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Abstract
The prime aim of the present investigation is to capture the mechanism of Navier’s velocity slip and convective thermal

boundary condition on the flow of MHD viscoelastic fluid over a stretching surface. Additionally, the analysis also includes

the effect of natural convection and thermal radiation. The governing boundary layer equations are transformed into a set of

highly non-linear ordinary differential equations using suitable similarity transforms. Galerkin Finite element method is

used to solve this boundary value problem. Effects of pertinent flow parameters on the Skin friction coefficient, Nusselt

number, velocity and temperature, are described graphically. Numerical results obtained in this paper are compared with

earlier published results and are found to be in excellent agreement. Significant findings of the present article are the

conjugate effect of partial velocity slip and viscoelasticity of the fluid on Skin friction, Nusselt number, velocity and

temperature. The analysis shows that presence of partial velocity slip changes the behavior of Nusselt number and skin

friction coefficients significantly in comparison to the no slip condition. The present problem has potential to serve as a

model for many industrial processes such as cooling and/or drying of paper and textile, rolling sheet drawn from a die,

manufacturing of polymeric sheets, sheet glass and crystalline materials, etc.

Keywords MHD � Viscoelastic fluid � Stretching sheet � Finite element method

Abbreviations
a Constant parameter (s-1)

A Rate of strain tensor (s-1)

b ¼ bx; by; 0
� �

body force vector (N)

B Magnetic field (Kg s-2 A-1)

Bi Biot number

Cfx Local skin friction coefficient

f Dimensionless stream function

g Gravitational acceleration (ms-2)

Grx Grashof number

h Element size (m)

I Unit tensor

k Thermal conductivity (Wm-1 K-1)

k� Rosseland mean absorption coefficient (m-1)

k0 First order coefficient of short relaxation (kg m-1)

M Magnetic parameter

N Velocity slip factor (m)

p Pressure (Pa)

Nux Local Nusselt number

Pr Prandtl number

Preff Effective Prandtl number

qr Radiative heat flux (Wm-2)

qs Wall heat flux (Wm-2)

R Radiation parameter

Rex Local Reynolds number

T Temperature (K)

Ts Temperature of the left side of surface (K)

T1 Temperature in free stream (K)

t Time (s)

V ¼ u; v; 0ð Þ velocity vector (ms-1)

us Stretching sheet velocity (ms-1)

uslip Slip velocity (ms-1)
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Greek Symbols
a Viscoelasticity parameter

am Thermal diffusivity (m2 s-1)

b Thermal expansion coefficient (K-1)

c Velocity slip parameter

� Cauchy stress tensor (Pa)

r Electrical conductivity (Sm-1)

q Density (kg m-3)

k Thermal buoyancy parameter

qCp

� �
Specific heat capacity of the fluid (JK-1)

h Dimensionless temperature

t Kinematic coefficient of viscosity (m2 s-1)

w Stream function (m2 s)

g Similarity variable

l Dynamic viscosity (kg m-1 s-1)

r� Stefan Boltzmann constant (Wm-2 K-4)

ss Wall shear stress (kg m-1 s-2)

1 Introduction

In Various manufacturing processes the heat and fluid flow

past a moving/stretching surfaces plays a vital role in

designing a product of desired shape, size and quality, for

example, manufacturing of rubber and plastic sheet, glass

blowing, polymer sheets and filaments, cooling of metallic

plates, etc. Thus, understanding the characteristics of fluid

flows induced by a moving or elongating sheet owes a great

importance in industrial applications. Sakiadis [1] pio-

neered the boundary layer flow induced by a continuous

moving surface. Crane [2] extended Sakiadis’s [1] idea to

extensible surface with linearly stretching speed. In his

investigation, he modeled the stretching velocity as a linear

function of distance measured from the origin. These

pioneering research works are being followed by numerous

researches considering different aspects of stretching rate

of deforming surface viz. nonlinear stretching [3], expo-

nentially stretching [4], unsteady stretching [5] and oscil-

latory stretching with rotation [6].

Most of the fluids which are important in various

industries viz. metallurgical, petroleum, chemical, agri-

cultural, biomedical, automobile, electronics, etc. do not

obey the Newton’s linear viscosity model. Unlike the

Newtonian fluids the rheological behavior of non-Newto-

nian fluids are very different and knowledge of their flow

characteristics is very important for industrial application

purpose. Many researchers investigated the flow charac-

teristics of various fluids obeying non-Newtonian consti-

tutive equations viz. Power Law or Ostwald de Waele

fluids [7] Casson fluids [8], Oldroyd-B fluids [9], Walter’s

liquid B fluids [10, 11], Sisko fluid [12], Jeffrey fluid [13],

Eyring-Powell fluid [14] etc.

MHD boundary layer flows have numerous application

in various industries. These flows can be realized in the

liquid metal flows or plasma flows where transverse mag-

netic fields are used to control the flow. Pavlov [15]

obtained the solution of MHD flow caused by deforming

plane surface. A closed form solution of MHD viscoelastic

fluid is obtained by Anderson [16]. Liu [17] investigated

the heat transfer aspect in a second grade fluid past a

stretching sheet in the presence of transverse magnetic field

in a porous medium considering the effect of viscous dis-

sipation and internal heat generation and arrived at the

same expression for the solution of momentum equation as

obtained by Anderson [16] with combined effect of mag-

netic field and porous medium. He also obtained solution

for fluid temperature analytically in terms of Kummer’s

function and presented the heat transfer gradient at the

surface for prescribed surface temperature (PST) case and

prescribed heat flux (PHF) case corresponding to different

flow parameters. The Bionic study of variable viscosity on

MHD peristaltic flow of non-Newtonian (Pseudoplastic)

fluid in an asymmetric channel is carried out by Khan et al.

[18]. There may be the cases where a variable magnetic

field is applied to control the flow motion. Study of vari-

able magnetic field on the peristaltic flow of Jeffrey fluid is

presented by Bhatti et al. [19]. Further, Bhatti et al. [20]

analyzed sinusoidal motion of two-phase flow (particle–

fluid suspension) with heat and mass transfer through a

planar channel in the presence of transverse magnetic field.

The effect of induced magnetic field due to the motion of

electrically conducting fluid in presence of an applied

transverse magnetic field is studied by Sheikholeslami et al.

[21]. Bhatti et al. [22] applied an inclined magnetic field

instead of transverse magnetic field in a peristaltically

induced fluid motion. Knowledge of thermal radiation

characteristics for heat transfer problems, mainly the

problems dealing at high temperature, viz., nuclear power

plants, solar power, gas turbines and various propulsion

devices for aircraft, missiles, satellites and space vehicles,

metallurgical industries, etc. is indispensable [23]. This fact

leads many researcher to investigate thermal radiation

effect on fluid flow. Chen [24] obtained an analytic solution

for MHD viscoelastic fluid flow, incorporating the thermal

radiation term. To obtain the solution he linearized the

thermal radiation term by employing Rosseland approxi-

mation. The nonlinear thermal radiation is considered by

Bhatti et al. [25] in a sinusoidal motion of dusty fluid with

magnetic solid particles. Zeeshan et al. [26] investigated

the magnetic dipole effect on ferro-fluid past a stretching

sheet with thermal radiation. Magyari and Pantokratoras

[27] observed in their research paper that the solution of the

radiation problem for optically thick media in view of the

linearized Rosseland approximation does not require any

additional numerical or analytical effort compared to the
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same problem without radiation. To simplify the radiation

problem they gave the concept of ‘‘effective Prandtl

number’’.

Natural or free or buoyant convection heat and fluid

flows arise due to the interaction of gravitational force and

temperature difference. The mechanism of free convection

is important in variety of engineering and industrial

applications viz. Oceanography, convection in Earth’s

Mantle, Nuclear Reactor, etc. Abel et al. [28] analyzed the

effect of thermal buoyancy force on MHD boundary layer

flow of Walter’s B viscoelastic liquid under the PST and

PHF surface boundary conditions. Hayat et al. [29] inves-

tigated the Soret and Dufour effects on heat and mass

transfer in a MHD viscoelastic fluid filled in porous med-

ium using HAM. Some recent studies on natural convective

flow of viscoelastic fluids are due to Rashidi et al. [30],

Jena et al. [31], etc.

An understanding of the boundary slip has significant

implications in the designing of various microfluidic sys-

tems, red blood flow through capillaries and in many

technological processes such as lubrication and perme-

ability of micro-porous media. The above mentioned

studies have been carried out assuming no-slip velocity at

the solid–fluid interface, however, this assumption is not

appropriate for various situation such as micro\nano-scale

flows, and low pressure (rarefied) flows. The non-adher-

ence phenomena of fluids has been confirmed analytically

[32, 33] as well as experimentally [34]. It was found that

the velocity slip at the fluid–surface interface is a function

of shear stress and the property of surface [35]. Thus,

consideration of boundary slip condition in case of non-

Newtonian fluid flows have more importance than New-

tonian fluid flow. Ariel et al. [36], Megahed [37] and

Anand [38] presented the studies which explored the effect

of partial velocity slip in viscoelastic fluid flow induced by

stretching sheet.

Most of the research studies on heat transfer were car-

ried out under the assumption of either Dirichlet’s (PST) or

Neumann’s (PHF) boundary conditions, however, the

Robin (convective) boundary conditions are more realistic

and occurrent in nature. Bataller [39] analyzed Blasius and

Sakiadis flows under the influence of radiation and con-

vective boundary condition (Robin condition). Aziz [40]

deduced that a similarity solution is possible if heat transfer

coefficient varies inversely proportional to the square root

of distance from the origin in the direction of stretching,

since then several research studies have been carried out

considering the convective thermal boundary condition

[41–43].

The present article investigates the two-dimensional

magnetohydromagnetic, natural convective flow of an

optically thick radiating, electrically conducting and vis-

coelastic fluid past a vertically upward linearly stretching

sheet considering the effect of partial velocity slip at the

sheet-fluid interface. The analysis presented in this article

is relatively original and does not seem to be reported in

the literature till now. The physical model investigated in

the present article finds its application in polymer and

melting metal industries.

2 Mathematical formulation of the problem

2.1 Governing equations

The Cauchy stress tensor � for the viscoelastic fluids

(Walters liquid B’ model) with short relaxation time can be

written in the form [10]

� ¼ �pI þ S; ð1Þ

where

S ¼ 2lA� 2k0

DA

Dt
; ð2aÞ

2A ¼ ðrVÞ þ ðrVÞ�; ð2bÞ
DA

Dt
¼ oA

ot
þ ðV � rÞA� ðrVÞA� AðrVÞ�; ð2cÞ

V ¼ ðu; v; 0Þ and ðrVÞ ¼

ou

ox

ou

oy
0

ov

ox

ov

oy
0

0 0 0

0

BBB@

1

CCCA
; ð2dÞ

where superscript * stands for matrix transpose.

The equations of motion for steady two-dimensional

incompressible viscoelastic fluid satisfying Eq. (1) and

including body force b ¼ ðbx; by; 0Þ become

q u
ou

ox
þ v

ou

oy

� �
¼ � op

ox
þ lr2u� k0

u
o

ox
þ v

o

oy

� �
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ox2

� �
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ð3Þ

q u
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þ v
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oy

� �
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oy
þ lr2v� k0

u
o
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� �
o2v
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o2v

ox2

� �
þ qby;

ð4Þ

and equation of continuity is given by
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ou

ox
þ ou

ox
¼ 0; ð5Þ

Examples of fluids satisfying Eq. (1) are the dilute

polymer solutions, e.g., 5.4% polyisobutylene in cetane and

0.83% ammonium alginate in water, which are mobile and

not highly elastic hence the usual concepts of boundary

layer theory is valid for the given model [10]. Thus, on

applying boundary layer approximation, Eqs. (3) and (4)

reduce to

q u
ov

ox
þ v

ov

oy

� �
¼ � op

ox
þ l

o2u

oy2
� k0

u
o3u

oxoy2
þ v

o3u

oy3
þ ou

ox

o2u

oy2
þ ou

oy

o2v

oy2

� 	
þ qbx;

ð6Þ

� op

oy
¼ 0: ð7Þ

The present problem deals with two-dimensional steady

hydromagnetic natural convective flow of an electrically

conducting, incompressible and optically thick radiating

viscoelastic fluid past a vertically upward stretching sheet.

Physical sketch depicting the flow configuration and

coordinate system of the problem is presented in Fig. 1.

Leading edge of the sheet is kept fixed at origin O and the

flow is confined within the region y� 0. The left side

surface of the sheet is convectively heated with tempera-

ture Ts and heat transfer coefficient hf . A uniform trans-

verse magnetic field of intensity B is applied in a direction

parallel to y-axis. The induced magnetic field is ignored by

assuming magnetic Reynolds number very small [44].

Under the Prandtl’s boundary layer and Boussinesq

approximations, governing equations for described model

[28, 36, 45] are given by

q u
ou

ox
þ v

ou

oy

� �
¼ l

o2u

oy2
� k0

ou

ox

o2u

oy2
þ u

o3u

oxoy2
þ ou

oy

o2v

oy2
þ v

o3u

oy3

� �

þ qgb T � T1ð Þ � rB2u;

ð8Þ

u
oT

ox
þ v

oT

oy
¼ am

o2T

oy2
� 1

qCp

� �
oqr

oy
; ð9Þ

where bx ¼ b T � T1ð Þg� rB2u is the term due to body

force acting on the fluid.

For the described model, the boundary conditions are:

u ¼ us þ uslip; v ¼ 0; k
oT

oy
¼ �hf Ts � T1ð Þ at y ¼ 0; ð10aÞ

u ! 0;
ou

oy
! 0; T ! T1; as y ! 1; ð10bÞ

where us ¼ ax and uslip ¼ N
h
ou
oy
� k0

l



2 ou
ox

ou
oy
þ u o2u

oxoy
þ

v o2u
oy2

�i
:

It may be noted from Eq. (7) that pressure p is inde-

pendent of y and fluid flow is induced due to the stretching

sheet so the pressure gradient term � op
ox

is not considered in

the present problem.

Applying Rosseland approximation, the radiative heat

flux qr [27] is given as

qr ¼ � 4r�

3k�
oT4

oy
: ð11Þ

One can linearize the nonlinear term T4 occurring in

Eq. (11) with the help of Taylor series by assuming a small

variation between the fluid temperature within the bound-

ary layer and ambient fluid temperature, retaining terms up

to first order only. Thus, T4 can be represented as:

T4 ffi 4T3
1T � 3T4

1: ð12Þ

The energy Eq. (9), after incorporating Eqs. (11) and

(12), becomes

u
oT

ox
þ v

oT

oy
¼ am

o2T

oy2
þ 1

qCp

� �
16r�T3

1
3k�

o2T

oy2
: ð13Þ

2.2 Similarity transformation

To obtain similarity solution of equations (5), (8) and (13)

subjected to the boundary conditions (10a) and (10b), fol-

lowing similarity transforms are introduced

g ¼ y

ffiffiffiffiffi
us

tx

r
; w ¼ ffiffiffiffiffiffiffiffiffi

ustx
p

f gð Þ; h gð Þ ¼ T � T1
Ts � T1

ð14Þ

With these assumptions, continuity equation (5) is auto-

matically satisfied.
Fig. 1 Geometry of the problem
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Using (14) in Eqs. (8) and (13), we obtain

f 000 þ ff 00 � f 02 þ kh�Mf 0 þ a �2f 0f 000 þ f 002 þ ff ivð Þ

 �

¼ 0;

ð15Þ

h00 þ Preff fh
0 ¼ 0: ð16Þ

The boundary conditions (10a) and (10b), in non-dimen-

sional form, are given by

f gð Þ ¼ 0; f 0 gð Þ ¼ 1 þ cf 00 gð Þ 1 � 3af 0 gð Þð Þ; h0 gð Þ ¼ Bi 1 � h gð Þð Þ; at g ¼ 0;

f 0 gð Þ ! 0; f 00 gð Þ ! 0; h gð Þ ! 0; as g ! 1

	

ð17Þ

where a ¼ k0a
l , k ¼ Grx

Re2

x

, Grx ¼ gb Ts�T1ð Þx3

t2 , Rex ¼ usx
t ,

M ¼ rB2

qa , Pr ¼ t
am

, R ¼ 16r�T3
1

3kk� , Preff ¼ Pr
ð1þRÞ [27], Bi ¼

hf x

k
Re�1=2

x and c ¼ N
ffiffi
a
t

p
are dimensionless parameters.

It may be noted that here a[ 0 represents the second

order viscoelastic designated Walters liquid B0 model [10],

whereas a\0 represents the second grade viscoelastic fluid

model proposed by Coleman and Noll [46] [17 and 29].

2.3 Physical quantities of engineering interests

The local skin friction or frictional drag coefficient Cfx and

local Nusselt number Nux which stimulates the stress at the

surface and heat transfer rate from surface to fluid,

respectively, are defined by

Cfx ¼
ss
q u2

s

and Nux ¼
xqs

kðTs � T1Þ ; ð18Þ

Where

ss ¼ l
ou

oy
� k0 u

o2u

oxoy
þ 2

ou

ox

ou

oy

� �� �

y¼0

and qs

¼ � k þ 16rT3

3k�

� �
oT

oy

� �

y¼0

: ð19Þ

With the help of (14) and (19), (18) can be expressed in

dimensionless form as

CfxRe1=2
x ¼ ð1 � 3aÞf 00ð0Þ and

NuxRe�1=2
x ¼ �ð1 þ RÞh0ð0Þ;

ð20Þ

where, f 00ð0Þ and � h0ð0Þ are, respectively, dimensionless

wall velocity gradient and wall temperature gradient.

3 Numerical implementation

To ease our computation we have reduced the order of

Eq. (15) by introducing a new variable as

f 0 ¼ t: ð21Þ

Thus, the Eq. (15) and (16) together with (17) are

transformed into

t00 þ ft0 � t2 þ kh�Mt þ a t02 � 2tt00 þ ft000
� �

¼ 0; ð22Þ

h00 þ Pr
eff

fh0 ¼ 0; ð23Þ

f gð Þ ¼ 0; t gð Þ ¼ 1 þ ct0 gð Þ 1 � 3at gð Þð Þ; h0 gð Þ ¼ Bi 1 � h gð Þð Þ; at g ¼ 0;

t gð Þ ! 0; t0 gð Þ ! 0; h gð Þ ! 0; as g ! 1:

)

ð24Þ

Equations (21)–(23) along with (24) are extremely non-

linear and coupled. Thus, obtaining an exact solution is

almost impossible. Therefore, a numerical scheme must be

utilized to solve this system. We have employed the finite

element method [47] to get an approximate solution of the

above-mentioned system of equations.

The essential steps involved in a typical finite element

analysis are summarized below:

a. Generation of finite element mesh: like any other

numerical technique this method also involves the

process of discretization of entire physical domain into

a finite set of sub-domains in such a non-overlapping

manner that they entirely cover the whole flow domain

of the problem. Each such sub-domain is termed as an

element.

b. Derivation of the element equations: Over a typical

element from the discretized domain (i.e., finite

element mesh) the variational (weak) formulation of

the differential equation is constructed. An approxi-

mate solution of the unknowns, i.e., dependent vari-

ables assumed in the forms of U ¼
Pn

i¼1

Uiui is selected,

where ui are the element interpolation function or

basis function and Ui are the unknowns to be computed

at the nodal points of the element. Substituting these

approximate solutions into the variational formulation

of the differential equation, the element equation over

the typical element are obtained.

c. Global finite element model: to constitute the global

finite element model representing whole physical

domain, the element (algebraic) equations obtained in

previous step are assembled by imposing the inter-

element continuity and balance conditions.

d. Solution of the finite element model: to get the solution

of the global finite element model any of the direct or

iterative methods of solving a system of algebraic

equations can be used after employing the boundary

conditions.
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The similarity solution of the flow variables f ; t and h
have been obtained over 2001 nodes of 1000 uniform

quadratic elements created from the physical domain of the

concerned problem. Since there are three unknowns to be

calculated at each nodes, therefore, the step (c) produces a

system of 6003 nonlinear algebraic equations of the form

K Uf gð Þ½ � Uf g ¼ Ff g; ð25Þ

where K Uf gð Þ is the stiffness matrix and F is the source

vector.

After employing the boundary conditions, system of

Eqs. (25) reduces into 5999 nonlinear algebraic equations

which is solved by direct iterative procedure also known as

Picard iterative method of successive substitution [47]. The

convergence criteria for the iterative procedure which is

based on absolute difference of two recent iterative solu-

tions is employed with an accuracy of O ð10�6Þ. A

numerical method requires a finite domain, thus the free

stream (i.e., g ! 1) boundary conditions of the problem

are replaced with a finite quantity as gmax which has been

selected gmax ¼ 6. The value of gmax is chosen in such a

manner that it satisfies all the free stream boundary con-

ditions asymptotically.

3.1 Validation of numerical solution

For the validation of the developed code, the approximate

solution obtained from the used scheme are compared with

the solution obtained by Anderson [16] for various values

of a and M by taking c ¼ k ¼ 0. As one can see from

Figs. 2 and 3 that there is good agreement with the solution

of Anderson [16] and the approximate solution computed

with the developed code of finite element method.

4 Results and discussion

To highlight the perspective of the physics of the flow

regime, the influence of all the physical parameters on the

flow-field characteristics have been analyzed. The quanti-

ties of engineering interests, i.e., local skin friction coef-

ficient, local Nusselt number, fluid velocity and

temperature have been computed for various regulatory

parameters of flow-field. For better-understanding all the

computed results are presented in a graphical form. The

numerical computations have been carried out by adopting

the default values a ¼ 0:1; c ¼ 0:5; k ¼ 2; M ¼
0:5; Preff ¼ 10 and Bi ¼ 0:5, until otherwise specified

particularly.

The variation of skin friction coefficient CfxRe1=2
x and

Nusselt number NuxRe�1=2
x with a for various values of k is

presented for the case of no-slip effect (c ¼ 0) and partial

slip effect (c ¼ 0:5) in Figs. 4 and 5. Since k represents the

relative importance of buoyancy force to viscous force,

therefore, an increase in k stimulates in increased buoyancy

force which assists the fluid motion and reduces the shear

stress. Figure 4 reveals that CfxRe1=2
x is a decreasing

function of k in both the cases, i.e., for c ¼ 0 and c¼ 0:5.

It can be seen that in the absence of slip effect the value of

CfxRe1=2
x decreases almost linearly with a for all the values

of k, whereas presence of slip causes a dramatic change in

decreasing behavior of the CfxRe1=2
x . It may be noted that as

a ! 1=3 the Skin friction coefficient tends to vanish and

then changes its sign for a[ 1=3 which is also in agree-

ment with the Eq. (20), which states that flow separation

occurs when a ¼ 1=3. However, this situation may not

occur as the momentum Eq. (8) is valid for a\\1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f’(
η)

O

Approximate Solution 

Exact Solution  

     α = 0.3

M = 0.5, 1.0, 2.0

Fig. 2 Velocity variation when c ¼ 0 and k ¼ 0
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0.9

1

η
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M = 0.5

α = 0.0, 0.3

Fig. 3 Velocity variation when c ¼ 0 and k ¼ 0
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Figure 5 indicates that the Nusselt number, in absence of

velocity slip, varies almost linearly and has diminishing

trend with increasing value of a, but presence of velocity

slip changes the nature of NuxRe�1=2
x drastically. First with

increase in a, it increases up to a ¼ 1=3 and then it

decreases very rapidly for a[ 1=3. The buoyancy param-

eter k represents the effect of free convection in the gov-

erning equations thus an increases in k leads a higher

temperature variation and high convection rate in the flow

regime. An increased heat convection rate downgrades the

temperature throughout the boundary layer and enhances

the temperature gradient at the surface, which is clearly

evident from Figs. 5. Figure 6 has been drawn to exhibit

the behavior of Nusselt number corresponding to

Bi and M. It is seen from the figure that corresponding to

M there is a decline in NuxRe�1=2
x . The trend observed in

Fig. 6 is due to the Lorentz force generated by movement

of conducting fluid in the presence of magnetic field which

acts as a resistive force against fluid motion and slows

down the flow-velocity and the heat convection rate too.

Thus, magnetic field acts as a moderator for heat transfer.

The rate of heat transfer at the surface corresponding to

Biot number Bi gets enhanced and its effect is quite

prominent which is in agreement with the boundary con-

dition (17).

Effect of viscoelasticity on fluid velocity is presented in

Fig. 7. In absence of partial slip and buoyancy force,

Anderson [16] observed that velocity of the fluid shows a

decreasing nature for increasing strength of viscoelasticity in

whole momentum boundary layer. However, present study

reveals completely different phenomena. The strengthening

of viscoelasticity effect leads the fluid to move faster close to

the surface and with a slower speed away from the sheet. It

was also observed that for higher values of c, the crossover

point shifts towards free stream within the momentum

boundary layer. Figure 8 is plotted to analyze the effect of

slip on the velocity field. The nature of velocity distribution

corresponding to slip is just opposite to the behavior corre-

sponding to the viscoelasticity, i.e., the increase in magni-

tude of slip parameter slows down the velocity near the

surface and opposite trend is observed away from the sur-

face. The momentum boundary layer gets thicker as more

and more fluid gets slipped over the sheet.

Effect of buoyancy force arising due to temperature

difference on velocity field is characterized in Fig. 9. A

higher curve in Fig. 9 corresponds to the higher values of

buoyancy parameter k, which represents the free convec-

tion term of the momentum equation. An increase in the

value of k enhances the buoyancy force which acts as a

positive force term for velocity and accelerates the fluid

velocity. This results in an increased velocity, however, the
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nature of velocity field turns opposite, as fluid moves

towards the boundary layer. The externally applied trans-

verse magnetic field has a tendency to control momentum

boundary layer and the velocity of fluid due to the retarding

nature of Lorentz force, which acts in perpendicular

direction of the fluid motion and applied magnetic field.

The phenomena described above is clearly visible in

Fig. 10.

The temperature field within the thermal boundary layer

corresponding to the various values of a; c; M, Bi and

Preff have been analyzed in Figs. 11, 12, 13, 14 and 15. The

curves in Fig. 11 are plotted to depict the influence of

viscoelasticity on temperature field. It is concluded that the

temperature field is a decreasing function of viscoelastic

parameter a. Effect of slip of fluids at the stretching surface

over fluid temperature is shown in Fig. 12 with different

curves plotted for different values of c. The decreasing

behavior of temperature distribution is more prominent for

the slip parameter c as compared to a. The physics behind

the enhancement of fluid temperature due to increased slip

parameter is that, as we noticed from Fig. 8 that the fluid

velocity is getting reduced owing to enhanced slip between

fluid and surface. Thus, continuous deformation in the

surface against the fluid motion produces a frictional heat.

As a result, an increased thermal boundary layer thickness

as well as enhanced temperature distribution is noticed

throughout the boundary layer.

Variation of temperature distribution corresponding to

the magnetic parameter M is elucidated in Fig. 13. It

describes that temperature is an increasing function of

magnetic field. The trend observed in Fig. 13 is due to the

Lorentz force which acts as a resistive force against fluid
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motion. Consecutively heat is generated and it results in an

enhanced temperature within the boundary layer. Figure 14

exhibits the influence of convective heat transfer from the

surface to the fluid controlled by Biot number Bi. It can be

seen from this figure that the fluid temperature at the sur-

face as well as within the thermal boundary layer rises

sharply with increasing value of Bi. Biot number represents

the diffusive resistance within the sheet to the convective

resistance at the surface of sheet. Thus, a small Bi repre-

sents a high convective resistance at the surface leading to

a low heat transfer from the sheet to fluid which is indeed

true from this figure. Effect of Preff for fixed value of

radiation parameter R which stimulates the relative

strengths of viscous and thermal diffusivities is presented

in Fig. 15. Since the thermal diffusivity is inversely pro-

portional to Preff , for a fluid of fixed viscosity, an increment

in Preff results in a weak thermal diffusion which ultimately

turns in the reduction of fluid temperature. This phenomena

is also validated in Fig. 15. It can also be concluded from

this figure that for the fixed value of Pr, the fluid temper-

ature increases for strengthening effect of radiation.

5 Conclusions

Investigation of two dimensional hydromagnetic natural

convection flow of an electrically conducting, incom-

pressible and optically thick radiating viscoelastic fluid

past a vertically upward stretching sheet is carried out.

Significant findings are summarized below:
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• Partial slip effect and viscoelasticity of the fluid have

opposite nature on the velocity field. It is interesting to

report that, for smaller values of slip parameter, the

nature of velocity field corresponding to viscoelasticity

changes quickly near the sheet, whereas as magnitude

of slip parameter enhances the turning point moves

away from the sheet.

• Buoyancy force acts as a favorable factor for the

velocity field and with its strengthening effect, it

enhances the velocity of the fluid.

• Temperature distribution slows down with increasing

magnitude of viscoelasticity and thermal diffusivity,

whereas the opposite nature is observed for strength-

ening effects of partial velocity Slip, magnetic field,

convective heat transfer and thermal radiation.
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