aÞ

d2w

dx2
¼ 0 ; ð55bÞ

d/
dx

¼ 0: ð55cÞ

Defining the nonlocal shear force QNL in terms of wðxÞ,
using Eqs. (9), (25), and (28), we obtain

QNL ¼ EI
d2/
dx2

þ ðe0aÞ2N0

d3w

dx3
: ð56Þ

Eliminating / in the above equation, using the deriva-

tive of Eq. (40), we have

QNL ¼ �ðe0aÞ2
EI

KSGA
N0

� �
d5w

dx5

þ EI

KSGA
N0 � EI þ ðe0aÞ2N0

� �
d3w

dx3
: ð57Þ

Using Eqs. (55b) and (40), the boundary condition in

Eq. (55c) in terms of wðxÞ is derived as

d4w

dx4
¼ 0: ð58Þ

Thus, the general boundary conditions for the free end

of a cantilever beam at x ¼ L in terms of wðxÞ are
d2w

dx2
¼ 0 ;

d4w

dx4
¼ 0 ;

ðe0aÞ2
EI

KSGA

� �
d5w

dx5
þ EI

N0

� EI

KSGA
� ðe0aÞ2

� �
d3w

dx3

þ dw

dx
¼ 0 :

ð59Þ
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According to MNTBT and solving the governing

Eq. (30), by means of these boundary conditions, the

closed-form of critical buckling strains for cantilever nano-

beams becomes

ecr ¼
p2I
4AL2

1

1þ 1
4
p2ð �lþ �X Þ þ 1

16
p4ð �l� �X Þ

" #
: ð60Þ

4.4 Propped cantilever nano-beams

The boundary conditions for this type are the combination

of clamped and simply supported boundary conditions and

derived in the previous parts. Assuming the fixed end at

x ¼ 0 and hinged end at x ¼ L, we have Eqs. (49) and (42)

for the fixed and hinged boundary conditions, respectively.

Therefore, the closed-form of critical buckling strain for

propped cantilever nano-beams becomes

ecr ¼
2:0449 p2I

AL2
1

1þ 20:187ð �lþ �X Þ þ 407:515 ð �l� �X Þ

� �
:

ð61Þ

5 Numerical results and discussion

The critical buckling loads for SWCNTs modeled as nano-

beams with different end conditions are investigated with

respect to different values of small-scale parameter ðe0aÞ
and aspect ratio ðL=dÞ. These exact solutions of nonlocal

Timoshenko beam model using nonlocal boundary condi-

tions (MNTBT) are compared with the results of nonlocal

Timoshenko beam models (NTBT).

The following effective properties of SWCNTs are used

in computing the numerical values [12]:

E ¼ 1 ðTPaÞ; G ¼ 420 ðGPaÞ; d ¼ 1 ðnmÞ; KS ¼ 0:877:

ð62Þ

The numerical results for the critical buckling loads of

SWCNTs in nano Newton (nN) are presented for the dif-

ferent types of end conditions in Tables 1, 2, 3 and 4 as

follows:

The values of the first row of each table state the clas-

sical or local critical buckling loads (i.e., when e0a ¼ 0).

These values are the upper bound of the critical buckling

loads and vary monotonically from the classical value to

values that are lower.

Clearly, the nonlocal parameter as well as the aspect

ratio has the effect of reducing the critical buckling loads.

Moreover, the difference between NTBT and MNTBT

solutions is the most significant for clamped beams and the

least for cantilever beams. This difference decreases by

increasing the aspect ratio.

Furthermore, the presented numerical results for critical

buckling strains are compared with MD simulations results

for validation [11]. We also consider the end conditions

with fully clamped boundaries as assumed in Ref. [11]. In

addition, CNT (5, 5) is analyzed with a diameter d ¼
0:671 ðnmÞ and CNT (7, 7) with a diameter d ¼ 0:94 ðnmÞ,
for different lengths. Both nanotubes are modeled using a

wall thickness h ¼ 0:066 ðnmÞ, Young’s modulus

E ¼ 5:5 ðTPaÞ, and Poisson’s ratio m ¼ 0:19 [24]. The

comparison of MD simulations and modified nonlocal

Timoshenko beam model are presented for critical buck-

ling strains in Table 5.

Herein, it is illustrated that the critical buckling strains

based on nonlocal boundary conditions are in good

agreement as compared with MD simulations. In addition,

it is shown that presented model can capture correctly the

length-dependent buckling strains of SWCNTs, because of

using the newly derived boundary conditions. Clearly, the

presented beam models in literatures are unable to show the

correct and exact trend in critical axial buckling strains of

SWCNTs, while the proposed nonlocal beam model shows

much better agreement with the molecular dynamics sim-

ulation results.

Moreover, based on the MD simulation results, the value

of nonlocal constant is calibrated for axial buckling of

SWCNTs based on an averaging process. The best match

between molecular dynamics simulations and nonlocal

formulations is achieved for Eringen’s small length-scale

coefficient value of e0a ¼ 0:277 ðnmÞ, which is verified by

the recent study of Wang et al. for buckling of nonlocal

beams with e0a ¼ 0:289 ðnmÞ [13]. In Figs. 2, 3, 4 and 5,

the comparison of proposed MNTBT using nonlocal

boundary conditions with both nonlocal and classic

Timoshenko beam theories are presented for different end

conditions.

Table 1 Comparison of critical buckling loads for simply supported

nano-beams

e0a ðnmÞ L=d ¼ 10 L=d ¼ 15 L=d ¼ 20

NTBT MNTBT NTBT MNTBT NTBT MNTBT

0.0 4.7565 4.7565 2.1335 2.1335 1.2040 1.2040

0.5 4.6438 4.6420 2.1108 2.1106 1.1966 1.1966

1.0 4.3357 4.3293 2.0454 2.0447 1.1751 1.1750

1.5 3.9039 3.8922 1.9432 1.9419 1.1409 1.1406

2.0 3.4262 3.4102 1.8167 1.8147 1.0962 1.0958
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As illustrated in Figs. 2, 3, 4 and 5, classic Timoshenko

beam model has the constant upper bound value in each

figure because it does not depend on nonlocal parameter. In

addition, the proposed modified nonlocal Timoshenko

beam theory using nonlocal boundary conditions has the

lower values in comparison with the results based on

classic boundary conditions for buckling of SWCNTs. It is

because of the effect of shear deformation and nonlocal

parameters. Moreover, it is clear that both nonlocal

Timoshenko beam models have the same value for the

classic case (�l ¼ 0), because the governing equation

changed to forth-order in this case (see Eq. 31) and non-

local boundary conditions are redundant, consequently.

However, by increasing the nonlocal parameter, the results

of MNTBT model decrease rapidly as compared with

NTBT model and it provides a much better fit to MD

simulation results for axial buckling of the nano-beams. In

addition, it is indicated that nonlocal effect is the most

significant for doubly clamped nano-beams and the least

significant for cantilever nano-beams.

6 Conclusions

Based on the current study, the governing field equations

and nonlocal boundary conditions are derived for nano-

beams, using a novel approach based on strain gradient

theory and variational methods. The nonlocal Timosh-

enko beam theory is used here for accounting the non-

local small-size effects in the normal and transverse

shear stress components. In addition, the nonlocal

boundary conditions for exact solution of sixth-order

governing differential equation are used, and thus the

solutions presented herein for axial buckling of

SWCNTs are different and more exact as compared with

those available in the literatures. Furthermore, some

important issues about derivation and specification of the

nonlocal boundary conditions are discussed, which could

be useful to understand the nature of the higher-order

nonlocal boundary conditions.

Finally, numerical results are compared to the analyti-

cal solutions of TBT and NTBT for different end condi-

tions. For each comparison, the modified NTBT based on

nonlocal boundary conditions provides a lower bound on

the buckling strains of SWCNTs. Moreover, the nonlocal

Table 2 Comparison of critical

buckling loads for clamped

nano-beams

e0a ðnmÞ L=d ¼ 10 L=d ¼ 15 L=d ¼ 20

NTBT MNTBT NTBT MNTBT NTBT MNTBT

0.0 18.1312 18.1312 8.3493 8.3493 4.7565 4.7565

0.5 16.5959 16.5024 8.0115 8.0018 4.6429 4.6411

1.0 13.2342 12.9992 7.1442 7.1136 4.3356 4.3292

1.5 9.8939 9.6020 6.0354 5.9861 3.9032 3.8915

2.0 7.3107 7.0299 4.9627 4.9035 3.4262 3.4102

Table 3 Comparison of critical buckling loads for cantilever nano-

beams

e0a ðnmÞ L=d ¼ 10 L=d ¼ 15 L=d ¼ 20

NTBT MNTBT NTBT MNTBT NTBT MNTBT

0.0 1.2040 1.2040 0.5363 0.5363 0.3019 0.3019

0.5 1.1966 1.1966 0.5349 0.5349 0.3015 0.3015

1.0 1.1751 1.1750 0.5306 0.5306 0.3001 0.3001

1.5 1.1409 1.1407 0.5235 0.5234 0.2978 0.2978

2.0 1.0962 1.0958 0.5138 0.5138 0.2947 0.2947

Table 4 Comparison of critical buckling loads for propped cantilever

nano-beams

e0a ðnmÞ L=d ¼ 10 L=d ¼ 15 L=d ¼ 20

NTBT MNTBT NTBT MNTBT NTBT MNTBT

0.0 9.5622 9.5622 4.3295 4.3295 2.4514 2.4514

0.5 9.1173 9.1028 4.2368 4.2354 2.4208 2.4206

1.0 8.0005 7.9561 3.9811 3.9763 2.3345 2.3336

1.5 6.6442 6.5756 3.6113 3.6023 2.2031 2.2012

2.0 5.3697 5.2903 3.1977 3.1850 2.0425 2.0396

Table 5 Comparison of buckling strains for proposed modified non-

local Timoshenko beam theory and MD simulations [11]

CNT type Length of CNT

(nm)

Critical buckling strains

MNTBT MD [11]

(5, 5) 1.609 0.08461 0.08146

(5, 5) 2.846 0.06964 0.06992

(7, 7) 2.829 0.06568 0.06514

(7, 7) 5.288 0.04607 0.04710
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parameter has the effect of reducing the buckling loads.

This effect is the most significant for doubly clamped nano-

beams and the least significant for cantilever nano-beams.

The differences among the results may decrease by

increasing the aspect ratio and will be negligible for the

aspect ratios more than 20.

In addition, the proposed MNTBT model based on non-

local boundary conditions is validated through comparison

Fig. 2 Comparison of proposed

modified nonlocal Timoshenko

beam theory (exact) with the

other Timoshenko beam

theories for simply supported

end conditions

Fig. 3 Comparison of proposed

modified nonlocal Timoshenko

beam theory (exact) with the

other Timoshenko beam

theories for clamped end

conditions
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with the results from MD simulations. It is found that the

MNTBT model with nonlocal boundary conditions provides a

much better fit to MD simulation results as compared with

available beam models for axial buckling of SWCNTs. Based

on the proposed modified Timoshenko beam model with

higher-order nonlocal boundary conditions, we could cali-

brate the Eringen’s nonlocal coefficient e0 for buckling

problems to a constant value (i.e., 0.277 nm) which is in good

agreement with the literature [13] using the discrete boundary

conditions for the nonlocal beams (i.e., e0 ¼ 0:289 nm).
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