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Abstract
The article reviews the vector method of solving one of the important problems of the dynamic analysis of planar

linkages—the kinetostatic analysis, which is to determine the reactions in kinematic pairs and to balance the moment

(force) on the driving medium with a given law of motion of the mechanism. This problem is of great practical value when

choosing the electric motor and calculating bearings in kinematic pairs. Proposed quality criteria for an optimal kinematic

synthesis of linkage mechanism depend only on the geometrical dimensions and are independent of the forces and

moments applied to the linkages.
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1 Introduction

Force study of linkages is of great importance, as the

longitudinal, transverse forces, and bending moments in

sections links can be determined by reactive forces found

in the kinematic pairs.

The purpose of the force analysis of linkages is not only

the definition of reactions in kinematic pairs and general-

ized driving forces but also the quality assessment of

designed linkage for certain dynamic criteria and use this

assessment to improve its design [1, 2]. Calculation of

forces in the kinematic pairs of the linkages (kinetostatic

analysis) is performed on the basis of constraint release

mechanism and d’Alembert’s principle [1].

Methods of kinetostatic analysis of linkages can be

divided into graphic-analytical and analytical. The first

papers on the graphic-analytical methods of planar link-

ages’ kinetostatics belong to Mohr O. [3], Wittenbauer F.

[4], Federhofer K. [5], and Tolle O. [6], who used graph-

ical statics methods, replacement points, and the principle

of superposition to determine the reaction forces in kine-

matic pairs.

The works of N.E. Zhukovsky dedicated to the study of

machines and mechanisms are of extensive practical and

scientific interest. We mention the work [7], which pro-

posed an original way to solve the problems of force

analysis of mechanisms of any complexity by reducing it to

the equilibrium of the lever problem; L.V. Assur [8] used

this method to calculate the kinetostatic parameters of three

driving groups.

In papers [8–11], the L.V. Assur’s special points and the

method of direct force resolution were used to calculate the

kinetostatic of the complex mechanisms.

In [12] the graphic-analytical solution of the problems of

speed and acceleration of planar and spatial mechanisms

solved by constructing vector products and the vector

components. In addition, here, the vector method was

applied, for the first time, to determine the forces acting in

the mechanisms.

The proposed vector method of solving the problem was

further developed in [13], in which not the vector equations

were used to find the normal components of the reaction

but the projection of vector equations to the randomly

selected coordinate axes.

C. Bagci [14] used a screw method to study the spatial

mechanisms’ equilibrium under the action of given exter-

nal forces.

The works [15–20] are of particular interest, where the

matrix analysis is used for kinetostatic study as it leads to a

handy algorithm development and future mathematical

formalization, convenient when using a computer.
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Currently, the computer programs such as Maple,

Mathcad are widely used for kinetostatic calculation of

planar linkages [21–23]. In [24], a method for the force

analysis of the linkages in Mathcad program is proposed

that allows you to analytically solve the vector force bal-

ance equations.

The methods of vector algebra are widely used for

analytical study of kinematics and kinetostatics of linkages

[25–30], consisting in replacing of each link of the mech-

anism with the appropriate vector.

At a constant angular velocity of the driving member in

x1 = const the area of movement 0 B u1 B 2p, you can

determine the counterweight moment and the reaction

mechanism in the kinematic pairs using the kinetostatic

analysis. You can define the parameters of the electric

motor by the average value of the balancing point calcu-

lation and selection of bearings to be installed in the hinges

by the extreme values of the responses. In addition, the

analytical expressions of reactions you can be used to solve

problems in the dynamics of planar linkages taking into

account the forces of friction in kinematic pairs.

Let us introduce the following quality criteria: K1and K2.

Let us define criteria K1 as the ratio of the driving torque to

the moment of the resistance forces. The smaller the

parameter, the less energy you have to spend to set the

mechanism in motion. Moreover, the criterion K1 is an

absolute amount of the angular speed analog of the

mechanism’s output link. Let us determine the criterion K2

as the relative level of reactions in all the kinematic pairs of

the mechanism. By definition, both the quality criteria

depend only on the geometric dimensions of the mecha-

nism and do not depend on the forces and moments applied

to the mechanism that allows us to include these criteria in

the solution of the optimal kinematic synthesis problem.

The method of vector kinetostatic analysis for planar

linkages of high classes is proposed below, beginning with

the second class and up to the fifth class inclusive. The

results of solving the problem of kinetostatic analysis of

planar linkages of high classes are obtained in vector form,

which is a difference from other methods. Next, vector

equations can be analytically solved in analytical Maple

computing system that is to be the most convenient way for

further calculations.

2 Kinetostatic analysis of planar linkages
of second class

Consider a vector method for kinetostatic analysis of planar

linkages of second class (Fig. 1).

Let R~ij ¼ �R~ji i; j ¼ 0; 1; 2; 3 (the reaction of the i on

the j link) be the desired reaction in the kinematic pairs and

My be the unknown counterbalancing moment on the

driving member 1. Let us specify a mass of links mi, the

moments of links inertia with respect to mass centers JSi , as

well as the forces of gravity of links G~i and the moment or

force of resistance on the output link M3 or F3. Let the law

of motion of the driving member u1 = u1(t) be known and

solving the problem of the kinematic analysis can deter-

mine the laws of motion of the other links of the mecha-

nism, which means that we can find the inertial forces of

mass centers �miW~ Si and the moments of inertia forces of

the links �JSiei. Here, W~ Si is the acceleration of the center

of mass at the point Si and ei is the angular acceleration of

the center of mass at the point Si.

2.1 Kinetostatic analysis of the four-bar linkage

Consider the kinetostatic analysis of the four-bar linkage,

see Fig. 1a. Let us write the equations of equilibrium of its

three links in the vector form according to the principle of

d’Alembert:

R~01 þ R~21 þ G~1 ¼ 0; l~1 � R~21 þMyk~� JS1
e1k~¼ 0 ð1Þ

R~12 þ R~32 þ G~2 � m2W~ S2
¼ 0;

ðl~2 � r~2Þ � R~32 � r~2 � R~12 � JS1
e1k~¼ 0

ð2Þ

R~23 þ R~03 þ G~3 � m3W~ S3
¼ 0;

ðl~3 � r~3Þ � R~23 � r~3 � R~03 � JS3
e3k~�M3k~¼ 0:

ð3Þ

In these equations, the k~ denotes the unit vector of the

coordinate axis Oz. From Eq. (1) with a known vector R~12,

we can find a reaction from the rack O on the driving

member and the balancing point:

R~01 ¼ R~12 � G~1; My ¼ ðk~; l~1;R~12Þ þ JS1
e1:

To simplify further calculations, we introduce the

notation:

P~i ¼ G~i � miW~ Si ; J~i ¼ JSieik~; i ¼ 2::5:

We will take R~12 for the desired reaction, and then, the

Eqs. (2–3) can be written as follows:

R~23 ¼ R~12 þ P~2; R~03 ¼ �R~12 � P~2 � P~3;

ðl~2 � r~2Þ � ðR~12 þ P~2Þ þ r~2 � R~12 þ J~2 ¼ 0;

ðl~3 � r~3Þ � ðR~12 þ P~2Þ þ r~3 � ðR~12 þ P~2 þ P~3Þ � J~3 �M3k~¼ 0

8
>><

>>:

:

ð4Þ

From the last two vector equations of the system (4), we

can write the following system of vector equations for the

desired vector (where the right-hand sides of these equa-

tions are denoted as p~i for simplicity):

l~2 � R~12 ¼ p~2 ¼ �ðl~2 � r~2Þ � P~2 � J~2;

l~3 � R~12 ¼ p~3 ¼ �l~3 � P~2 � r~3 � P~3 þ J~3 þM3k~

(

: ð5Þ
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The solution of the system of vector Eq. (5) will be

sought as a linear combination of the vectors l~2 and l~3, i.e.,

as follows:

R~12 ¼ c1l~2 þ c2l~3: ð6Þ

After substituting (6) into (5), we obtain the following

expressions for the scalar parameters c1 and c2:

c1 ¼ � k~ � p~3

ðk~; l~2; l~3Þ
; c2 ¼ k~ � p~2

ðk~; l~2; l~3Þ
: ð7Þ

Thus, the problem of kinetostatic analysis is completely

solved; the results are obtained in vector form (7).

Consider the particular case of this problem. Quite often,

it is necessary to solve the problem of static, i.e., without

considering the forces of inertia and even the gravity forces

of mechanism links. The same problem arises in deter-

mining the dimensionless criteria for transmission of

mechanism movement. Assuming the vector p~2 ¼
0; p~3 ¼ M3k~ in the above formulas, we obtain the desired

reaction in the kinematic pairs:

R~01 ¼ R~12 ¼ R~23 ¼ �R~03 ¼ � M3l~2

ðk~; l~2; l~3Þ
;

My ¼ �M3

ðk~; l~1; l~2Þ
ðk~; l~2; l~3Þ

:

We define quality criteria K1 and K2 in the form of

expressions:

K1 ¼ My

M3

�
�
�
�

�
�
�
� ¼ u0

3

�
�

�
� ¼ l1

l3

sinðu2 � u1Þ
sinðu2 � u3Þ

�
�
�
�

�
�
�
�;

K2 ¼ Rmaxl3

M3

�
�
�
�

�
�
�
� ¼ l3

R12

M3

�
�
�
�

�
�
�
� ¼

1

sinðu2 � u3Þj j :

Both criterion functions K1(u1) and K2(u1) can take any

non-negative values. The value of any of these parameters

depends on the distance from the dead center position of

the mechanism: while approaching the dead center

position, the criteria values increase significantly due to the

fact that the denominator sin (u2-u3) tends to zero. Thus,

from the values of the transmission criteria K1 and K2, not

only the quality of the transmission of motion and forces

can be judged, but also the degree of remoteness from the

danger zone when mechanism is working.

2.2 Kinetostatic analysis of the slider-crank
mechanism

Consider the kinetostatic analysis of the slider-crank

mechanism (Fig. 1b). Let us write the equations of equi-

librium of all its links in the vector form according to the

principle of d’Alembert:

R~01 þ R~21 þ G~1 ¼ 0; l~1 � R~21 þMyk~� JS1
e1k~¼ 0

R~12 þ R~32 þ G~2 � m2W~ S2
¼ 0;

ðl~2 � r~2Þ � R~32 � r~2 � R~12 � JS1
e1k~¼ 0

R~23 þ R~03 þ G~3 � m3W~ S3
þ F~3 ¼ 0;

X

i

MBðF~iÞ ¼ 0:

ð8Þ

We express all the reactions in kinematic pairs and

balancing moment also through the vector R~12:

R~01 ¼ R~12 � G~1; R~23 ¼ R~12 þ P~2; R~03 ¼ �R~12 � P~2 � P~3 � F~3;

My ¼ ðk~; l~1;R~12Þ þ JS1
e1; ðl~2 � r~2Þ � ðR~12 þ P~2Þ þ r~2 � R~12 þ J~2 ¼ 0

(

:

ð9Þ

The equation in the form of the system moments (8)

serves only to determine the point of application of the

reaction R~03 or the arm of the reaction against the hinge B.

As a rule, this arm in many problems is equal to zero, and

the reaction R~03 passes through the point A. We can obtain

the following vector equation from the third and last sys-

tem of Eq. (9):

(a) (b)

Fig. 1 Planar linkage mechanisms of second class: a four-bar linkage, b slider-crank mechanism
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j~� R~12 ¼ a~;

l~2 � R~12 ¼ b~

(

; ð10Þ

where i~; j~are the unit vectors of the coordinate axes Ox and

Oy, respectively, and known vectors on the right side in

equation are equal to

a~¼ �j~� ðP~2 þ P~3 þ F~3Þ;
b~¼ �ðl~2 � r~2Þ � P~3 � J~2:

It can be written as the solution of (10) for the reaction

R~12:

R~12 ¼ ðk~ � b~Þj~� ðk~ � a~Þl~2

i~� l~2

:

In the particular case, when we neglect the forces of

inertia and weights of links, it can be obtained as follows:

R~01 ¼ R~12 ¼ R~23 ¼ �R~03 � F~3 ¼ � F3l~2

l2 cosu2

;

My ¼ �F3l1
sinðu2 � u1Þ

cosu2

and the quality criteria

K1 ¼ My

F3l1

�
�
�
�

�
�
�
� ¼

S0

l1

�
�
�
�

�
�
�
� ¼

sinðu2 � u1Þ
cosu2

�
�
�
�

�
�
�
�;

K2 ¼ Rmax

F3

�
�
�
�

�
�
�
� ¼

R12

F3

�
�
�
�

�
�
�
� ¼

1

cosu2j j :

2.3 Kinetostatic analysis of the rocker
mechanism

Consider the rocker mechanism (Fig. 2). Let us write the

equations of equilibrium of the mechanism links in the

vector form according to the principle of d’Alembert:

R~01 þ R~21 þ P~1 ¼ 0;

ðl~1 � r~1Þ � R~21 � r~1 � R~01 þMyk~� J~1 ¼ 0
ð11Þ

R~12 þ R~32 þ P~2 ¼ 0;
X

i

MS2
ðF~iÞ ¼ 0

R~23 þ R~03 þ P~3 ¼ 0;

ðe~þ s~3 � r~3Þ � R~23 � r~3 � R~03 � J~3 �M3k~¼ 0:

The second equation of (11) in the form of moments is

only necessary to determine the point of application of the

reaction R~32. Let us denote the desired reaction as R~12 ¼ Z~.

Then, the above-recorded equations take the following

form:

R~01 ¼ Z~� P~1; My ¼ ðk~; l~1; Z~Þ � ðk~; r~1;P~1Þ þ k~ � J~1

ð12Þ

R~23 ¼ Z~þ P~2; R~03 ¼ �Z~� P~2 � P~3 ð13Þ

ðe~þ s~3Þ � Z~¼ �r~3 � P~3 � ðe~þ s~3Þ � P~2 þ J~3 þM3k~:

We have the following system of vector equations to

determine Z~

ðe~þ s~3Þ � Z~¼ p~;

s~3 � Z~¼ q:

(

ð14Þ

Here, we use the notation:

p~¼ �r~3 � P~3 � ðe~þ s~3Þ � P~2 þ J~3 þM3k~; q

¼ �s~3 � P~2:

The solution of (14) can be written as follows:

R~12 ¼ Z~¼ q � ðe~þ s~3Þ
s2

3

þ p~� s~3

s2
3

:

The remaining unknown constituents are determined by

Eqs. (12) and (13).

In the particular case, when we neglect the forces of

inertia and weights of links, it can be obtained as follows:

R~01 ¼ R~12 ¼ R~23 ¼ �R~03 ¼ M3ðk~� s~3Þ
s2

3

;

My ¼ M3l1
sinðu1 � u3Þ

s3

;

and the motion transmission criteria

K1 ¼ My

M3

�
�
�
�

�
�
�
� ¼ u0

3

�
�

�
� ¼ l1

sinðu1 � u3Þ
s3

�
�
�
�

�
�
�
�;

K2 ¼ Rmax

M3

�
�
�
�

�
�
�
� ¼

R12

M3

�
�
�
�

�
�
�
� ¼

1

s3j j :

For all the above cases, the program has been drawn up

in Maple computer algebra system, and it was also created

a new module of vector algebra to solve the problems of

vector mechanics.Fig. 2 Rocker mechanism
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The test calculation was made for the four-bar linkage

with the following input data: the geometric dimensions of

the mechanism l1 = 0.4 m, l2 = 0.8 m, l3 = 0.7 m,

xC = 1.0 m, yC = 0.01 m, r1 = 0.0 m, r2 = 0.4 m,

r3 = 0.0 m, and a2 = 00; mass and moments of inertia of

links m1 ¼ 0:3kg; m2 ¼ 0:2kg; and m3 ¼ 0:4kg, JS1
¼

0:1kgm2; JS2
¼ 0:05kgm2; and JS3

¼ 0:07kgm2; resis-

tance moment on the output shaft M3 ¼ 3HM, and the

angular velocity of the driving member assumed to be

constant x1 = 10 s-1.

Figure 3 shows graphs of motion transmission criteria K1

and K2, and Fig. 4a, b shows the hodograph of the reaction

R~12 and the diagram of the balancing moment My.

3 Kinetostatic analysis of planar linkage
mechanism of third class

Consider a vector method for the kinetostatic analysis of

planar linkage mechanism of third class (Fig. 5). Accepted

designations are similar to that were used above.

The equilibrium equations of five moving links of the

mechanism have the following form:

R~01 þ R~21 þ G~1 ¼ 0; l~1 � R~21 þMyk~� JS1
e1k~¼ 0

ð15Þ

R~12 þ R~32 þ G~2 � m2W~ S2
¼ 0;

ðl~2 � r~2Þ � R~32 � r~2 � R~12 � JS1
e1k~¼ 0

ð16Þ

R~23 þ R~43 þ R~53 þ G~3 � m3W~ S3
¼ 0;

ðl~3 � r~3Þ � R~43 þ ðl~03 � r~3Þ � R~53 � r~3 � R~23 � JS3
e3k~¼ 0

(

ð17Þ

R~34 þ R~04 þ G~4 � m4W~ S4
¼ 0;

ðl~4 � r~4Þ � R~34 � r~4 � R~04 �M4k~� JS4
e4k~¼ 0

ð18Þ

R~35 þ R~05 þ G~5 � m5W~ S5
¼ 0;

ðl~5 � r~5Þ � R~35 � r~5 � R~05 �M5k~� JS5
e5k~¼ 0:

ð19Þ

From Eqs. (15) with a known value of R~12, we can find a

reaction from the rack on the driving member and the

balancing point:

R~01 ¼ R~12 � G~1; My ¼ ðk~; l~1;R~12Þ þ JS1
e1:

For simplicity, we introduce the notation

P~i ¼ G~i � miW~ Si ; J~i ¼ JSieik~; i ¼ 2; . . .; 5:

We will take R~34 and R~35 for the desired reactions and

denote them as Z~1 and Z~2 to distinguish them from the

others, then we can write Eqs. (15)–(19):

R~04 ¼ �Z~1 � P~4; R~05 ¼ �Z~2 � P~5;

R~12 ¼ Z~1 þ Z~2 � P~2 � P~3; R~23 ¼ Z~1 þ Z~2 � P~3;

ðl~2 � r~2Þ � ðZ~1 þ Z~2 � P~3Þ þ r~2 � ðZ~1 þ Z~2 � P~2 � P~3Þ þ J~2 ¼ 0

ðl~3 � r~3Þ � Z~1 þ ðl~03 � r~3Þ � Z~2 þ r~3 � ðZ~1 þ Z~2 � P~3Þ þ J~3 ¼ 0

ðl~4 � r~4Þ � Z~1 þ r~4 � ðZ~1 þ P~4Þ �M4k~� J~4 ¼ 0

ðl~5 � r~5Þ � Z~2 þ r~5 � ðZ~2 þ P~5Þ �M5k~� J~5 ¼ 0

8
>>>>>>>>>>><

>>>>>>>>>>>:

:

ð20Þ

From the last four equations of the system (20), we can

write the following system of vector equations for the

desired vectors (where the right-hand sides of these equa-

tions are denoted as p~i for simplicity):

l~2 � ðZ~1 þ Z~2Þ ¼ p~2 ¼ l~2 � P~3 þ r~2 � P~2 � J~2

l~3 � Z~1 þ l~
0
3 � Z~2 ¼ p~3 ¼ r~3 � P~3 � J~3

l~4 � Z~1 ¼ p~4 ¼ �r~4 � P~4 þ J~4 þM4k~

l~5 � Z~2 ¼ p~5 ¼ �r~5 � P~5 þ J~5 þM5k~

8
>>>>><

>>>>>:

: ð21Þ

The solution of system (21) can be found in the form:

Z~1 ¼ c1l~2 þ c2l~4; Z~2 ¼ c3l~2 þ c4l~5:

Here, the scalar parameters ci are defined by the

following:

c1 ¼ � k~ � p~4

ðk~; l~2; l~4Þ
; c3 ¼ � k~ � p~5

ðk~; l~2; l~5Þ
;

c2 ¼ ðq~; l~2; l~5Þ � ðp~2; l
~0

3; l
~

5Þ
D

; c4 ¼ �ðq~; l~2; l~4Þ � ðp~2; l
~

3; l~4Þ
D

;

where we use the notation

q~¼ p~3 þ l~2 � ðc1l~3 þ c3l~
0
3Þ;

D ¼ ðl~2 � l~5Þ � ðl~3 � l~4Þ � ðl~2 � l~4Þ � ðl~
0
3 � l~5Þ:

Fig. 3 Motion transmission criteria K1, K2
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If we neglect the inertial components and weights of

links P~i ¼ 0; J~i ¼ 0 and consider M4 = 0, then the

solution is much simpler:

l~2 � ðZ~1 þ Z~2Þ ¼ 0; l~3 � Z~1 þ l~
0
3 � Z~2 ¼ 0;

l~4 � Z~1 ¼ 0; l~5 � Z~2 ¼ M5k~

(

c1 ¼ 0; c3 ¼ � M5

ðk~; l~2; l~5Þ
; q~¼ c3ðl~2 � l~

0
3Þ;

c2 ¼ ðq~; l~2; l~5Þ
D

; c4 ¼ �ðq~; l~2; l~4Þ
D

Z~1 ¼ c2l~4; Z~2 ¼ c3l~2 þ c4l~5:

4 Kinetostatic analysis of planar linkage
mechanism of fourth class

Consider a vector method for kinetostatic analysis of planar

linkage mechanism of fourth class (Fig. 6).

Let R~ij ¼ �R~ji i; j ¼ 0; 1; . . .; 5 (the reaction of the i on

the j link) be the desired reaction in the kinematic pairs and

My be the unknown counterbalancing moment on the

driving member 1. Let us specify a mass of links mi, the

moments of links inertia with respect to mass centers JSi , as

well as the forces of gravity of links G~i (not shown on the

figure) and the moment or force of resistance on the output

link M5. Let the law of motion of the driving member

u1 = u1(t) be known. From solving the problem of the

kinematic analysis, we can determine the laws of motion of

the other links of the mechanism. Then, you can find the

inertial forces of mass centers �miW~ Si and the moments of

inertia forces of the links �JSiei.
Equilibrium equations for the five mobile links based on

the principle of d’Alembert mechanism can be written as

follows:

X

j

F~j;i � miW~ Si ¼ 0;
X

j

MSiðF~j;iÞ � JSieik~¼ 0;

i ¼ 1; . . .; 5;

where F~j;i are the active and reactive forces acting on the

link i. Let us write this for each level, considering driving

member 1 as statically balanced:

Fig. 4 a Hodograph of the reaction R~12 and b balancing moment My

Fig. 5 Planar linkage mechanism of third class

Fig. 6 Planar linkage mechanism of fourth class
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R~01 þ R~21 þ G~1 ¼ 0; l~1 � R~21 þMyk~� JS1
e1k~¼ 0

ð22Þ

R~12 þ R~32 þ R~42 þ G~2 � m2W~ S2
¼ 0;

ðl~2 � r~2Þ � R~32 þ ðl~02 � r~2Þ � R~42 � r~2 � R~12 � JS2
e2k~¼ 0

(

ð23Þ

R~23 þ R~53 þ G~3 � m3W~ S3
¼ 0;

ðl~3 � r~3Þ � R~53 � r~3 � R~23 � JS3
e3k~¼ 0

ð24Þ

R~24 þ R~54 þ G~4 � m4W~ S4
¼ 0;

ðl~4 � r~4Þ � R~54 � r~4 � R~24 � JS4
e4k~¼ 0

ð25Þ

R~35 þ R~45 þ R~05 þ G~5 � m5W~ S5
¼ 0;

ðl~5 � r~5Þ � R~35 þ ðl~05 � r~5Þ � R~45 � r~5 � R~05 �M5k~� JS5
e5k~¼ 0

(

:

ð26Þ

In these equations, the k~ denotes the unit vector of the

coordinate axis Oz. From Eqs. (22) with a known vector

R~12, we can find a reaction from the rack (link number 0)

on the driving member and the balancing point:

R~01 ¼ R~12 � G~1; My ¼ ðk~; l~1;R~12Þ þ JS1
e1:

For simplicity, we introduce the notation:

P~i ¼ G~i � miW~ Si ; J~i ¼ JSieik~; i ¼ 2; 3; 4; 5:

We will take R~35 and R~45 for the desired reactions and

denote them as Z~1 and Z~2 to distinguish them from the

others, then we can write Eqs. (23)–(26):

From the last four equations of the system (27), we can

write the following system of vector equations for the

desired vectors (where the right-hand sides of these equa-

tions are denoted as p~i for simplicity):

l~2 � Z~1 þ l~
0
2 � Z~2 ¼ p~2 ¼ l~2 � P~3 þ l~

0
2 � P~4 þ r~2 � P~2 � J~2

l~3 � Z~1 ¼ p~3 ¼ r~3 � P~3 � J~3

l~4 � Z~2 ¼ p~4 ¼ r~4 � P~4 � J~4

l~5 � Z~1 þ l~
0
5 � Z~2 ¼ p~5 ¼ �r~5 � P~5 þ J~5 þM5k~

8
>>>>><

>>>>>:

:

ð28Þ

The solution of system (28) can be found in the form of

a linear combination:

R~35 ¼ Z~1 ¼ a1l~3 þ b1l~4; R~45 ¼ Z~2 ¼ a2l~3 þ b2l~4: ð29Þ

Here, the scalar parameters a1, b1, a2, b2 are defined by

the following:

b1 ¼ k~ � p~3

ðk~; l~3; l~4Þ
; a2 ¼ � k~ � p~4

ðk~; l~3; l~4Þ
;

a1 ¼ ðq~2; l
~0

5; l
~

4Þ � ðq~5; l
~0

2; l
~

4Þ
D

; b2 ¼ �ðq~2; l
~

5; l~3Þ � ðq~5; l
~

2; l~3Þ
D

;

where we use the notation

q~2 ¼ p~2 � b1l~2 � l~4 � a2l~
0
2 � l~3; q~5 ¼ p~5 � b1l~5 � l~4 � a2l~

0
5 � l~3;

D ¼ ðl~2 � l~3Þ � ðl~
0
5 � l~4Þ � ðl~02 � l~4Þ � ðl~5 � l~3Þ:

After substituting (29) in the first four equations of the

system (27), we define a reaction in the kinematic pairs

R~12;R~23;R~24;R~05, and then, from Eq. (22), we find R~01 and

My

R~01 ¼ R~12 � G~1; My ¼ JS1
e1 þ ðk~; l~1;R~12Þ:

Thus, the problem of kinetostatic analysis is completely

solved; the results are obtained in vector form.

Consider the particular case of this problem. Quite often,

it is necessary to solve the problem of static, i.e., without

considering the forces of inertia and even the gravity forces

of mechanism links. If we neglect the inertial components

and weights of links, i.e., P~i ¼ 0; J~i ¼ 0, then the solu-

tion is much simpler:

l~2 � Z~1 þ l~
0
2 � Z~2 ¼ 0; l~5 � Z~1 þ l~

0
5 � Z~2 ¼ M5k~;

l~3 � Z~1 ¼ 0; l~4 � Z~2 ¼ 0

(

R~05 ¼ �Z~1 � Z~2 � P~5; R~24 ¼ Z~2 � P~4;

R~23 ¼ Z~1 � P~3; R~12 ¼ R~23 þ R~24 � P~2 ¼ Z~1 þ Z~2 � P~2 � P~3 � P~4;

ðl~2 � r~2Þ � ðZ~1 � P~3Þ þ ðl~02 � r~2Þ � ðZ~2 � P~4Þ þ r~2 � ðZ~1 þ Z~2 � P~2 � P~3 � P~4Þ þ J~2 ¼ 0

ðl~3 � r~3Þ � Z~1 þ r~3 � ðZ~1 � P~3Þ þ J~3 ¼ 0

ðl~4 � r~4Þ � Z~2 þ r~4 � ðZ~2 � P~4Þ þ J~4 ¼ 0

ðl~5 � r~5Þ � Z~1 þ ðl~05 � r~5Þ � Z~2 þ r~5 � ðZ~1 þ Z~2 þ P~5Þ �M5k~� J~5 ¼ 0

8
>>>>>>>>>>><

>>>>>>>>>>>:

: ð27Þ
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b1 ¼ 0; a2 ¼ 0; q~2 ¼ 0; q~5 ¼ M5k~;

a1 ¼ �ðq~5; l
~0

2; l
~

4Þ
D

; b2 ¼ ðq~5; l
~

2; l~3Þ
D

R~23 ¼ R~35 ¼ Z~1 ¼ a1l~3 ¼ �M5

ðk~; l~02; l~4Þ
D

l~3;

R~24 ¼ R~45 ¼ Z~2 ¼ b2l~4 ¼ M5

ðk~; l~2; l~3Þ
D

l~4

R~12 ¼ R~01 ¼ �R~05 ¼ M5

ðk~; l~2; l~3Þ
D

l~4 �M5

ðk~; l~02; l~4Þ
D

l~3;

My ¼ R~12 � ðk~� l~1Þ:

We can write the following expressions for the criteria

of motion transmission K1 and K2.

K1 ¼ My

M5

�
�
�
�

�
�
�
� ¼ u0

5

�
�

�
� ¼ ðk~; l~2; l~3Þðk~; l~1; l~4Þ � ðk~; l~02; l~4Þðk~; l~1; l~3Þ

ðl~2 � l~3Þ � ðl~
0
5 � l~4Þ � ðl~02 � l~4Þ � ðl~5 � l~3Þ

�
�
�
�
�

�
�
�
�
�
;

K2 ¼ Rmaxl5

M5

�
�
�
�

�
�
�
� ¼ l5

maxðjR12j; jR24j; jR23jÞ
M5

�
�
�
�

�
�
�
�

Figure 7 shows graphs of motion transmission criteria K1,

K2.

Figure 7 shows that the criterion value K1 reaches the

maximum value at the position of the input link 1.4 rad and

4.9 rad, and the criterion value K2 reaches the maximum

value at the position of the input link 1.6 and 4.9 rad. This

shows that the maximum level of the reactions in all the

kinematic pairs of linkage IV-th class appears in the

vicinity of the angle position of the input link 4.9 rad.

5 Conclusion

Considered a vector method of determining the reactions in

kinematic pairs and balancing moment can significantly sim-

plify the problem of kinetostatic analysis of complex linkages.

A vector kinetostatic analysis method for planar link-

ages of high classes was developed. Computer implemen-

tation of algorithms with the use of Maple analytical

calculations package was presented.

For all the planar linkages, which were considered in the

work, a program in the system of analytic calculations of

Maple was developed; in addition, a new module of vector

algebra was also created for solving the problems of vector

mechanics. Knowledge of analytical expression reactions

allows most clearly meeting the challenges of the dynamics

of mechanisms, taking into account the forces of friction in

kinematic pairs.

The results of solving the problem of kinetostatic anal-

ysis are obtained in vector form, which is the novelty of the

method.

We introduce the quality criteria, which depend only on

the geometric dimensions of the linkage mechanism and do

not depend on the forces and moments applied to the

mechanism that allows us to use these criteria for the

Fig. 7 Criteria for force transmission K1, K2
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optimal kinematic synthesis. The quality criteria can take

any non-negative values. The value of any of these

parameters depends on the degree of remoteness of the

mechanism from a dead position: the closer to a dead

position of criteria values increases significantly. Thus,

according to the values of quality, criteria can be judged

not only on the quality of the transmission of motion and

strength, but also on the degree of remoteness of the danger

zone when working mechanism.
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