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Abstract
Parallel manipulators present high load capacity and rigidity, among other advantages, when compared to the serial

manipulators. Due to their kinematic architecture, their parts are lighter. This characteristic may be an asset for designing

high dynamic performance manipulators. However, parallel manipulators suffer from singularities in their workspace. This

drawback can be circumvented by the use of kinematic redundancies. Due to the presence of these redundancies, the

inverse kinematic problem presents an infinite number of solutions. The selection of a single solution among the possible

ones is denoted as redundancy resolution. In this manuscript, the impact of several levels of kinematic redundancy on the

dynamic performance of a planar parallel manipulator, the 3PRRR, is numerically and experimentally investigated. The

kinematic redundancy of this manipulator can be added by the actuation of the active prismatic joints (P). Two redundancy

resolution schemes are proposed using a multiobjective optimization problem. Based on the numerical and experimental

results, one can conclude that the use of a proper redundancy resolution scheme can considerably reduce the maximum

required torque to perform a predefined task.

Keywords Parallel kinematic machines � Kinematic redundancy � Redundancy resolution � Dynamic performance

1 Introduction

Despite their potential attributes, such as high load capacity

and better rigidity [1], parallel kinematic machines (PKMs)

suffer from some important drawbacks such as the presence

of singularities limiting their workspace [2]. The presence

of singularities can be reduced by the inclusion of actuation

and kinematic redundancies as suggested in Shin et al. [3],

Kotlarski et al. [4], Gosselin et al. [5], Huang et al. [6] and

Simoni et al. [7], among others. Actuation redundancies

can be implemented by the actuation of passive joints or by

the inclusion of active kinematic chains. For instance, Shin

et al. [3] investigated the use of actuation redundancies for

reducing singularities in several PKMs. Kinematic redun-

dancies can be implemented by the introduction of extra

active joints in a kinematic chain. Kinematically redundant

PKMs are capable of avoiding singularities and obstacles,

due to their reconfiguration capabilities. In fact, Kotlarski

et al. [4] and Gosselin and Schreiber [5] studied the

influence of kinematic redundancy on eliminating the

presence of singularities and enlarging the usable work-

space of a planar and a spatial PKM, respectively. Huang

et al. [6] and Simoni et al. [7] proposed novel reconfig-

urable parallel mechanisms by including kinematic

redundancies. Whilst, Huang et al. [6] proposed to drive a

bevel gear system fixed in its base platform to introduce the

reconfiguration capabilities, Simoni et al. [7] proposed the

introduction of self-aligning degrees-of-freedom that do

not interfere in the motion of the moving platform but can

furnish interesting characteristics to the manipulator.

The fact that PKMs are usually lighter than serial

manipulators can be exploited for designing high dynamic

performance manipulators such as the one described in
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Nabat et al. [8]. Moreover, the inclusion of actuation and

kinematic redundancies should be considered during the

design of high dynamic performance manipulator due to

their aforementioned capabilities. The use of actuation

redundancies was exploited by Corbel et al. [9] and by

Nadal et al. [10] for designing an ultra-fast PKM. The use

of kinematic redundancies was numerically investigated by

Fontes et al. [11, Wu et al. [12] and Ruiz et al. 13] for

reducing the required torques for the execution of prede-

fined tasks. A numerical comparison between the dynamic

performance of planar PKMs with actuation and kinematic

redundancies was carried out in Fontes et al. [11]. The non-

redundant 3RRR, the redundantly actuated 4RRR and

6RRR, and the kinematically redundant PRRR ? 2RRR,

2PRRR ? RRR and 3PRRR PKMs were investigated. As

commonly used, the letter R corresponds to a revolute

joint, the letter P to a prismatic joint, the underline letters to

the active joints and the number in front of the letters refers

to the number of kinematic chains. To perform this

investigation, Fontes and da Silva [11] proposed a pose-

dependent metric. Based on this metric and numerical

analysis, it was concluded that kinematic redundancies not

only promote an enlargement of the usable workspace but

also an improvement on the manipulator’s dynamic per-

formance. Since the outcome of this numerical investiga-

tion was promising, the use of kinematic redundancies

should be further exploited as an alternative to industrial

manipulators. For the sake of experimentally evaluating the

use of kinematic redundancy, the prototype 3PRRR,

depicted in Fig. 1, was built at São Carlos School of

Engineering at the University of São Paulo. Up to three

levels of kinematic redundancy can be investigated by

actuating and/or locking the active prismatic joints. The

non-redundant planar 3RRR PKM can be investigated by

locking all three prismatic joints. The kinematically

redundant planar PRRR ? 2RRR, 2PRRR ? RRR and

3PRRR PKMs can be investigated by actuating one, two or

three prismatic joints, respectively.

The inverse kinematic model of a kinematically redun-

dant PKM presents infinite number of solutions. In other

words, a single end-effector’s pose can be achieved by

infinite kinematic configurations [14]. The selection of a

single kinematic configuration among the several possi-

bilities is denoted as redundancy resolution and can be

mathematically formulated as an optimization problem

[15]. Several strategies have been proposed for solving this

problem for kinematically redundant serial manipulators

[14, 15]. These strategies should be revisited and adapted

for kinematically redundant parallel manipulators. In gen-

eral, two strategies are found in the literature to treat this

problem: the local and the global approaches. The local

approaches take into account kinematic relations that are

valid locally such as gradient projection methods and

Jacobian-based strategies [14]. Local approaches have been

treated in Cha et al. [16] and Boudreau and Nokleby [17]

for avoiding singularities during the execution of prede-

fined tasks. The global approaches, also known as tracking

problems, attempt to minimize the error between the end-

effector’s pose and a reference trajectory. Among others,

global approaches have been proposed by formulating an

optimization problem that maximizes the precision of a

robotic system [18, 19] or that minimizes the required

torques for executing predefined tasks in Fontes et al. [11].

In these works [11, 18, 19], two strategies were numeri-

cally exploited to plan the motion of the redundant actua-

tors: the prepositioning and ongoing approaches. The

positions of the redundant actuators are modified before

and during the task execution in the prepositioning and

ongoing approaches, respectively. Recently, Santos and da

Silva [20] and Hauser [21] exploited local properties for

proposing global redundancy resolution schemes based on

differential dynamic programming and optimal collision-

free inverse kinematics problems, respectively. The

reconfiguration capabilities of the 3PRRR prototype,

depicted in Fig. 1, have been evaluated experimentally

using the redundancy resolution scheme proposed by

Kotlarski et al. [20].

Whilst favourable experimental results on the reconfig-

uration capabilities for avoiding singular regions of kine-

matically redundant parallel manipulators can be found in

the literature [18–20], experimental results on the dynamic

performance of this kind of machines are seldom. In this

way, the main contribution of the present work is the

experimental evaluation of the impact of several levels of

kinematic redundancies on the dynamic performance of a

kinematically redundant PKM, the 3PRRR PKM depicted

in Fig. 1. The redundancy resolution is solved via a global

optimization problem (tracking problem). Preliminary

experimental results using the optimization problemFig. 1 The prototype 3PRRR
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proposed by [19] yielded unsatisfactory performance for

several levels of kinematic redundancies. In this way, a

multiobjective optimization problem is proposed in an

attempt to not only minimize the required torques for

executing a predefined task but also to maximize the dis-

tance of the manipulator’s end-effector to singular regions.

The prepositioning and the ongoing positioning approaches

are considered using the proposed multiobjective opti-

mization problem. The experimental assessment of the

dynamic performance for a tracking problem is task-de-

pendent. In this way, this optimization problem is exploited

for deriving the required inputs for the execution of a

predefined task. A numerical non-dependent task assess-

ment of the dynamic performance of kinematically

redundant manipulators is proposed in Fontes et al. [11]

and is out of the scope of the present manuscript.

The remainder of this paper is organized as follows.

Details of the experimental prototype are given in Sect. 2.

Section 3 summarizes the kinematic and dynamic models

of the manipulators under study. The extended global

approaches for redundancy resolution are described in Sect.

4. Numerical and experimental results on the manipulators’

dynamic performance are discussed in Sect. 5. Finally,

conclusions are drawn in Sect. 6.

2 Prototype description

In this section, the prototype 3P RRR (see Fig. 1) is

described. The actuation of the active prismatic and revo-

lute joints is performed by brushless Maxon EC60 flat

motors connected to Maxon GP52C planetary gearheads.

The nominal torque of these motors is 0.257 Nm @ 3580

rpm. Since the reduction rate of the gearheads is 3.5:1, the

resulting nominal torque is 0.82 Nm @ 1200 rpm. The

linear motion is performed by three table systems with ball

screw HIWIN KK60-10-C-E-600-A-1-F0-S3. Their stroke

range is 600 mm and their lead is 10 mm.

The communication scheme is illustrated in Fig. 2. Each

motor is connected to a control board named EPOS. The

PC is connected to the first control board, EPOS 1, via USB

communication. This control board executes a gateway to

implement the communication between the control boards

via CAN protocol. These control boards present several

control modes. Among them, the most appropriate mode is

the interpolated position mode since all actuators must

simultaneously perform smooth trajectories. In this mode,

the user provides the desired positions and velocities at

discrete time steps. In this manuscript, positions and

velocities are found via a redundancy resolution scheme.

This data is, then, interpolated through splines by the

control board and is used as a reference signal to the

control strategies. Moreover, in this mode, linear position

feedforward and position feedback control strategies are

used to guarantee performance and robustness. The control

parameters, the feedforward and feedback gains, have been

adjusted manually in a human machine interface built in

Matlab.

3 Kinematic and dynamic models

For sake of completeness, this section summarizes the

kinematic and dynamic models of the non-redundant 3RRR

PKM and the kinematically redundant PRRR ? 2RRR,

2PRRR ? RRR and 3PRRR PKMs. Details on this

derivation can also be found in Fontes et al. [11]. Never-

theless, experimental investigations have demonstrated that

sliding friction plays an important role in this prototype and

its modeling has been included in this work. The outcome

of these models furnishes the terms that are used in the cost

functions for describing the redundancy resolution

scheme formulated as a multiobjective optimization

problem.
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Fig. 2 An illustration of the communication scheme

Fig. 3 An illustration of the kinematic chain i, modified from Fontes

et al. [11]
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3.1 Kinematics

The following description of a single kinematic chain i,

illustrated in Fig. 3, is employed to derive comprehensive

models for the all manipulators under study. The kinematic

models can be found by evaluating the geometrical rela-

tions of the manipulators’ links and joints [22]. The base

coordinate system O-xy is located in the centre of the

manipulator’s workspace as illustrated in the upper right

corner of the Figs. 3 and 4 and the moving coordinate

system D-XY is located in the end-effector’s centre as

illustrated in the same figures. The position vector of the

end-effector’s centre is given by X ¼ ½x y a�T relative to

the base coordinate system. Every kinematic chain presents

an active revolute joint at Ai (motor) and two passive

revolute joints at Bi and Ci. Kinematic redundancy is

achieved by adding an active prismatic joint which is

responsible for the position di of Ai. The prismatic joint’s

orientation is given by the angles ci and ki according to the

base coordinate as illustrated in Fig. 4. In addition, hi is the
orientation angle of the link AiBi, bi is the orientation of the
link BiCi, ai is the shortest distance between the linear

guide and the point O, aþ gi is the angle between the axis

Ox and the link CiD and hi is the distance between the

centre of the end-effector and the point Ci. The subscript

i ¼ 1. . .3 according to the kinematic chain.

Using the geometrical constraint equation BiCi
��!�

�

�

�

�

�
¼ l2

and the notation suggested by Wu et al. [23], the angles hi
can be derived as:

hi ¼ 2a tan2
�ei1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2i1 þ e2i2 � e2i3
p

ei3 � ei2

 !

; ð1Þ

where ei1 ¼ �2l1iqi, ei2 ¼ �2l1ili, ei3 ¼ li
2 þ qi

2

þðl1iÞ2 � ðl2iÞ2, li ¼ x� hicosðaþ giÞ � aicosðkiÞ � dicos
ðciÞ and qi ¼ y� hisinðaþ giÞ � aisinðkiÞ � disinðciÞ.

The position vector of the active joints, H, is dependent

on the number of redundant actuators, denoted by

M. Table 1 summarizes the content of the vector H for the

manipulators under study.

The dynamic analysis requires the calculation of the

velocities and accelerations of each moving part of the

manipulators. The relation between the velocity vector of

the manipulator’s end-effector, _X ¼ ½ _x _y _a�T , and the

velocities of the active joints, _H, can be found by taking the

time derivative of the geometrical constraint BiCi
��!�

�

�

�

�

�
¼ l2,

as derived in Fontes et al. [11]. This relation can be

rewritten in a matrix form:

A _X ¼ B _H; ð2Þ

where the elements of the Jacobian matrix A 2 R3�3 can be

described ai1 ¼ l2 cosðbiÞ, ai2 ¼ l2 sinðbiÞ and ai3 ¼
�l2h sinðbi � gi � aÞ and the terms of the Jacobian matrix

B 2 R3�ð3þMÞ varies according to the number of redundant

actuators, M (see Table 1). In a general way, the matrix B

can be defined by the augmented matrix B ¼ ðB0jBMÞ. The
elements of the diagonal matrix B0 2 R3�3 can be descri-

bed by bii ¼ l1l2sinðbi � hiÞ. The elements of matrix BM 2
R3�M are defined by bMim ¼ l2cosðbi � ciÞ if i ¼ m and

bMim ¼ 0 if i 6¼ m, where i ¼ 1. . .3 according to kinematic

chain and m ¼ 1. . .M according to the number of redun-

dant actuators. For instance, according to this description,

the matrix BM ¼ ½bM11; bM21; bM31� ¼ ½l2cosðb1 �
c1Þ; 0; 0� for the kinematically redundant PRRR?2RRR

PKM (M ¼ 1, see Table 1).

The velocities and accelerations of the end-effector can

be calculated by taking the time derivatives of its position

vector, X. If the A is invertible, these quantities are defined

by:

_X ¼ J _H ¼ A�1B _H and ð3Þ

€X ¼ J €Hþ _J _H; ð4Þ

where J 2 R3�ð3þMÞ is the Jacobian matrix.

The velocities and accelerations of the other moving

parts can be calculated by taking the time derivatives of the

position vector of these parts. To do so, each moving body

is denoted by j according to the notation introduced in

Table 2. In this way, the velocities and accelerations of

each moving part j of each kinematic chain i can be defined

by:

_dij ¼ Kij
_H and ð5Þ

€dij ¼ Kij
€Hþ _Kij

_H; ð6Þ

where Kij 2 R3�ð3þMÞ are also the Jacobian matrices that

can be calculated using the same methodology used to

define J (see Eq. 3). This derivation that is fully described

in Fontes et al. [11] yields:
hi

i

x

y

O
x

y

D

Fig. 4 Geometrical details of

the manipulator’s end-effector
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Ki0 ¼
0 � � � cosðciÞ � � � 0

0 � � � sinðciÞ � � � 0

0 � � � 0 � � � 0

2

6

4

3

7

5

and ð7Þ

Ki1 ¼
0 � � � cosðciÞ � � � 0

0 � � � sinðciÞ � � � 0

0 � � � 1 � � � 0

2

6

4

3

7

5

; ð8Þ

where the non-zero terms are located in column iþ 3, and

Ki2 ¼
Hi2

Gi2

� �

; ð9Þ

where

Hi2 ¼
0 � � � l1ð� sinðhiÞÞ � � � cosðciÞ � � � 0

0 � � � l1 cosðhiÞ � � � sinðciÞ � � � 0

� �

ð10Þ

where non-zero values are in columns i and iþ 3 and

Gi2 ¼
�

1

l2
½� sinðbiÞ

½He � h½� sinðgi þ aÞ cosðgi þ aÞ�Ge �Hi2�
�

:

ð11Þ

Using the aforementioned equations, the kinematics of the

non-redundant and redundant manipulators under study can

fully be determined.

3.2 Dynamics

The equations of motion of the manipulators under study

are derived in this section using the Newton–Euler for-

mulation and the aforementioned kinematics. For this

derivation, the inertia data described in Table 2 is used.

Moreover, the mass and inertia of the end-effector is me

and Ie.

Using the Newton–Euler formulation, the components

of the vector pij composed by the combination of forces

and moment applied on the body j of the chain i can be

described as:

pij ¼
mjð€rxij � €/ijsj sinð/ijÞ � _/2

ijsj cosð/ijÞÞ
mjð€ryij þ €/ijsj cosð/ijÞ � _/2

ijsj sinð/ijÞÞ
mjsjð€rxijð� sinð/ijÞÞ þ €ryij cosð/ijÞÞ þ Ij €/ij

2

6

6

4

3

7

7

5

;

ð12Þ

where sj is the distance between of the mass centre of the

body j and its pivotal point, and the vector dij is described

in Table 2. Similarly, the components of the vector pe
composed by the forces and moment applied on the end-

effector can be described as:

pe ¼
me€x

me€y

Ie€a

2

6

4

3

7

5

: ð13Þ

The relation between the generalized forces sg 2 Rð3þMÞ�1

applied by the actuators and the forces and moments on the

system can be expressed using the principle of virtual work

[23]. This strategy yields the following relation:

sg ¼ JTpe þ
X

3

i¼1

X

2

j¼0 or 1

KT
ijpij; ð14Þ

where the lower limit is j ¼ 0 when there is a redundant

actuator in the kinematic chain i and j ¼ 1, otherwise.

The matrices Zij, Nij and Ze can be used for rewriting

Eq. (14) in function of the position vector H. These

matrices are defined as:

Zij ¼
mj 0 �mjsij sin/ij

0 mj mjsij cos/ij

�mjsij sin/ij mjsij cos/ij Ij

2

6

4

3

7

5

;

ð15Þ

Table 1 The position vectors of

the active joints of the

manipulators understudy

Manipulator Number of redundant actuators (M) H

3RRR 0 H ¼ ½h1 h2 h3�T

P RRR ? 2RRR 1 H ¼ ½h1 h2 h3 d1�T

2P RRR ? RRR 2 H ¼ ½h1 h2 h3 d1 d2�T

3P RRR 3 H ¼ ½h1 h2 h3 d1 d2 d3�T

Table 2 Notation and inertia

properties of the moving parts
Moving part Pivotal Point j Position vector Mass Inertia

The redundant actuator Ai – 0 di0 ¼ ½ri0 0�T m0 –

The link AiBi Ai 1 di1 ¼ ½ri1 hi�T m1 I1

The link BiCi Ci 2 di2 ¼ ½ri2 bi�T m2 I2

Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:142 Page 5 of 11 142

123



Nij ¼
0 0 �mj

_/ijsij cos/ij

0 0 �mj
_/ijsij sin/ij

0 0 0

2

6

4

3

7

5

and ð16Þ

Ze ¼
me 0 0

0 me 0

0 0 Ie

2

6

4

3

7

5

: ð17Þ

In this way, the generalized forces sg can be expressed in a

function of the time derivatives of the position vector H:

sg ¼ M €Hþ V _H; ð18Þ

where

M ¼ JTZeJþ
X

3

i¼1

X

2

j¼0 or 1

KT
ijZijKij and ð19Þ

V ¼ JTZe
_Jþ
X

3

i¼1

X

2

j¼0 or 1

KT
ijZij

_Kij þ
X

3

i¼1

X

2

j¼0 or 1

KT
ijNijKij:

ð20Þ

To achieve a good agreement between the experimental

and the numerical data, the sliding friction of the linear

guides has been also considered in the model. In this way,

the torques and forces,

sf ¼ ½sf1 sf2 sf3 sf4 sf5 sf6�T , required to perform

a task can be calculated according to

sf ¼ sg þ sl; ð21Þ

where sl ¼ ½0 0 0 l _d1 l _d2 l _d3�T and l is the

sliding friction factor. Whilst, the first three terms of sf are

the torques related to the active revolute joints, the other

terms are forces related to the active prismatic joints. A

force–torque transformation can be used to the last three

terms yielding an input vector containing efforts of the

same type. Using this transformation, the input vector

containing torques can be described by:

s ¼ s1 s2 s3 s4 s5 s6½ �T ; ð22Þ

where si ¼ sfi for i ¼ 1. . .3 and si ¼ Ksfi=ð2pÞ for i ¼
4. . .6 and K is the lead of the linear guide.

4 Motion planning via redundancy
resolution

Kinematically redundant manipulators present infinite

kinematic configurations, H, for a constant end-effector’s

pose, X. In other words, there are infinite solutions for the

inverse kinematic problem. A suitable choice among the

possibilities should be made based on the system

requirements. In this manuscript, this choice is made via a

multiobjective optimization problem.

4.1 Cost function

In this manuscript, redundancy resolution schemes for

improving the dynamic performance of a planar kinemat-

ically redundant PKM are investigated. An alternative to

improve the manipulator’s dynamic performance is to

minimize the absolute value of the maximum required

torque during the execution of a predefined trajectory of the

end-effector (tracking problem). Numerical results using

this optimization problem were discussed for several levels

of kinematic redundancies in Fontes et al. [11]. In spite of

avoiding high torque values, this strategy was unable to

deliver a singularity-free motion during the execution of

experimental tasks using the 3PRRR prototype. In this way,

an extension of this strategy is proposed: a multiobjective

optimization. Whilst the first cost function penalizes high

torque values, the second one penalizes motion near sin-

gular regions. Due to the multiobjective nature of this

optimization problem, both cost functions should be nor-

malized [24].

The first cost function, that penalizes the maximum

required torque, can be mathematically described by

sk k1=smax. The term sk k1 indicates the maximum

required torque and the term smax is the normalization

factor given by a fixed value.

The second cost function, that penalizes motion near

singular regions can be related to the Condition Number of

the Jacobian matrix A as proposed in Alba-Gomez et al.

[25] and Reveles et al. [26]. In fact, this number can be

interpreted as a measurement of the closeness of the end-

effector and singular regions. Nevertheless, the Jacobian

matrix A of the manipulators under study is dimensionally

heterogeneous. Due to this, the performance indexes

derived from this matrix can be misleading [27]. An

alternative to treat this issue is to homogenize it using the

manipulator’s characteristic length Lc ¼
ffiffiffi

2
p

h as proposed

in Alba-Gomez et al. [25] and Reveles et al. [26]:

A0 ¼
a11 a12 a13=Lc

a21 a22 a23=Lc

a31 a32 a33=Lc

2

6

4

3

7

5

: ð23Þ

As a result, the condition number jðA0Þ of the homoge-

nized Jacobian matrix A0 can be calculated by:

jðA0Þ ¼ max mðA0Þ
min mðA0Þ ; ð24Þ

where mðA0Þ are the singular values of the matrix A0. This
value can be defined as the manipulator’s conditioning

index which is bounded, 1� jðA0Þ �1 [25]. Ideal
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isotropic configurations occur where jðA0Þ ¼ 1 and sin-

gularities are found where jðA0Þ ¼ 1. In this way, the

second cost function can mathematically be described as

jðA0Þk k1=jðA0Þmax. The term jðA0Þk k1 indicates the

maximum reached condition number of the homogenized

Jacobian matrix A0 during a task and the term jðA0Þmax is

the normalization factor given by a fixed value.

Mathematically, the decision variables are composed of

the position vector of the redundant actuators, diðtÞ where
i ¼ 1. . .M. These decision variables are bounded by the

stroke range of the linear guides, dmin � diðtÞ� dmax. The

optimal position vector of the redundant actuators, di;opt,
can be found by solving the following optimization

problem:

di;optðtÞ ¼ arg min
diðtÞ

 

sk k1
smax

;
jðA0Þk k1
jðA0Þmax

!

subject to : dmin � diðtÞ� dmax:

ð25Þ

The optimization problem described by Eq. (25) can be

solved using linear scalarization and by defining weighting

factors for each cost function [24]. The values of the

weighting factors can be selected according to the system

requirements and the designer’s expertise. In this way, a

single cost function is used by calculating a weighted sum

of the cost functions in the next section.

4.2 Redundancy resolution

Global strategies for redundancy resolution seek the opti-

mal redundant actuators’ inputs for a predefined task.

These values are dependent on time and are used for cal-

culating the kinematics and dynamics via the aforemen-

tioned inverse models. Kotlarski et al. [19] proposed two

strategies to deal with the motion of the redundant actuator

as discussed in Sect 1. These strategies have been revisited

in Fontes et al. [11] using a different nomenclature: (1) the

prepositioning and (2) the ongoing positioning approaches.

These strategies are exploited hereafter considering not

only extra levels of kinematic redundancies but also dif-

ferent cost functions (Eq. 25).

The prepositioning approach consists of determining the

best position vector of redundant actuators, di where

i ¼ 1. . .M, before the execution of the task. Note that the

values di are the same throughout the entire task execution.

So, in this case, the optimization problem has just one

decision variable for each redundant actuator, dfixedi . The
optimal values of these variables, dfixedi;opt, can be found by

the following optimization problem:

½dfixedi;opt� ¼ arg min
dfixedi

w1

sk k1
smax

þ w2

jðA0Þk k1
jðA0Þmax

subject to: dmin � dfixedi � dmax

: ð26Þ

where w1 and w2 are the weighing factors of the multiob-

jective optimization problem.

The ongoing positioning approach consists of deter-

mining the best motion of the redundant actuators, di where
i ¼ 1. . .M, during the task execution. The mathematical

description of this motion can be defined by a polynomial

trajectory. Due to this description, only the initial and final

positions, d0i and dfi , are considered as decision variables in
the optimization problem. In this manuscript, a polynomial

of degree five is selected to describe the movement of di
from d0i to dfi between the time interval ½t0; tf � with null

initial and final velocities/accelerations according to:

diðtÞ ¼ ccð0Þ þ ccð1Þt þ ccð2Þt2 þ ccð3Þt3 þ ccð4Þt4

þ ccð5Þt5;
ð27Þ

where t is time in seconds and the coefficients of the

polynomial are given by:

cc ¼ AA�1BB; ð28Þ

where

AA ¼

1 t0 t20 t30 t40 t50

0 1 2t0 3t20 4t30 5t40

0 0 2 6t0 12t20 20t30

1 tf tf 2 t3f t4f t5f

0 1 2tf 3t2f 4t3f 5t4f

0 0 2 t3f 12t2f 20t3f

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

and ð29Þ

BB ¼ d0i;opt _d0i;opt €d0i;opt dfi;opt _dfi;opt €dfi;opt
� �T

:

ð30Þ

In this case, the optimization problem has, for each level of

kinematic redundancy, two variables, d0i and dfi . In this

way, the number of variables is 2M, where M is the number

of redundant actuators according to Table 1. The optimal

values of these variables, d0i;opt and dfi;opt for i ¼ 1. . .M,

can be found by solving the following optimization

problem:

½d0i;opt; dfi;opt� ¼ arg min
½d0i ;dfi �

w1

sk k1
smax

þ w2

jðA0Þk k1
jðA0Þmax

subject to

dmin � d0i � dmax

dmin � dfi � dmax

dmin � di � dmax:

ð31Þ

The optimization problems defined by Eqs. (26) and (31)

can be solved using evolutionary or deterministic methods

that can solve constrained multivariable non-convex
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optimization problems [24]. In this work, starting values

have been found using genetic algorithm and the optimum

values by using sequential quadratic programming [24].

5 Results

Some prototype’s physical properties are given in Table 3.

Moreover, the distances a ¼ 0:26 m and h ¼ 0:06 m, while

the limits of the linear guides are dmin ¼ � 0:3 m and

dmax ¼ 0:3 m. These limits are used in the constraints of

the optimization problem (Eq. 25). The sliding friction

factor is l ¼ 1200:00 Ns/m and the lead of the linear guide

K ¼ 0:01 m. The linear guides’ angular orientations are

described in Table 4.

For sake of comparison, the same task is performed

numerically and experimentally by the manipulators under

study considering the prepositioning and the ongoing

approaches as redundancy resolution methods. The task is a

point-to-point trajectory represented by a straight line

shown in Fig. 5. The end-effector moves from the position

(� 0:0208, 0.1182) m to the position (0.0104, � 0:0591) m

with a fixed null angular position during the task execution.

The total time is 1 s.

Both prepositioning and the ongoing approaches were

described by multiobjective problems, defined by Eqs. (26)

and (31), respectively. Both optimization problems were

solved using the same weighting factors, w1 ¼ w2 ¼ 1.

These values were selected for both cost functions since

both criteria are relevant for the application and the

objectives were normalized. Finally, the two normalization

factors were smax ¼ 0:400 Nm and jmax ¼ 3:000.

Numerical results such as the optimal cost function

value, the maximum condition number and the maximum

required torque are shown in Table 5 for different levels of

kinematic redundancies and redundancy resolution meth-

ods. In this table, the maximum value of the required tor-

que to perform the task experimentally is also described.

According to Table 5, the more complex the redundancy

resolution method and higher the number of level of

kinematic redundancies, the lower the objective function.

By comparing the redundancy resolution methods at the

same redundancy level, one can verify that the ongoing

positioning approach has obtained lower optimal objective

function values than the prepositioning approach for the

cases under investigation.

Both numerical and experimental results indicated that

the maximum required torque can be reduced by the use of

any level of kinematic redundancy and/or redundancy

resolution method. Experimentally, one, two and three

levels of kinematic redundancies assured at least a 7.2, 24.4

and 30:6% reduction of the maximum required torque,

respectively. This demonstrates that the use of two or more

kinematic redundant actuators can be beneficial for the

manipulator’s dynamic performance. Moreover, both

redundancy resolution methods yielded similar maximum

required torque values for the same number of kinematic

redundancies, numerically and experimentally.

Table 5 also demonstrates the correlation between the

manipulators’ conditioning number and the experimental

required torques. For instance, the numerical results indi-

cated that the use of the prepositioning approach and a

single level of kinematic redundancy (PRRR ? 2RRR—

prepositioning approach) could yield the lowest value of

the maximum required torque, 0.176 Nm. This outcome

could not be confirmed by the experimental results. In fact,

the experimental data indicated that the lowest value of the

maximum required torque had been achieved by the use of

the ongoing approach and three levels of redundancies

(3PRRR—ongoing approach). One can verify that the

condition number of the former is higher than the later

Table 3 Prototype’s physical properties

Component Mass (kg) Moment of Inertia (kg m2) Length (m)

Link 1 m1 ¼ 0:01 I1 ¼ 1:22e�5 l1 ¼ 0:191

Link 2 m2 ¼ 0:57 I2 ¼ 1:03e�2 l2 ¼ 0:232

End-effector me ¼ 0:27 Ie ¼ 7:26e�7 –

Motor at Ai m0 ¼ 0:63 I0 ¼ 1:31e�4 –

Table 4 Angular orientations of the linear guides

Manipulator ki (rad) ci (rad)

3RRR p=2;� p=6; 7p=6 – – –

PRRR ? 2RRR p=2;� p=6; 7p=6 0 – –

2PRRR ? RRR p=2;� p=6; 7p=6 0;� 2p=3 –

3P RRR p=2;� p=6; 7p=6 0;� 2p=3; 2p=3

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
x (m)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

y 
(m

)
Fig. 5 Task to be executed
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combination (2:286[ 1:546). Higher condition number

values indicate that there is motion near singular regions.

Whilst, this issue had little impact on the numerical

assessment of the manipulators’ dynamic performance, it

become a major issue on their experimental assessment.

Figures 6, 7 and 8 show the numerical and experimental

required torques for the 3RRR, 3PRRR (prepositioning

approach) and 3PRRR (ongoing approach) to perform the

task illustrated in Fig. 5, respectively. In fact, Fig. 6 depicts

the required torques of the active revolute joints of the

3RRR: Motor 1, Motor 2 and Motor 3. This is also the data

depicted in Fig. 7 for the redundant 3PRRR manipulator,

since the redundancy resolution method is the preposition

approach and the prismatic joints are locked during the task

execution. Figure 8 shows the torques of the active revolute

and prismatic joints of the redundant 3PRRR manipulator

using the ongoing approach as redundancy resolution

method. In this figure, the active revolute joints are denoted

as Motor 1, Motor 2 and Motor 3 and the active prismatic

joints are denoted as Motor 4, Motor 5 and Motor 6.

One can notice by evaluating Figs. 6, 7 and 8, that the

numerical kinematic and dynamic models were able to

capture the behaviour of the non-redundant and redundant

manipulators. Moreover, both redundancy resolution

methods were capable of reducing the required torques to

perform the task. This important result demonstrates that

kinematic redundancy can be an alternative for improving

the dynamic performance of PKMs.

6 Conclusions

In this manuscript, numerical and experimental analysis for

evaluating the impact of several levels of kinematic

redundancy on performance of a planar parallel manipu-

lator were performed. Since the inverse kinematic model of

kinematically redundant manipulators present infinite

solutions, redundancy resolution methods were exploited.

In this manuscript, the definition of the motion of the

redundant actuators was done using a multiobjective opti-

mization problem. The cost functions of this problem took

into account indexes related to the singularities’ avoidance

and the improvement of the manipulator’s dynamic per-

formance. Two approaches were exploited for the proposed

redundancy resolution method: (1) the prepositioning and

(2) the ongoing positioning approaches.

With respect to the numerical modeling, it could be

verified that the numerical models were able to capture the

dynamic behaviour of non-redundant and redundant

manipulators. These were achieved by the inclusion of the

sliding friction term in the dynamic modeling.

In regard to the mathematical description of the redun-

dancy resolution scheme via a multiobjective optimization

problem, it could be verified that the inclusion of a term

penalizing the proximity to singular regions is the utmost

importance. This penalty term exploited the condition

number of a homogenized Jacobian matrix. This homoge-

nization step is essential due to the presence of angular and

translational DoFs. Due to the presence of this

Table 5 Numerical and experimental results for the manipulators and redundancy resolution methods under study

Manipulator and Redundancy resolution Cost function Condition number Num. torque (Nm) Exp. torque (Nm)

3RRR 1.456 2.508 0.248 0.360

(P)RRR?2RRR prepositioning 1.203 2.286 0.176 0.315

(P)RRR?2RRR ongoing positioning 1.150 1.734 0.228 0.334

(P)RRR?RRR prepositioning 1.092 1.921 0.180 0.272

2(P)RRR?RRR ongoing positioning 1.065 1.817 0.184 0.276

3(P)RRR prepositioning 1.046 1.664 0.197 0.250

3(P)RRR ongoing positioning 0.996 1.546 0.192 0.227

0 0.5 1 1.5
Time (s)

-0.4

-0.2

0

0.2

0.4

To
rq

ue
 (N

.m
)

Motor 1
Motor 2
Motor 3

(a)

0 0.5 1 1.5
Time (s)

-0.4

-0.2

0

0.2

0.4

To
rq

ue
 (N

.m
)

Motor 1
Motor 2
Motor 3

(b)

Fig. 6 a Numerical and

b experimental torques

performed by the motors of the

non-redundant manipulator

3RRR
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penalization, lower torque values were required in the

experimental results.

About the inclusion of several levels of kinematic

redundancies, it could be concluded that they have been

capable of reducing the required torque for executing the

selected task. This outcome was verified for both exploited

redundancy resolution schemes. It is important to highlight

that both schemes penalized the proximity to singular

regions. If this penalty term was not included, the reduction

of the required torque for executing the same task could not

be achieved experimentally. This demonstrates the impor-

tance of selecting a proper reduction resolution scheme.

Regarding the redundancy resolution methods and the

selected task, it could be demonstrated that the ongoing

approach may yield slightly lower objective function val-

ues than the prepositioning approach. Nevertheless,

experimental results demonstrated that both approaches

required approximately the same amount of torque for

executing the selected task for the same number of

redundant actuators.

In spite of being task dependent, these important results

motivate further investigations on the impact of the

inclusion of several levels of kinematic redundancy on the

energy consumption of a PKM. The outcome of this

investigation demonstrates the potential of kinematic

redundancies on improving the dynamic performance of

parallel manipulators. This is an alternative that could be

considered by the designer for improving industrial

manipulators.
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