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Abstract
We investigate a new variant of the hybrid flow shop problem (HFSP) considering machine blocking and both sequence-

independent and sequence-dependent setup times. Since the HFSP is NP-hard, we propose heuristic algorithms along with

priority rules based on the traditional SPT and LPT rules. We carried out computational experiments on simulated problem

instances to test the performance of the priority rules. The objective function adopted was makespan minimization, and we

used the rate of success and the relative deviation as performance criteria. The results indicate superiority of LPT-based

rules. On instances with sequence-independent setup times, the LP rule, which is based on the non-increasing sorting of

total processing times, outperformed other rules in most tested instances. In instances with sequence-dependent setup

times, the LPS rule, which is based on the non-increasing sum of processing time and average setup times, outperformed

other rules in most tested instances.

Keywords Production scheduling � Machine blocking � Sequence-independent setup times � Sequence-dependent setup
times

1 Introduction

In production planning of manufacturing systems, the

efficient scheduling of jobs plays a key role for the

achievement of low-cost and competitive advantage in

businesses. Among the variants of scheduling problems in

the literature, one that has attracted research efforts in

recent years due to its practical importance is the hybrid

flow shop problem (HFSP).

In the HFSP, a set of jobs with fixed production

sequence are processed in a set of production stages, each

one composed of multiple machines, in which at least one

of these stages has more than one machine. According to

Ebrahimi et al. [2], these machines can be classified in

identical parallel machines, uniform parallel machines or

unrelated parallel machines. The problem is to find a

schedule which optimizes an objective function, usually

makespan minimization, mean flowtime, or total tardiness.

The HFSP is a NP-hard problem, since it is a generalization

of the classical flow shop, which is known to be NP-hard

for three or more production stages [5]. Therefore,

obtaining optimal solutions in acceptable computational

times is a difficult task when solving large real-world

problems.

According to Ruiz and Vázquez-Rodrı́guez [16], the

hybrid flow shop environment is found in several real-

world applications, such as electronics, production of

paper, textile and concrete, manufacturing of photographic

films, civil construction projects, Internet service archi-

tectures and load transportation systems.

Traditionally, the setup time is considered as a part of

the processing times. However, this assumption leads to

problems in the scheduling process. Therefore, an explicit

consideration for setup times has been considered [10, 12].

This paper aims at investigating a new variant of the

hybrid flow shop problem considering both machine

blocking and both sequence-independent and sequence-
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dependent setup times. According to our thorough litera-

ture review, this variant has not been reported yet, despite

its practical importance. We propose a new constructive

method for the problem, based on priority rules, which can

provide good solutions with low computational effort.

The remainder of this paper is organized as follows: in

Sect. 2, the literature review is presented, in Sect. 3, the

scheduling problem treated in this paper is stated in Sect. 4,

we propose a constructive algorithm; in Sect. 5, we discuss

some results from computational experiments; finally, in

Sect. 6 we draw some conclusions and suggestions for

future works.

2 Literature review

The HFSP is a widely studied combinatorial optimization

problem with several industrial applications. Linn and

Zhang [8] carried out a survey on the HFSP in which a

classification of studies in this area is proposed based on

three categories: problems with two stages, problems with

three stages and problems with more than three stages.

Vignier et al. [17] present a state-of-the-art review on the

HFSP divided in two sections: problems with two stages

and general problems with k stages.

Kis and Pesch [7] performed a literature update paper

reviewing the subsequent studies approaching the HFSP.

Wang [18] and Quadt and Kuhn [14] also present literature

reviews for the HFSP, which they call flexible flow shop

scheduling problem and flexible flow line problem,

respectively.

Numerous-research articles have been published on this

topic. This study reviews research on the flexible flow shop

scheduling problem (FFSSP) from the past and the present.

The solution approaches reviewed range from the optimum

to heuristics and to artificial intelligence search techniques.

We not only discuss the details from the selected methods

and compare them, but also provide insights and sugges-

tions for future research.

Ruı́z and Vasquéz-Rodrı́guez [16] present a literature

review focused on solution procedures, discussing the

features of the variants of the problem. In addition, they

point out existing gaps and have suggested future works.

Ribas et al. [15] offer a robust literature review with an

innovative taxonomy for the HFSP.

Choong et al. [1] describe two metaheuristics for the

HFSP: the first one mixes particle swarm optimization

(PSO) with simulated annealing (SA), while the second one

is a hybrid of PSO and tabu search (TS). The objective

function is minimizing the completion time of all the tasks.

The hybrid PSO-SA algorithm reached the best results. The

authors suggest that new variants of the HFSP with

precedence constraints are worth investigating.

Hidri and Haouari [6] study a variant of the HFSP with

multiple centers in which each center has a set of identical

machines working in parallel. These authors propose new

lower and upper bounds for the mentioned variant. The

computational results show an improvement of the existing

bounds. These authors suggest the development of exact

methods for solving the studied variant.

Mousavi et al. [11] present a bi-objective variant of the

HFSP with sequence-dependent setup times. The objective

functions are both the minimization of makespan and total

tardiness. The authors propose a bi-objective heuristic

(BOH) for the determination of a Pareto front approxima-

tion. The proposed BOH outperformed a multi-objective

simulated annealing (MOSA). These authors suggest the

incorporation of new realistic assumptions, such as

machine availability constraints and unrelated parallel

machines at each stage.

Elmi and Topaloglu [3] studied hybrid flow shop robotic

cells with multiple robots. They have taken of account

blocking constraints, multiple part types, unrelated parallel

machines and machine eligibility constraints. A mixed

integer linear programming model is proposed, which

could not be solved satisfactorily. A simulated annealing

algorithm is developed for providing high-quality solutions

in acceptable computational times. The authors suggest the

consideration of dual gripper multiple robots and stochastic

processing times.

Luo et al. [9] approached the HFSP with the consider-

ation of energy consumption of machines. They adopted

two objectives: minimizing the makespan and the electric

power cost. Three multi-objective metaheuristics are tes-

ted: multi-objective ant colony optimization (MOACO),

non-dominated sorting genetic algorithm II (NSGAII) and

strength Pareto evolutionary algorithm II (SPEAII). The

results indicate that this multi-objective approach is valu-

able in practice, since high-energy operations can be shif-

ted to off-peak periods, during which energy cost is lower.

Zhang et al. [19] cast the vehicle scheduling problem in

a maritime terminal as a variant of HFSP with a special

type of blocking constraints and multiple product families,

considering the makespan as the objective to be minimized.

A constructive heuristic is proposed for solving the prob-

lem under study with low computational times.

Fattahi et al. [4] studied a HFSP with assembly opera-

tions, considering the minimization of makespan as an

objective. A branch-and-bound (B&B) algorithm is pro-

posed for solving the problem and a greedy randomized

adaptive search procedure (GRASP) construction phase

algorithm is applied to obtain upper bounds. This

hybridization reduced substantially the computational

times. Although the B&B has shown promising results, the

instances under consideration were small (7, 10, 15 or 25
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jobs products; 2 production stages; 2, 3 or 4 machines per

stage).

Ebrahimi et al. [2] investigated a HFSP with sequence-

dependent family setup times. They adopted two objective

functions: minimization of both makespan and total tardi-

ness. Two multi-objective metaheuristics are tested for

solving the proposed variant: a NSGAII and a multi-ob-

jective genetic algorithm (MOGA), that are compared with

a multiphase genetic algorithm (MPGA). The NSGA II

outperformed the other algorithms. The authors suggest

that taking into account stochastic due dates makes this

study closer to the real-world problems.

3 Problem statement

The problem of flow shop scheduling with multiple

machines, also known as either hybrid flow shop problem

(HFSP) or flow shop with parallel machines, consists of a

multistage flow shop in which each stage k [ {1,…, g},

g C 2 is composed of mk parallel machines. Each machine

is capable of processing a single job operation per turn. A

multistage flow shop is considered a hybrid flow shop if at

least one production stage has more than one machine.

The problem consists in scheduling a set of jobs

J = {1,…, n} in which each job has only one operation in

each stage so as to optimize one or more objective-func-

tions. In this paper, we adopted as objective-function the

makespan. The operations must be performed sequentially,

passing through all stages. Other usual assumption con-

siders that an operation once started cannot be either pre-

empted or subdivided in simultaneous sub operations. Each

job j [ J has a known processing time pjk corresponding to

stage k [ {1,…, g}. Figure 1 shows a general schematic

representation of the HFSP with g production stages.

The HFSP may be seen as a combination of the classical

flow shop, which has one machine in each production stage

(mk = 1, g[ 1), with the problem of parallel machines

with a single stage (m C 2, g = 1), which have been

intensively studied. The HFSP is NP-hard even when only

one stage has more than one machine. This fact prevents

the application of exact methods to problems which arise in

industry.

The least complex setting of the HFSP considers the

machine setup times as already included in the operation

processing times. This setting has received considerable

attention from many researchers. However, this assumption

can decrease the quality of solutions in many applications

which require an explicit treatment of setup times. In

general, the sum of setup and processing times is realistic

when setup times are independent of the operation

sequence or when variability is negligible. Even then,

considering setup times as making part of the processing

times, implicitly assumes a scheduling model in which the

setup of a machine M(k) is made only after finishing the

previous operation of the current job to be processed on

such a machine, even if this machine is idle.

In this paper, we approached a variant of the classical

HFSP, with an added degree of complexity, with the fol-

lowing characteristics:

• Machine setup times are explicitly separated from

processing times;

• We consider both sequence-independent and sequence-

dependent setup times;

• In contrast to the classical HFSP, machine setup is

anticipated as soon as a machine has finished the

processing of a job and is idle;

• The production system does not allow intermediate

storage of jobs between production stages due to

technological or operational constraints of any nature,

which has as a consequence the blocking of machines.

Although the aforementioned characteristics are typical

of many relevant production environments in industry, to

the extent of our knowledge there has been little research

on the performance of alternative scheduling policies.

Consider an illustrative example with five jobs, three

machines, two machines per stage and three stages. The

processing times and sequence-independent setup times are

presented in the Tables 1 and 2, respectively. Figure 2

shows an illustrative solution for the variant under propo-

sition, the sequence {1, 2, 3, 4, 5}, whose makespan is 280

time units. In Fig. 2 we also have two types of non-pro-

ductive times: In gray we have setup times, while we have

Fig. 1 Hybrid flow shop problem with g production stages

Table 1 Processing times

matrix for the presented

example

Job Machine type

1 2 3

1 44 46 45

2 37 46 35

3 31 45 25

4 45 49 39

5 48 26 42
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machine blocking times in yellow, which represent the

buffer zero constraints. A given machine cannot receive

other jobs until the subsequent machine begins the effec-

tive processing of the current job.

4 Description of the proposed constructive
heuristics

In this work, by virtue of the originality of studying the

HFSP with sequence-dependent anticipated setup and

machine blocking, we propose a constructive heuristic

method based on priority rules. These rules define a job

ordering to be followed during the scheduling, which is

performed one job at a time. It is worth noting that the

possibility of machine blocking prevents the scheduling by

production stage, since the scheduling of jobs in a partic-

ular stage depends on the jobs already scheduled in the

subsequent stage. Moreover, priority rules have great

practical importance, since they are simple and provide

solutions with little computational effort.

In practice, the most used priority rules are the follow-

ing: shortest processing time (SPT), longest processing

time (LPT), earliest due date (EDD), minimum slack time

(MSL), first-in-first-out (FIFO) and last-in-last-out (LIFO).

There are also weighted variants of these rules. It is well

known (see e.g., [13]) that SPT rule minimizes the mean

flow time for the classical single machine scheduling

problem, and LPT rule is a heuristic for minimizing the

makespan of jobs scheduled in the traditional parallel

machines scheduling model. In Sects 4.1 and 4.2 below, we

treat the cases for sequence-independent and sequence-

dependent setup times separately.

4.1 Sequence-independent setup times

In this case, we propose seven priority rules, from which

three of them are based on SPT rule, three ones subsequent

are based on LPT and the remaining rule is a random one

just for comparison purposes. At first, we describe some

notations. Let:

• pjk: processing time of job j [ {1, 2,…, n} in production

stage k [ {1, 2,…, g}; (All machines in stage k are

identical ones);

• sjk: setup time of a machine in stage k [ {1, 2,…, g} for

processing job j [ {1, 2,…, n};

• Pj ¼
Pg

k¼1 pjk: sum of processing times of job j in all

production stages;

• Sj ¼
Pg

k¼1 sjk: sum of setup times for job j in all

production stages;

• PSj ¼
Pg

k¼1 pjk þ sjk
� �

: sum of processing time and

setup time for job j over all stages.

The proposed rules are described in Table 3, while

Fig. 3 describes the proposed constructive heuristic for job

scheduling.

As aforementioned, we use as objective function, the

makespan.

4.2 Sequence-dependent setup times

In this case, we propose 11 priority rules, from which 5 are

based on SPT rule and 5 are based on LPT one and the

remaining rule is a random one just for comparison pur-

poses. We add some notation to the one already described

in Sect. 4.1. Let:

Table 2 Sequence-independent

setup times for the presented

example

Job Machine type

1 2 3

1 29 27 10

2 18 20 30

3 13 13 18

4 21 29 12

5 12 29 26

Fig. 2 A feasible solution for the proposed variant

Table 3 Proposed priority rules for ordering jobs with sequence-in-

dependent setup times

# Rule Order jobs according to

1 LP Non-increasing Pj

2 LS Non-increasing Sj

3 LPS Non-increasing PSj

4 SP Non-decreasing Pj

5 SS Non-decreasing Sj

6 SPS Non-decreasing PSj

7 RAND Random order

40 Page 4 of 11 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:40

123



• sijk: setup time of a machine in stage k [ {1, 2,…, g} for

processing job j [ {1, 2,…, n} when preceded by job i [
{1, 2,…, n} with i = j. When i = j, sijk = sjjk is the

setup time when job j is the initial job scheduled to be

processed in stage k; (There is no preceding job yet).

• S0jk ¼ 1
n

Pn
i¼1 sijk: average setup time in stage k taking

into account all preceding jobs of job j and the setup

time when job j is the initial one in stage k;

• Sj ¼
Pg

k¼1 s
0
jk: sum of average setup times in all stages

for job j;

• PSj ¼
Pg

k¼1 pjk þ S0jk

� �
: sum of processing time and

average setup time for job j over all stages;

• smax
jk ¼ maxi2f1;2;...;ng sijk: maximum setup time for job

j in stage k;

• smin
jk ¼ mini2f1;2;...;ng sijk: minimum setup time for job

j in stage k;

• PSmax
j ¼

Pg
k¼1 pjk þ smax

jk

� �
: sum of the processing

times and maximum setup times for job j over all

stages;

Fig. 3 Proposed constructive

heuristic for job scheduling with

sequence-independent setup

times
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• PSmin
j ¼

Pg
k¼1 pjk þ smin

jk

� �
: sum of the processing

times and minimum setup times for job j over all stages.

The proposed rules are described in Table 4, while

Fig. 4 describes the proposed constructive heuristic for job

scheduling.

5 Computational experiments

5.1 Experimental design

We used as parameters for the computational experiments

the number of jobs (n), the number of production stages

(g), the number of parallel identical machines per stage

(mk) and the setup intervals (s). The values of these

parameters were defined based on the literature review, as

presented in Table 5. We considered a fixed interval for the

processing times, with random values uniformly distributed

between 1 and 99. The total number of instance classes is

given by 10 (n) 9 2 (g) 9 2 (mk) 9 3 (s) = 120. For each

class, we randomly generated 100 test instances aiming at

reducing the sampling error, which gives a total of 12,000

test instances.

In Table 1 all problem classes were considered

according to the combination of the 10 sets of n jobs (10,

20, 30,…,100), with the 2 sets of stages g (3, 7), 2 sets of

parallel machines mk (3, 7) and 3 sets of setup times s ([1,

25], [26, 75], [76, 125]). This scheme results in 120 test

problem classes. In the computational experimentation, we

solved 100 problems for each class, totalizing 12,000 tested

problems.

On the other hand, as presented in Table 6, the 12 sub-

classes (A, B, C,…, K, L) are related to the 12 parameter

combinations g, mk, and s. Thus, the subclass A has 100

test problems with n = 10, 100 test problems with n = 20,

and so on, until 100 test problems with n = 100. Each

subclass presents 1000 test problems, composed of 100 test

problems for each value of n. Therefore, the total number

of evaluated test problems is 12 9 1000 = 12,000.

5.2 Statistics used in the analysis
of the computational experiments

The results obtained in the computational experiments

were analyzed by the success rate and the mean relative

deviation for all the priority rules in Tables 3 and 4. The

success rate (SR) is calculated as the number of times that a

given rule results in the best solution (with or without a

draw) divided by the number of test instances in a given

instance class. The relative deviation (RD) is the variation

percentage corresponding to the best solution founded by

the methods. If the relative deviation is equal to zero for a

given method, it returned the best solution for that instance.

One can observe that more than one method may provide

the best solution.

Thus, the better algorithm is the one providing a lower

value of mean relative deviation (the simple average of the

relative deviations) for a given class of problems. The

relative deviation (RDh) for the method h for a given

problem is calculated as in Eq. (1):

RDh ¼
Dh � D�

D� ð1Þ

in which Dh is the makespan returned by the method h and

D* is the best makespan returned by the tested methods.

In this work there were not considered the average

computational times of a given method for the comparative

evaluation because the characteristics of the proposed

algorithms should not imply in differences with statistical

significance. Furthermore, such computational times are

relatively smalls due to the fact that usually constructive

heuristic methods have high computational efficiency.

5.3 Results and discussion

To present the results in a summarized way, we grouped

the instance classes according to the parameter ‘‘number of

jobs’’ (n) in 12 groups. Table 6 gives the labels for each

group and the corresponding values for the remaining

experimental parameters.

In the Sects. 5.3.1 and 5.3.2, we show the results for

sequence-independent and sequence-dependent setup

times, respectively.

Table 4 Proposed priority rules for ordering jobs with sequence-de-

pendent setup times

# Rule Order jobs according to

1 LP Non-increasing Pj

2 LS Non-increasing Sj

3 LPS Non-increasing PSj

4 LPSmax Non-increasing PSj
max

5 LPSmin Non-increasing PSj
min

6 SP Non-decreasing Pj

7 SS Non-decreasing Sj

8 SPS Non-decreasing PSj

9 SPSmax Non-decreasing PSj
max

10 SPSmin Non-decreasing PSj
min

11 RAND Random order
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Fig. 4 Proposed constructive

heuristic for job scheduling with

sequence-dependent setup times

Table 5 Parameters used in the computational experiments

Parameter Number of levels Values

Number of jobs (n) 10 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Number of stages (g) 2 3, 7

Number of parallel identical machines per stage (mk) 2 2, 5

Distribution of setup times (s) 3 U[1, 25], U[26, 75], U[76, 125]

Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:40 Page 7 of 11 40
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5.3.1 Sequence-independent setup times

Several priority rules alternate as the best rule for a given

set of instances with regard to the SR. Therefore, the SR

results are analyzed concomitantly with results obtained for

RD. Table 7 and Fig. 5 present results obtained consider-

ing SR. Table 8 and Fig. 6 present results obtained con-

sidering RD. Table 9 summarizes the comparison of best

priority rules for each instance class.

The obtained results clearly point to a better perfor-

mance of the LP priority rule. The worst priority rules were

LS, SS and RAND. Regarding the SR indicator, one can

notice a superiority earlier stated for the LP rule, however,

without a tendency for the increase of the RS for small and

medium size test instances. The positive tendency occurs

for test instances with a number of jobs greater than 80.

As expected, the random dispatch rule RAND presented

in general the worst performance, what indicates that

structured rules lead to better results. It is worth noting that

most of the structured rules which did not have good per-

formance are based on the traditional priority rule SPT. It is

well known that in production planning environments with

parallel machines, this rule does not present good results

when the objective function is related to the makespan

minimization, as it was the case with the SPT-based pri-

ority rules SP, SS and SPS.

On the other hand, the priority rules that performed best

in the tested instances were LP and LPS, which are based

on the traditional LPT. In production environments with

parallel machines, the LPT rule seeks to balance the

machines workload so as to minimize the makespan. The

LS rule does not present good results for the variant under

study.

5.3.2 Sequence-dependent setup times

Table 10 and Fig. 7 present results obtained considering

SR. Table 11 and Fig. 8 present results obtained consid-

ering RD. Table 12 summarizes the comparison of best

priority rules for each instance class.

In general, for problem instances with number of stages

g = 3, the priority rule LPS has achieved the best perfor-

mance, with the exception for problem instances with setup

times in the interval [1, 25], in which the priority rule

LPSmin performed better than the LPS one. In the case of

the HFSP with a greater number of production stages

(g = 7), the priority rule LPS also showed the best results,

with the exception of the instance class L, for which

LPS performed best only for instances with number of

machines n C 90. As expected, the random rule RAND

showed the worst results.

Table 6 Tested instance classes
Class Parameters

g/mk/s

A 3/2/U[1, 25]

B 3/2/U[26, 75]

C 3/2/U[76, 125]

D 3/5/U[1, 25]

E 3/5/U[26, 75]

F 3/5/U[76, 125]

G 7/2/U[1, 25]

H 7/2/U[26, 75]

I 7/2/U[76, 125]

J 7/5/U[1, 25]

K 7/5/U[26, 75]

L 7/5/U[76,125]

Table 7 SR for each priority

rule and instance class with

sequence-independent setup

times (average over the number

of jobs n)

Priority rule Instance class

A B C D E F G H I J K L

LP 40.0 46.6 43.7 47.1 48.1 48.4 31.0 33.6 36.3 35.5 36.6 37.4

LS 2.5 1.7 2.4 3.5 5.6 3.5 3.6 3.9 4.1 7.4 7.4 10.7

LPS 28.1 20.9 21.1 38.4 37.0 37.7 24.0 19.9 19.3 31.6 29.5 25.1

SP 15.2 19.1 19.4 4.8 5.3 5.6 19.8 21.8 21.3 9.5 9.3 8.2

SS 2.0 1.3 1.9 4.1 2.4 1.7 3.5 4.1 3.8 6.0 7.4 7.2

SPS 12.6 8.0 9.6 4.8 2.2 2.7 16.3 13.7 12.1 8.7 6.4 6.7

RAND 1.5 3.6 2.7 2.9 3.1 3.0 3.0 4.0 4.6 8.3 7.2 8.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

A B C D E F G H I J K L

LP

LS

LPS

SP

SS

SPS

RAND

Fig. 5 Comparison of average SR for each proposed priority rule over

class instances with sequence-independent setup times
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It is worth noting that most of the structured rules which

did not have good performance are based on the traditional

priority rule SPT. It is well known that in production-

planning environments with parallel machines, this rule

does not present good results when the objective function is

related to the makespan minimization, as it was the case

with the SPT-based priority rules SP, SS, SPS, SPSmax and

SPSmin.

On the other hand, the priority rules that performed best

in the tested instances were LP, LPS, LPSmax and LPSmin,

which are based on the traditional LPT. In production

environments with parallel machines, the LPT rule seeks to

balance the machines workload so as to minimize the

makespan.

Table 8 RD for each priority

rule and instance class with

sequence-independent setup

times (average over the number

of jobs n)

Priority rule Instance class

A B C D E F G H I J K L

LP 0.8 0.5 0.4 0.6 0.6 0.5 1.3 1.0 0.8 0.8 0.8 0.6

LS 7.2 4.6 3.5 7.3 5.1 4.0 5.2 3.8 2.9 4.8 3.7 2.9

LPS 1.3 1.4 1.0 0.8 0.7 0.4 1.5 1.5 1.3 1.0 1.1 1.2

SP 2.7 1.9 1.4 6.1 5.0 3.9 2.4 1.9 1.4 4.7 4.5 3.3

SS 7.4 5.0 3.8 7.6 6.1 4.9 5.2 3.7 3.1 4.8 4.3 3.4

SPS 3.0 2.7 2.1 6.3 5.3 4.0 2.5 2.5 2.0 4.6 4.4 3.6

RAND 7.4 4.8 3.6 7.7 5.7 4.5 5.1 3.6 2.8 4.7 4.1 3.2

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

A B C D E F G H I J K L

LP

LS

LPS

SP

SS

SPS

RAND

Fig. 6 Comparison of average percent relative deviation for each

proposed priority rule by instance category with sequence-indepen-

dent setup times

Table 9 Best priority rules for each instance class with sequence-

independent setup times

Instance class Best priority rules

A LP, LPS, SP and SPS

B LP, LPS, SP and SPS

C LP, LPS, SP and SPS

D LP, LPS, SP/SPS and SS

E LP, LPS, SP and SS

F LP, LPS, SP and SS

G LP, LPS, SP and SPS

H LP, SP, LPS and SPS

I LP, SP, LPS and SPS

J LP, LPS, SP and SPS

K LP, LPS, SP and SS

L LP, LPS, SP and SS

Table 10 SR for each priority

rule and instance class with

sequence-dependent setup times

(average over the number of

jobs n)

Priority rule Instance class

A B C D E F G H I J K L

LP 33.9 25.6 26.7 44.4 35.5 36.2 27.3 26.5 28.1 31.1 33.4 33.7

LS 1.8 2.6 1.5 3.3 3.6 3.9 4.2 5.6 6.2 8.8 6.6 8.2

LPS 35.3 28.8 28.4 45.5 40.7 42.6 27.0 26.1 26.7 32.9 34.8 32.8

LPSmax 33.5 25.8 26.7 44.9 37.0 35.5 27.3 26.8 28.0 31.3 33.8 33.6

LPSmin 33.9 25.7 26.2 45.1 34.6 36.6 27.3 26.1 28.1 31.2 33.5 34.1

SP 13.1 11.3 12.1 3.8 3.2 3.1 19.6 17.3 15.7 10.4 7.3 6.1

SS 2.0 2.2 2.9 3.5 3.2 3.3 4.3 5.1 4.5 7.7 7.0 9.3

SPS 13.3 12.3 12.7 3.9 3.9 3.1 17.3 16.2 14.5 8.4 7.7 7.4

SPSmax 12.9 11.5 11.1 3.9 3.6 3.1 19.6 17.2 16.0 10.4 7.3 6.1

SPSmin 12.6 11.5 12.1 3.7 3.4 3.0 19.6 17.3 16.0 10.4 7.3 6.1

RAND 2.0 2.1 2.5 3.4 2.9 3.2 3.9 5.0 5.0 8.9 7.3 7.9
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6 Concluding remarks

In this paper, we have investigated a new variant for the

hybrid flow shop scheduling problem (HFSP) considering

both machine blocking and both sequence-independent and

sequence-dependent setup times. The HFSP objective is

minimizing the total time to complete the schedule

(makespan). We developed constructive heuristic algo-

rithms based on priority rules. We also proposed seven

priority rules in the case of sequence-independent and

eleven priority rules in the case of sequence-dependent

setup times, respectively, based on the SPT and LPT rules.

Computational experiments were carried out to eval-

uate the performance of the alternative proposed rules.

We used the rate of success and the relative deviation

statistics as performance measures. Computational times

were not used for comparison purposes since their dif-

ferences among priority rules were negligible. In most

tested problem instances, the priority rules based on the

SPT one generated the worst solutions. On the other

hand, the priority rules based on the LPT showed the

best performance. In particular, the LP rule

outperformed all other tested priority rules in most cases

with sequence-independent setup times, while LPS rule
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Fig. 7 Comparison of average SR for each proposed priority rule over

class instances with sequence-dependent setup times

Table 11 RD for each priority

rule and instance class with

sequence-dependent setup times

(average over the number of

jobs n)

Priority rule Instance class

A B C D E F G H I J K L

LP 1.5 1.7 1.3 1.2 1.4 1.2 2.0 1.7 1.3 1.8 1.5 1.2

LS 7.9 5.7 4.4 8.5 6.7 5.1 5.4 4.0 3.0 4.9 4.4 3.5

LPS 1.5 1.8 1.4 1.2 1.4 1.2 2.0 1.7 1.3 1.7 1.5 1.3

LPSmax 1.5 1.7 1.3 1.2 1.4 1.2 2.0 1.7 1.3 1.8 1.5 1.2

LPSmin 1.5 1.7 1.3 1.2 1.4 1.2 2.0 1.7 1.3 1.8 1.6 1.2

SP 3.4 3.1 2.4 6.8 6.2 4.6 2.9 2.5 2.1 5.0 4.8 3.9

SS 7.9 5.8 4.4 8.8 6.9 5.4 5.3 4.0 3.2 5.3 4.6 3.5

SPS 3.5 3.0 2.5 6.8 6.0 4.8 2.9 2.5 2.2 5.0 4.9 3.8

SPSmax 3.4 3.1 2.4 6.8 6.2 4.6 2.9 2.5 2.1 5.0 4.8 3.9

SPSmin 3.4 3.1 2.5 6.8 6.1 4.6 2.9 2.5 2.1 5.0 4.8 3.9

RAND 7.9 5.9 4.3 8.8 6.8 5.3 5.3 3.9 3.2 5.2 4.5 3.5
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Fig. 8 Comparison of average percent relative deviation for each

proposed priority rule by instance category with sequence-dependent

setup times

Table 12 Best priority rules for each instance class sequence-de-

pendent setup times

Instance class Best priority rules

A LPSmin, LPS, LP and LPSmax

B LPS, LP, LPSmax and LPSmin

C LPS, LPSmin, LPSmax and LP

D LPSmin, LPSmax, LP and LPS

E LPS, LPSmax, LP and LPSmin

F LPS, LPSmin, LP and LPSmax

G LPS, LPSmax, LPSmin and LP

H LPS, LPSmax, LP and LPSmin

I LPS, LPSmax, LP and LPSmin

J LPS, LPSmax, LP and LPSmin

K LPS, LPSmax, LP and LPSmin

L LPSmin, LP, LPSmax and LPS
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outperformed other tested priority rules in most cases

with sequence-dependent setup times.

Our purpose in this paper was to compare alternative

priority rules, not to compare the priority rule scheduling

method with scheduling based on mathematical program-

ming. This is why we do not provide quality measures

based on lower bounds or optimal solutions as they require

developing and solving mathematical programming mod-

els. Priority rules are often used in practice and comparing

alternative rules is relevant from both a practical as well as

a theoretical standpoint.

As extensions of this work, we recommend the use of

metaheuristics to improve the solutions generated by the

priority rules. In addition, the development of integer

linear programming models for the variants under study

is suggested, since the models can be used to determine

optimal solutions for small-size problem instances.

Future studies could also investigate the behavior of the

proposed priority rules considering other objective

functions, such as total tardiness minimization. There is

no guarantee that LPT-based rules will also have good

performance when applied to different objective func-

tions. Finally, it is worth studying multi-objective vari-

ants of the HSFP due to the fact that in many real

industrial settings, the scheduling problems have a multi-

objective nature.
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