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Abstract
As a result of unevenness (or non-uniformity) of elevator guide rails, an elevator car experiences horizontal vibration in the

vertical motion of an elevator run. To improve the accuracy of the car vibration model and analyze the influence of

uncertainty factors on the vibration response, the nonlinear characteristics of rolling guide shoes, randomness of car

parameters, and random excitation of guide rails need to be considered. Based on the Hertz contact theory, the functional

relationship between the amount of deformation of rolling guide shoes and restoring force was derived, and a nonlinear

model of rolling guide shoes was established. The average responses of the composite random vibration of a high-speed

elevator were determined by the orthogonal polynomial approximation method, and the standard deviations were deter-

mined by the complex Cotes integration method. With a two-degree-of-freedom high-speed elevator car system as the

research object, the horizontal vibration responses were analyzed under the condition of variation of parameters and the

irregularity of the guide rails. The results showed that the variation of parameters mainly affected the dispersion extent of

the horizontal vibration responses of the car, and the irregularity of the guide rails mainly affected the amplitude of the

vibration responses. This study provided an effective method for analyzing composite random vibration responses of a

high-speed elevator car system, and provided a reference for anti-vibration design and safety assessment.

Keywords High-speed elevator � Composite random vibration � Nonlinear guide shoes � Random parameters

1 Introduction

In modern society, with the increasing height of buildings,

the proportion of high-speed elevator (speed C 2.5 m/s)

has gradually increased to ensure efficiency. With the

increase of the elevator running speed and attention to the

ride comfort and safety, effectively reducing the vibration

generated by the high-speed operation of the elevator has

become a key issue.

In recent years, many scholars have studied transverse

vibration of elevator cars. Feng et al. [1] established a

dynamic model of the transverse vibration of an elevator

car based on the rigid body dynamics theory, and they

derived differential equations based on Newton’s laws of

motion and the Euler equations. Bao et al. [2] used the

finite element method to establish the car frame model, and

revealed the acceleration responses on the condition of

dynamic loads from the perspective of transient dynamics.

Chang et al. [3] established a four-degree-of-freedom ele-

vator system to study the excitation characteristics and the

car dynamic response, and developed an active mass driver

based on the H! direct output feedback control algorithm.

Herrera et al. [4] considered the behavior of passengers in

the car and established a model to analyze the influence of

the car’s dynamic characteristics under different loading

conditions. Because the rolling guide shoe liners are made

of rubber materials, its material properties give guide shoes

nonlinear characteristics. For this problem, these literatures

simplified guide shoes as a linear spring-damper system.

The rolling guide shoes are key components that directly
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contact the guide rails, and the nonlinear function rela-

tionship between the amounts of deformation and restoring

force is bound to have an effect on the vibration responses.

Thus, it is necessary to further explore the nonlinear

characteristics of rolling guide shoes and apply them to the

car vibration response analysis.

In addition, there are many random factors in the car

system, including the randomness of the parameters and the

randomness of the excitation. In the product design stage,

all of the parameters are definite. However, due to the

influence of actual installation circumstance, live debug-

ging, manufacturing errors, installation errors, the influence

of temperature and uncertainty of physical parameters of

materials, etc., the parameters of the same batch of elevator

products are different. For an actual product, its parameters

are uncertain, and they present some randomness. There-

fore, the actual parameters of the same specification’s

elevators are slightly different. The randomness of these

parameters can make the vibration responses of different

elevators produce variability under the same condition. The

randomness of excitations is caused by the irregularity of

the guide rails. To distinguish them from the time-invariant

property of parameters, the excitations are time-varying,

and they can affect the vibration of the car at different

times. To make a more accurate vibration response analysis

of a car system, the above factors must be comprehensively

considered.

For the random factors that exist in the car system, the

dynamic response analysis of an uncertain structure is

involved. Currently, this response analysis is mainly used

in the structure of building and a small number of

mechanical structures, and is seldom used in the car system

of high-speed elevators. Xu et al. [5] analyzed the

stochastic dynamic characteristics of beams under the

stochastic material properties by the random factor method.

However, the authors did not combine this research with

random excitation. Marcin et al. [6] solved the dynamic

response of the truss structure using the Taylor expansion

stochastic finite element method. The stochastic finite

element method needs to set up all kinds of random

parameters corresponding to the stochastic finite element

characteristic matrix, and it causes much inconvenience to

its computer program design. Szafran [7] analyzed the

horizontal vibration responses of cable structures under the

influence of a random elastic modulus and random loads by

the stochastic perturbation method, and further analyzed

the reliability. Although the stochastic perturbation method

can quickly and easily calculate the mean and variance of

the responses, it only applies to small parameter pertur-

bation, and this method inevitably exists in secular term.

That is, this method only applies to the beginning of a short

period of time, and the accuracy of results quickly deteri-

orates with time.

For a series of problems related to the analysis of hor-

izontal vibration responses of a high-speed elevator car

system, first, the nonlinear model of rolling guide shoes

was established, and then the acceleration responses of the

composite random vibration of the car system were deter-

mined by the orthogonal polynomial approximation

method, and the responses’ standard deviations were

determined by the complex Cotes precise integration

method provided by Song [8]. This set of analytical

methods not only avoids the secular term problem of the

stochastic perturbation method but also obtains more

accurate results by combining with the rolling guide shoe

nonlinear model.

2 The rolling guide shoe nonlinear model

The schematic diagram of the structure of rolling guide

shoe is shown in Fig. 1. The guide shoe has two elastic

elements. One is the rubber lining of the roller, and the

other is the spring. In the process of the traditional vibra-

tion responses analysis of a high-speed elevator car system,

as an important dynamic component, the guide shoe is

usually simplified as the spring-damper model. However,

related research has shown that nonlinear behavior exists in

the rolling guide shoe [9]. Under the effect of guide rail

irregularity, the nonlinear characteristics of the guide shoes

are bound to have an impact on the horizontal vibration of

the car. Solving the vibration responses of the car with the

spring-damping model reduces the accuracy of the solu-

tion. Taking into account the nonlinear behavior of the

rolling guide shoes, in this section, the functional rela-

tionship between the amount of deformation of rolling

guide shoes and the restoring force are derived by the Hertz

contact theory of the elastic solid contact area [10–13].

The guide wheel and guide rail contact area are shown

in Fig. 2. R is the radius of the guide wheel, L is the width

of the guide wheel, Fk is the normal force of impact on the

guide wheel, p is the contact stress, and a is the half-width

of the contact line.

On the basis of the Hertz contact theory, the stress on the

contact surface is elliptical. The stress of the contact center

is the largest, marked as p0. The stress distribution of the

remaining points is:

p ¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2

a2

r

ð1Þ

The volume of a semi-elliptical cylinder of stress distri-

bution is equal to total pressure Fk, that is:

Fk ¼
pa
2
Lp0 ð2Þ

The maximum contact stress is:
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p0 ¼ rH ¼ 2F

paL
ð3Þ

The half-width a derived from the Hertz formula is:

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4F

pL
�

1�l2
1

E1
þ 1�l2

2

E2

1
R1
þ 1

R2

v

u

u

t ð4Þ

In which, l1 and l2 are Poisson’s ratio of guide wheel and

guide rail, respectively, E1 and E2 are the elastic modulus of

the guide wheel and guide rail, respectively, and R1 and R2

are the radius of curvature of guide wheel and guide rail,

respectively. When the material of the guide wheel is rubber

and the material of guide rail is steel, E2 is much greater than

E1 and R2 tends to infinity, thus Eq. (2) can be simplified as:

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4F

pL
�
R 1� l21
� �

E1

s

ð5Þ

Substituting Eq. (5) into Eq. (3), and the following equa-

tion is obtained:

rH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F

pL
� E1

R 1� l21
� �

s

ð6Þ

Thus, the functional relationship between rubber’s defor-

mation z1 and pressure F is:

F ¼ z1

d

� �2

pLR 1� l21
� �

E ð7Þ

In which, d is the rubber’s thickness of guide wheel. A ¼
pLR 1� l21

� �

E
�

d2 is set and the elastic coefficient of the

spring in the guide shoe is k, so the functional relationship

between the total deformation of the guide shoe and pres-

sure F is:

F ¼ kz� k3z

A
þ k4

4A2

� 	1=2

þ k2

2A
ð8Þ

To verify the accuracy of the Eq. (7), the finite element

model of guide wheel’s rubber is built. The required

parameters are L = 0.05 m, R = 0.1 m, d = 0.04 m,

l1 = 0.47, E = 2.5e?07 pa, and k = 1.2e?06 N/m. The

finite element calculation result is shown in Fig. 3 and the

curves of pressure change with deformation of guide

wheel’s rubber are shown in Fig. 4. The two curves shown

in Fig. 4 are basically identical, and the accuracy of the

Eq. (7) in rolling guide shoe nonlinear model. The curve of

the pressure change with total deformation of the guide

shoe is shown in Fig. 5. In the early part of the deforma-

tion, the main variable is the rubber of the guide shoe, thus

showing the strong nonlinear characteristics. With an

increase of z, the deformation of the spring on the guide

shoe is dominant, the slope of the curve slowly increases,

and shows near linear characteristics. Overall, the slope of

the curve increases with the increase of z, which indicates

that the nonlinearity of the guide shoe has a tendency to

increase the vibration.

Fig. 1 The schematic diagram

of the structure of rolling guide

shoe

Fig. 2 The guide wheel and guide rail contact area
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To simulate the guide rail irregularities, random exci-

tations were constructed by superimposing Gauss white

noises on deterministic pulse excitations, as shown in

Fig. 6. The S is the vertical displacement of the elevator.

The d0 represents the horizontal deviation between the

actual guide rail and the ideal guide rail. Because of the

pretightening force in the rolling guide shoe, the roller of

the guide shoe is always in contact with the guide rail, so

the d0 is equivalent to z. The pulse excitations were caused

by common guide rail joint irregularities, and the length of

a single guide rail was 5 m. The Gauss white noises were

caused by small fluctuations of the guide rail surface and

guide wheel surface, and the standard deviation was 0.05.

Figures 8 and 9 show the random waveform established by

the nonlinear guide shoes and the traditional linear guide

shoes, in which, the stiffness of linear guide shoes is fitted

by the curve of Fig. 5 (The comparison between nonlinear

and linear guide shoe model is shown in Fig. 7). Com-

paring with Figs 8 and 9, in the larger amplitude pulse

points, the exciting forces are larger than that of the linear

model, and this is bound to aggravate the vibration

responses of the car. Between the two joints of the guide

rail, the surface is relatively smooth. Because the initial

slope of the F-z curve of the nonlinear guide shoe model is

smaller than that of the linear model, the amplitude of the

former is smaller than that of the latter. But the differences

can be ignored because they are very small.

3 The dynamic analysis of a car system
based on the orthogonal polynomial
approximation method

This section uses the orthogonal polynomial approximation

method dealing with the randomness of parameters in a car

system [14–16]. This method can solve problems according

to the following. In random function space, first, the

responses are expanded into the generalized Fourier series

according to a standard orthogonal basis. Then, the random

Fig. 3 The finite element calculation result (equivalent stress)

Fig. 4 The curves of pressure change with deformation of guide

wheel’s rubber

Fig. 5 Curve of the stress change with total deformation of the guide

shoe

Fig. 6 Guide rail irregularity curve
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system is converted into the equivalent determinacy system

by utilizing the inner product properties of standard

orthogonal basis functions. This method is not affected by

large parameter perturbations and can avoid the adverse

effects of the secular terms of the stochastic perturbation

method.

3.1 Orthogonal decomposition of the random
function

Let {Hi(n), i = 1, 2, 3…} be a cluster of the orthogonal

function system. For random variables with a normal dis-

tribution, the Hermite polynomials can be functions of the

orthogonal system. For random variables with a uniform

distribution, the Legendre polynomials can be functions of

the orthogonal system [17]. For random variables with an

exponential distribution [18], the Laguerre polynomials can

be functions of the orthogonal system [19]. p(n) as a

probability density distribution function of n, together with
Hi(n) satisfies the following equation:
Z

X
p nð ÞHm nð ÞHn nð Þ ¼ dmnhm ð9Þ

In which, X is the definitional domain of the real variable n
and dmn is the Kronecker delta.

Equation (9) is the weighted orthogonal relation of the

orthogonal functions system. In addition, the orthogonal

function system also has the following recurrence relation:

nHn nð Þ ¼ anHn�1 nð Þ þ bnHn nð Þ þ cnHnþ1 nð Þ ð10Þ

If all the Cauchy sequence of points in the random function

space are convergent, any function in this space can be

expanded into the following series:

f nð Þ ¼
X

1

i¼0

aiHi nð Þ ð11Þ

In which

ai ¼
Z

X
p nð Þf nð ÞHi nð Þdx ð12Þ

Equation (11) is the orthogonal expansion of the random

function f(n) and it is the basis of the orthogonal polyno-

mial approximation method.

3.2 Analysis of horizontal vibration responses
of a high-speed elevator

For a high-speed elevator system with random parameters

under random excitations, its dynamic differential equa-

tions can be expressed as:

M €X þ C _X þ KX ¼ F tð Þ ð13Þ

Fig. 7 The comparison between nonlinear and linear guide shoe

model

Fig. 8 Guide rail excitations by the nonlinear model

Fig. 9 Guide rail excitations by the linear model
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In which, M, C, and K are the mass matrix, damping

matrix, and stiffness matrix respectively, F(t) is the

external excitation vector, and X is the displacement

response. When the M, C, K, and F(t) are random

parameters, this system becomes a composite random

system. Then, converting Eq. (13) into the expression of

the collection of independent random variables:

M0 þ
X

Nm

i¼1

Mini

 !

€X þ C0 þ
X

Nc

i¼1

Cini

 !

_X

þ K0 þ
X

Nk

i¼1

Kini

 !

X ¼ F tð Þ
ð14Þ

Inwhich,Nm,Nc, andNk are the number of independent random

variables of the mass matrix, damping matrix, and stiffness

matrix, respectively. The total number of random variables is:

R ¼ Nm þ Nc þ Nk: ð15Þ

The subscript 0 indicates the mean of M, C, and K. The

subscript i indicates the corresponding standard deviation

coefficient matrix. ni is a random variable which obeys

arbitrary distribution. According to the orthogonal

decomposition, the responses X, _X, and €X are expanded to

the series of the orthogonal basic functions:

X nð Þ ¼
X

N1�1

n1¼0

. . .
X

NR�1

nR¼0

Yn1n2...nRHn1 n1ð Þ. . .HnR nRð Þ ð16Þ

_X nð Þ ¼
X

N1�1

n1¼0

. . .
X

NR�1

nR¼0

_Yn1n2...nRHn1 n1ð Þ. . .HnR nRð Þ ð17Þ

€X nð Þ ¼
X

N1�1

n1¼0

. . .
X

NR�1

nR¼0

€Yn1n2...nRHn1 n1ð Þ. . .HnR nRð Þ ð18Þ

Equations (16–18) are substituted into Eq. (14), and the

following formula is obtained by utilizing Eq. (10).

M0

d2

dt2
þ C0

d

dt
þ K0

� 	

X

N1�1

n1¼0

. . .
X

NR�1

nR¼0

YN1N2...NR
Hn1 n1ð Þ. . .HnR nRð Þ

þ
X

Nm

i¼1

Mi

X

N1�1

n1¼0

. . .
X

NR�1

nR¼0

YN1N2...NR
Hn1 n1ð Þ. . .Hni�1

ni�1ð Þ

� aniHni�1
nið Þ þ bniHni nið Þ þ cniþ1

Hniþ1
nið Þ


 �

Hniþ1
niþ1ð Þ. . .HnR nRð Þ

þ
X

Nc

i¼1

Ci

X

N1�1

n1¼0

. . .
X

NR�1

nR¼0

_YN1N2...NR
Hn1 n1ð Þ. . .Hni�1

ni�1ð Þ

� aniHni�1
nið Þ þ bniHni nið Þ þ cniþ1

Hniþ1
nið Þ


 �

Hniþ1
niþ1ð Þ. . .HnR nRð Þ

þ
X

Nk

i¼1

Ki

X

N1�1

n1¼0

. . .
X

NR�1

nR¼0

YN1N2...NR
Hn1 n1ð Þ. . .Hni�1

ni�1ð Þ

� aniHni�1
nið Þ þ bniHni nið Þ þ cniþ1

Hniþ1
nið Þ


 �

Hniþ1
niþ1ð Þ. . .HnR nRð Þ

¼ F tð Þ

ð19Þ

Both ends of Eq. (19) are multiplied by Hr1 n1ð Þ. . .HrR nRð Þ,

and the following formula is obtained by utilizing the

weighted orthogonal relation Eq. (9).

M0

d2

dt2
þ C0

d

dt
þ K0

� 	

Yr1r2���rR

þ
X

R

i¼1

Mi ariþ1
Yr1r2���ri�1riþ1riþ1���rR þ briYr1r2���rR




þ cri�1
Yr1r2���ri�1ri�1riþ1���rR

�

þ
X

R

i¼1

Ci ariþ1
_Yr1r2���ri�1riþ1riþ1���rR




þ bri
_Yr1r2���rR þ cri�1

_Yr1r2���ri�1ri�1riþ1���rR
�

þ
X

R

i¼1

Ki ariþ1
Yr1r2���ri�1riþ1riþ1���rR þ briYr1r2���rR




þ cri�1
Yr1r2���ri�1ri�1riþ1���rR

�

¼ F tð Þd0r1d0r2 � � � d0rR
ð20Þ

After every ri i ¼ 1; 2; . . .Rð Þ of Hr1 n1ð Þ. . .HrR nRð Þ is taken
over all ri ¼ 0; 1; . . .Ni � 1,

QR
i¼1 Ni deterministic equa-

tions of responses Y ¼ Y00...0Y00...1. . .YN1�1N2�1...NR�1
½ �T are

obtained. At this point, a random dynamic equation with n

degrees of freedom is converted into an equivalent exten-

ded-order deterministic system dynamic equation with
QR

i¼1 Ni degrees of freedom. To obtain the response of the

original system, the components of Y are substituted into

Eqs. (16–18).

The standard deviations of the extended-order system

dynamic responses under the random excitation F(t) are

obtained by the complex Cotes integration method sug-

gested by [8].

4 Example analysis

In this section, a two-degree-of-freedom high-speed ele-

vator car system vibration model was used as an example

(refer to [20]), and the vibration responses of the car and

the numerical characteristics of responses were analyzed.

As shown in Fig. 10, a rectangular coordinate system was

established. The elevator car’s centroid o is the origin, and

the horizontal direction and the plumb direction are the x

axis and y axis, respectively. The elevator car has two

degrees of freedom, and they are the translation of the

horizontal direction and the rotation around the centroid on

the oxy surface. The mass of the elevator car is m, the

moment of inertia is J, the stiffness of the spring in the

guide shoes is k, and the damping of the guide shoes is c.

The distance from the upper guide shoes to the mass is l1
and the distance from the lower guide shoes to the mass is

l2. For the values of the car’s parameters refer to [20]. The

calculation results of [20] showed that the sensitivity of

geometric parameters l1 and l2 were much greater than that
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of the quality parameters m and J and kinetic parameters k

and c. That is, under the same coefficient of variation, the

influences of the randomness of parameters l1 and l2 on the

responses are much larger than the other parameters.

Therefore, the car mass m, the moment of inertia J, the

stiffness of the spring k, and the damping of guide shoes c

are considered as deterministic parameters. Their values

are m = 1000 kg, J = 1500 kg m2, k = 7500 N/m and

c = 120 N/(m/s). The geometric parameters are considered

as random parameters. The mean values of l1 and l2 are
�l1 ¼ 1:6 m and �l2 ¼ 1:4 m. In this case, the coefficient of

variation is 0.05, the standard deviations rl1 ¼ 0:08 m, and

rl2 ¼ 0:07 m.

The dynamical differential equations of this system are

shown below

M €X þ C _X þ KX ¼ F tð Þ ð21Þ

In which

M ¼
m0

0J

� 	

; C ¼
4c� 2c l1 � l2ð Þ

� 2c l1 � l2ð Þ2c l21 þ l22
� �

� 	

;

K ¼
4k� 2k l1 � l2ð Þ

� 2k l1 � l2ð Þ2k l21 þ l22
� �

� 

X ¼
x

h

� 	

F (t) is the external excitation vector caused by the irreg-

ularity of the guide rails in the car system shown in Fig. 8.

The stiffness matrix and damping matrix of the differ-

ential equation of the car vibration system can be written as

the following equations:

K ¼ K0 þ K1n1 þ K2n2 ð22Þ

C ¼ C0 þ C1n1 þ C2n2 ð23Þ

In whichK0 ¼
4k �2k �l1 � �l2ð Þ

�2k �l1 � �l2ð Þ 2k �l21 þ �l22
� �

� 

; K1 ¼

0 �2k

�2k 4k�l1

� 

rl1 ; K2 ¼
0 2k

2k 4k�l2

� 

rl2 ; C0 ¼

4c �2c �l1 � �l2ð Þ
�2c �l1 � �l2ð Þ 2c �l21 þ �l22

� �

� 

; C1 ¼
0 �2c

�2c 4c�l1

� 

rl1 ; C1 ¼
0 �2c

�2c 4c�l1

� 

rl1 ; C2 ¼
0 2c

2c 4c�l2

� 

rl2 :The

n1 and n2 obey the standard normal distribution. Equa-

tion (21) can be written as:

M €X þ C0 þ C1n1 þ C2n2ð Þ _X þ K0 þ K1n1 þ K2n2ð ÞX
¼ F tð Þ:

ð24Þ

According to the orthogonal polynomial approximation

method, the responses of a system are decomposed in

accordance with three-order Hermite polynomials.

X nð Þ ¼
X

3

n1¼0

. . .
X

3

nR¼0

Yn1n2Hn1 n1ð ÞHn2 n2ð Þ ð25Þ

_X nð Þ ¼
X

3

n1¼0

. . .
X

3

nR¼0

_Yn1n2Hn1 n1ð ÞHn2 n2ð Þ ð26Þ

€X nð Þ ¼
X

3

n1¼0

. . .
X

3

nR¼0

€Yn1n2Hn1 n1ð ÞHn2 n2ð Þ ð27Þ

where Hn1 n1ð Þ and Hn2 n2ð Þ are the corresponding order

Hermite polynomials.Substituting Eqs. (25–27) into

Eq. (24) and utilizing the weighted orthogonal relation to

rearrange it, a 32-order deterministic vibration differential

equation can be obtained

M 32�32ð Þ €Y þ C 32�32ð Þ _Y þ K 32�32ð ÞY ¼ F 32�1ð Þ tð Þ ð28Þ

Equation (28) can be solved by the Wilson-h numerical

integration method. The responses of the original system

can be obtained by substituting the responses of the

extended-order system into Eqs. (25–27). In this paper, the

center point of car bottom is regarded as observation point

o0. The acceleration mean responses of the observation

point were calculated in the case of the irregularity of the

guide rails as shown in Fig. 6, and compared with the

results obtained by Monte Carlo method, as shown in

Fig. 11.

As can be seen from Fig. 11, the curve obtained by this

method is in good agreement with the Monte Carlo

method. It suggests that this method has high precision. On

the graph, the point of the sharp change of acceleration is

located at the junctions of the guide rail, and the direction

of acceleration is the same as the deviation direction of the

guide rail junctions, which is in accordance with the actual

Fig. 10 Vibration model of the two-degrees-of-freedom car system
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situation. After removing the points of guide rail joints, the

car is similar to a harmonic vibration, and the non-smooth

shape of the wave is caused by the irregularity of the guide

rails’ surface.

The mean responses of the horizontal acceleration at the

observation point of the car were calculated by the random

excitations of Figs. 8 and 9, respectively, and the resulting

contrast images are shown in Fig. 12. The random excita-

tions of the former were produced in the nonlinear guide

shoe model, and the random excitations of the latter were

produced in traditional linear guide shoe model. It can be

seen that the mean responses of the former are generally

greater than the latter. This is especially evident in the

guide rail junctions. This is further verified by the result

obtained from the analysis of Fig. 5 in Sect. 2: the non-

linearity of the guide shoes will aggravate the vibration of

the car.

To study the influence of different Cv (coefficient of

variation) of parameters on the mean horizontal accelera-

tion responses of the observation point, the mean responses

of acceleration were calculated in the case of the Cv of the

car parameters equal to 0.05 and 0.005, respectively, and

the resulting image is shown in Fig. 13. Comparing the two

curves of Fig. 13, under the low coefficient of variation, the

acceleration response amplitudes of the observation point

are slightly lower than those under the high coefficient of

variation. This shows that reducing only the variability of

random parameters has little effect on reducing the hori-

zontal vibration acceleration of the car. The standard

deviations of the acceleration responses were calculated,

and the results are shown in Table 1. Ten equally spaced

time points are chosen as the object of inspection. The

coefficient of variation of responses are obtained by cal-

culating means and standard deviations of the responses.

After calculation, the difference of their means is small, but

the values of standard deviations of the latter are on

average 8.1 times that of the former, and the coefficient of

variation of the latter are on average 3 times that of the

former. This shows that reducing the variability of random

parameters has a great effect on reducing the degree of

dispersion of acceleration responses.

When the irregularity of the guide rails was lowered, the

acceleration responses at the observation point were cal-

culated, and compared with the original acceleration

responses. The results are shown in Fig. 14. The irregu-

larity of the guide rail was reduced to 0.5 times the origi-

nal, and the vibration acceleration response amplitudes of

the observation point were obviously smaller than the

amplitudes of the original vibration responses. This shows

that improving the straightness and flatness of the guide

rails can effectively reduce the horizontal vibration of the

car.

Fig. 11 Mean horizontal vibration acceleration responses of the

observation point

Fig. 12 Mean acceleration responses obtained by the nonlinear guide

shoe model and linear guide shoe model

Fig. 13 Mean horizontal vibration acceleration responses of the

observation point at different coefficients of variation
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5 Conclusions

(1:) To make the model closer to the actual situation, in

this paper, the shortcomings of the linear guide shoe

model were avoided in the analysis of the horizontal

vibration of a traditional high-speed elevator car.

The functional relationship between the amount of

deformation of the rolling guide shoes and the

restoring force were derived by the Hertz contact

theory, and the nonlinear guide shoe model was

established. Under the same random irregularity of

the guide rails, random guide rail excitations gen-

erated by these two models were compared and

analyzed. It was concluded that the nonlinearity of

the rolling guide shoes can aggravate the vibration of

the car.

(2:) The response analysis method of composite random

vibration of a high-speed elevator was established by

the orthogonal polynomial approximation method,

and the horizontal vibration acceleration responses

of a two-degree-freedom car model were analyzed

and calculated. The acceleration diagram obtained

by this method can well fit the acceleration diagram

obtained by Monte Carlo method, and the accuracy

of the method used in this paper is verified.

(3:) Under the different parameters’ coefficients of

variation and different irregularities of the guide

rails, the horizontal vibration acceleration responses

of high-speed elevator car system were compared

and analyzed. The results showed that reducing the

random parameters’ coefficient of variation can

greatly reduce the dispersion degree in the mean of

responses, but it can not effectively reduce the

amplitude of the mean vibration acceleration

responses, but reducing the irregularity of the guide

rails (increasing the flatness and straightness of the

guide rail) can greatly reduce the vibration acceler-

ation of the car.
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