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Abstract The development of computational models to

describe bone behavior when prosthetic devices are used

has gained tremendous importance. In particular, compu-

tational modeling for bone growth and resorption processes

can be a useful tool to determine the implant success or

failure. We present a model for investigating bone density

growth for healthy and prosthetic femur with a total hip

arthroplasty. The model, which is based on a continuum

theory for density growth and remodeling in biological

materials that accounts for the coupling between biological

and mechanical effects, is implemented in COMSOL

Multiphysics and two simulation examples are presented.

In the first example, where mechanical loads due to daily

physical activities are considered, it is shown that higher

stress zones (in prosthetic femur mid-diaphysis of about 46

MPa) and lower stress zones (in prosthetic femur neck of

about 28 MPa) are candidates for bone growth and

resorption zones, respectively. In addition, it is shown that

higher and lower stress levels in these zones may lead to

possible periprosthetic fractures (bone mid-diaphysis

overloaded in 7–10 MPa post-operatively) and eventually

to implant aseptic loosening due to resorption (bone

femoral neck unloaded in 13–17 MPa post-operatively). In

the second example, where the mechanical load corre-

sponds to the average of the loads considered previously,

the obtained results for bone density are in good agreement

with real bone density distribution in the proximal femur,

which illustrates the model capability to locate bone den-

sity growth zones (of about 1615 kg=m3 in the mid-dia-

physis) and bone density resorption zones (of about 1259

kg=m3 in the neck) due to mechanical loads for the femur

post-operative condition after a total hip arthroplasty sur-

gical procedure.

Keywords Bone � Continuum mechanics � Density
growth � Finite elements

1 Introduction

Total hip arthroplasty (THA) implantations associated with

degenerative and traumatic hip conditions, such as

osteoarthritis, post-traumatic arthritis, and hip fractures,

reach about 500,000 procedures performed annually in the

UK and USA, and are estimated in more than one million

worldwide [26, 52, 60]. In addition, the elderly population

is growing as life expectancy increases; consequently, the

demand for THA is increasing and is expected to grow by

174% in about 572,000 THA by the year 2030, only in the
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USA [43]. Furthermore, it is unclear if the number of

orthopedic surgeons will be sufficient to meet this demand

for health care [33]. Despite THA shows excellent clinical

outcomes and is considered a successful and cost-effective

procedure to relieve pain and restoring hip joint [52], some

prosthesis fails, most commonly due to aseptic loosening

secondary to wear or dislocation [45, 56]. Therefore, the

development of computational tools with the capability to

estimate bone growth and resorption when prosthetic

devices are used has a remarkable importance, since these

processes may contribute to implant success or failure. In

this scenario, the finite-element method (FEM) has been

playing a key role, being used to study and evaluate the

mechanical behavior of prosthetic devices [53, 60], and to

improve our understanding on the fundamentals of the

mechanics of biological processes such as growth and

remodeling [1, 35, 46, 58]. Through the multiplicative

decomposition of the deformation gradient, the biological

growth is associated with soft tissues and the remodeling

process with hard tissues, while the former are treated

kinematically, considering changes in volume at constant

density [1, 38, 46, 54]; the latter are associated with

changes in properties at constant volume [1, 35, 46, 58],

such as internal structure, strength, or density [58]. In

density growth case, focus of this work, the approach is of

a constitutive kind using continuum nonlinear mechanics

for hard tissues [1, 46].

The first work considering growth and resorption asso-

ciated with gain or loss of mass, known as theory of

adaptive elasticity, was presented by [19], where the tra-

ditional balance equations are enhanced by additional mass

source terms, allowing bone adapts its density due to stress,

strain, or energy [23, 44]. In addition, there was developed

the bone maintenance theory [9–11, 13], motivated by the

trajectorial hypothesis of bone microstructural arrangement

in the principal stress directions [35, 64] and by structural

optimization [1, 39, 42], to quantify the relationships

between physiological loads and bone morphology, based

on mathematical theories for bone adaptation to mechani-

cal stimulus.

Several works were developed following the above-

mentioned theories in prosthetic design analysis based on

bone-remodeling theory [31, 63], in density prediction

from stress–morphology relationships in trabecular bone

[12], in the bone adaptation theory development [9], and in

the numerical improvement for bone-remodeling simula-

tions [30, 34]. However, to overcome some unstable and

non-physical results using these formulations [40], a solu-

tion for the biomechanical coupled problem in terms of the

mass and momentum balances using an implicit Euler

backward integration scheme for the density evolution,

following the isotropic functional adaptation reported by

[30], was proposed to characterize density profiles in the

proximal femur [39, 40, 42] and in tibia bone [50, 61],

where hard tissues are characterized by an energy-driven

evolution of the mass, and the mass source is specified in

terms of density and strain energy.

Despite the considerable research in the field, from that

we only highlighted some important contributions, the

computational modeling of density growth using FEM in

orthopedics biomechanics continues to be challenging, for

instance, due to the constitutive laws considered

[9, 35, 46, 58], the physiological loads and boundary

conditions assumed [6, 22, 57, 62], and the implementation

of the biomechanical problem in FEM softwares.

The aim of this study is the development and imple-

mentation of an FEM model with the capability to simulate

the bone density growth and resorption processes due to

mechanical stimuli. Moreover, the application of the study

proposes a computational assessment tool for orthopedic

specialists, focused on the simulation of a healthy femur

and a femur with an implanted prosthesis submitted to

loads.

For this purpose, two simulations were conducted:

1. In the first example, where density growth is not

considered, the healthy and the prosthetic femurs will

be submitted to real daily physical activity loads to

found higher and lower stress regions that could be

candidates for bone growth and resorption zones.

2. In the second example, the density growth process is

considered in the simulation, to locate bone growth and

resorption zones due to mechanical effects for the

femur healthy condition and after a THA surgical

procedure. In this situation, mechanical loads corre-

spond to the average loads considered previously.

The density growth model developed takes into account the

coupling between the biological and the mechanical effects

and is based on growth and remodeling theories for bio-

logical materials. We adopted a nonlinear formulation for

large deformations using the isotropic functional adapta-

tion approach proposed by [30], used for bone density

growth applications [42, 50, 61].

This paper is organized as follows Sect. 2 presented the

theoretical framework and the constitutive equations for

density growth within the context of continuum mechanics.

Section 3 presents the set of governing equations formed

by the coupling of the biological and mechanical problems

and the corresponding boundary conditions. Section 4

describes how it implemented the incremental problem of

density evolution embedded into the mechanical problem

in COMSOL Multiphysics finite-element software using

the solid mechanics and the general form PDE modules,

respectively. Section 5 presents the geometrical model and

the finite-element model adopted of a coupled structure–

structure type along with the loads and boundary
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conditions, finite-element meshes, and the material prop-

erties assumed. In Sect. 6, the two biomechanical simula-

tion examples (above mentioned) for the healthy and the

prosthetic femurs are presented. In addition, in this section,

the results obtained are presented and discussed. The final

conclusions are summarized in Sect. 7.

2 Theoretical framework

Let consider a body B capable of changing its density due

to a mechanical stimulus, where two coupled processes are

taking place: a mechanical one, driven by the body

deformation due to loads, and a biological one, related to

density changes in an energy-driven format due to a mass

source.

Body motion is given by the vector field v; conse-

quently, v ¼ _v is the velocity field. Mapping x ¼ vðX; tÞ is
considered one-to-one in X for fixed t, so invertible then:

X ¼ v�1ðx; tÞ, being X and x, the position vectors referred

to reference and current configurations. Deformation gra-

dient is defined as F ¼ rv and the volumetric Jacobian of

the deformation is the determinant of F, being: J ¼ detðFÞ.
Dot symbol and r operator denote material time derivative

and gradient of a quantity. The displacement u of X is

defined as uðX; tÞ ¼ vðX; tÞ � X, where its gradient is

related to F through F ¼ I þru, being I the second-order

identity tensor. Density growth process is regulated by the

rate of the density scalar field qK .

2.1 Balance equations

Mass and momentum balances are presented in the local

form referred to the reference configuration. In the mass

balance, the rate change of mass due to volumetric mass

sources, neglecting mass fluxes [40, 50, 61], is given by

_qK ¼ CK ; ð1Þ

expressing the equilibrium of the rate change of mass _qK
with the mass source CK , being qK the mass density.

The linear momentum balance balances the rate change

of momentum _qKv with the momentum contributions of

traction, body forces, and mass source [23, 41, 44]; hence

_qKv ¼ DivP þ b þ CKv; ð2Þ

being v the velocity, b the body force, and P the first Piola–

Kirchhoff stress tensor. Div denotes the divergence of a

quantity. Considering (1) in (2), the linear momentum

balance gives

qK _v ¼ DivP þ b: ð3Þ

2.2 Density growth constitutive equations

In the mass balance of (1), the mass source term CK has the

following form [30]:

CK ¼ c

�
qK
qK�

� ��m

wK � wK
�
�
; ð4Þ

being qK
� the initial density, wK

� the stimulus attractor [9],

considered as the energy saturation value for density evo-

lution [61], m the bone adaptation process exponent [30],

and c the adaptation process speed coefficient [40],

assumed equals to unity. For a deeper insight on the

stimulus attractor physical meaning, which is obtained

from experimental data and assuming that bone mass is

maintained for 10,000 walking cycles per day, the reader is

addressed to [9].

The strain energy density form adopted is

wK ¼ qK
qK�

� �n
wK

neo ð5Þ

with the relative density term qK=qK
�½ �n used for open-

pored cell materials [13, 28], where n is the porosity

exponent.

By neglecting tissues viscous effects for short-time

scales (seconds or minutes order) and assuming that growth

occurs for large time scales (weeks or months order), its

constitutive response can be considered as hyperelastic

[42], assuming also that density growth in hard tissues

occurs at constant volume. Accordingly, the strain energy

function considered is of a neo-Hookean type:

wK
neo ¼ k

2
ln2J þ l

2
FTF : I � 3� 2 ln JÞ�;
��

ð6Þ

being k and l the Lamé constants and FT the transpose of

F.

Piola–Kirchhoff stress can be obtained through the

derivative of the strain energy with respect to the defor-

mation gradient; hence, using (5) and (6):

P ¼ owK

oF
¼ qK

qK�

� �n
ðklnJ � lÞF�T þ lF�;
�

ð7Þ

being F�T the inverse of the transpose of F.

3 Governing equations and boundary conditions
for density growth

The governing equations are obtained coupling the bio-

logical problem, defined through the mass balance, with the

mechanical problem defined through the momentum
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balance. The biological problem expression is obtained

using the strain energy of (5) for an hyperelastic material in

the form of (6) and the mass source (4) in the mass balance

(1). The mechanical problem expression is obtained using

the Piola–Kirchhoff stress of (7) in the momentum balance

(3). Finally, the biomechanical coupled problem results in

_qK ¼1

2

qK
qK�

� �n�m

wK
neo � w�

K ; ð8Þ

0 ¼Div
qK
qK�

� �n
ðklnJ � lÞF�T þ lF�Þ;
��

ð9Þ

considering a quasi-static process and neglecting body

forces.

The boundary conditions that supplement the above

governing equations can be established as follows: let the

body B be given with loading surface tractions �s defined on

osB, and with prescribed displacements �u ¼ 0 on ouB,
then, Neumann and Dirichlet boundary conditions (BC) for

the mechanical problem are, respectively

PðXÞnðXÞ ¼ �sðXÞ; X 2 osB
uðXÞ ¼ �uðXÞ; X 2 ouB;

ð10Þ

where n is the unit normal to osB. Prescribed displace-

ments �u and prescribed tractions �s are given functions on

ouB and osB which are, respectively, complementary dis-

joints of oB. Within the mechanical problem is embedded

the density growth boundary value problem given by the

mass balance (1), with the initial condition:

qKðX; 0Þ ¼ qK
�: ð11Þ

4 Numerical application

To solve the theoretical model presented, we have used

COMSOL Multiphysics v 4.4. The goal is to solve the

incremental problem of density evolution due to the mass

source CK for an hyperelastic material, embedded into the

mechanical problem,which is coupled to density through the

deformation field generated in response to the applied load.

The coupled problem given by the nonlinear equations

system formed by (8) and (9) was solved numerically using

the solid mechanics mode for the mechanical problem

given by the momentum balance (9) with the BC (10), and

using the General Form PDE for the biological problem of

density evolution given by (8) with the initial condition

(11). The strain energy function was reprogrammed

including the relative density term in the neo-Hookean

hyperelastic strain energy. A function for the mass source

term CK was also implemented in the form of (4).

In the next sections will be presented two biomechanical

application examples of a healthy and a prosthetic femur

behavior submitted to loads. The former, without consider

density growth for locating possible zones of growth and

resorption, and the latter, considering density growth process

based on the theory presented in the previous sections. All

models were discretized with Lagrangian1 quadratic elements

to interpolate displacementsu and the densityqK . For the time

discretization, a general-a backward differentiation method

was used [16]. TheMUMPS solverwas used [47], to solve the

discrete system resulting from each time step discretization

with residual tolerance levels of 10�4, which is considered

sufficient, since similar solutions were obtained at lower tol-

erance levels. In all models, plane stress condition was

adopted.

5 Geometrical and finite-element models

5.1 Geometrical model

The geometrical two-dimensional (2D) model for the

healthy femur (HF) and for the femur with an implanted

prosthesis (FP) is shown in Fig. 1 corresponding to a 2D

slice through the HF and FP in the mid-frontal plane.

Cortical and spongious tissue contours were obtained in

previous works [7], and compared with femur anatomical

standard dimensions of a human adult [32]. Tissue contour

splines were converted to 2D surfaces to generate cortical

and spongious domains.

The prosthesis is considered as a conceptual cementless

type, with typical dimensions according to the specialized

literature [14, 27]. It is worth to mention that cemented

prosthesis conditions are not considered in this study.

The tissues and prosthesis (stem and head) geometri-

cal domains were generated using software Solidworks

version 2013 and a coupled structure–structure model

was constructed using Boolean operations in COMSOL

Multiphysics. Boolean operation sequence performed for

the prosthetic case mimics a THA surgery, consisting in

the femoral head cut (resection) followed by the pros-

thesis stem insertion in the medullary canal. Finally, the

geometrical model obtained is adopted for the two sim-

ulation examples that will be presented in the following

sections.

5.2 Example 1: finite-element model considering

physical activities

First, it was implemented an FEM model without consid-

ering density growth for HF and FP, submitted to three

1 Lagrangian quadratic: LagkðTÞ, k ¼ 2, being k the polynomial

degree of the element shape function and T the mesh type: triangular

in this case [17]
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daily physical activities normal walk (NW), going up stairs

(US), and going down stairs (DS), to locate high-stress

concentration zones that could be possible density growth

areas. Load conditions and model meshes are shown in

Fig. 2. Zero displacement BC were considered in femurs

distal ends (Fig. 2a.1). Loads were applied on HF and FP

heads (Fig. 2a) and the load functions were taken, with

permission, from public database Orthoload [5], consider-

ing x and y components for the three load cases (Fig. 2a.2).

Abductor muscle force was considered of 703 N applied on

the greater trochanter [9, 39].

Cortical and spongious tissues were considered as

hyperelastic, homogeneous and isotropic [18, 29, 39],

and prosthesis materials, as linear elastics and isotropic,

using a Titanium (Ti6Al4V) alloy and a Cobalt–Chro-

mium (Co–Cr) alloy for the stem and the head, respec-

tively [49, 65]; material properties are shown in Table 1.

Bone density for cortical and spongious tissues was

assumed as qKc = 1800 kg=m3 and qKe = 600 kg=m3,

respectively.

The model was discretized in 27,712 elements (Fig. 2b),

and solved for 118,914 degrees of freedom (DOF), after

two previous mesh refinement steps until convergence was

achieved. The total time for simulations was tNW ¼ 1:103,

tUS ¼ 1:593, and tDS ¼ 1:439 s, corresponding to 100% of

the entire cycle of each load case [5]. The time step used

was Dt ¼ 0:01. The coupled structure–structure model,

described previously, ensures stress transmission from

cortical to spongious tissue for healthy condition and from

prosthesis stem to cortical and spongious tissues for pros-

thetic condition (Fig. 2b, b.1, b.2). Bone–prosthesis inter-

face was considered as fully bonded [8, 36].

6 Results and discussion

6.1 Model results considering physical activities

The interest of this work is focus in cortical bone tissue,

since it is the main responsible for prosthesis stem fixation.

However, some results concerning prosthesis will briefly

discuss.

Results were analyzed and there were found three main

critical regions, coincident in location for the three load

cases. Region 1 located in medial cortical wall HF mid-

diaphysis, region 2 in medial cortical wall FP mid-diaph-

ysis, and region 3 in HF neck, as shown in Fig. 3, where it

can be found the Von Mises stress distribution of analyzed

Fig. 1 Geometrical model of

HF and FP, relevant

dimensions, characteristics, and

main anatomical landmarks.

a HF characteristics, total

length, neck-shaft angle (133�),
and femoral head diameter.

b HF model, medullary canal

diameter, and cortical wall

thickness at the mid-diaphysis

by medial and lateral. c FP

model, prosthesis stem length,

size (diameter), and head

diameter. All dimensions are in

millimeters
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load cases at times tNW ¼ 0:55, tUS ¼ 0:81, and tDS ¼ 0:8

s, for an NW, US, and DS, respectively, where maximum

stresses were attained. In addition, region 4, located in FP

neck, was included in the analysis to compare critical

regions for both situations, healthy and post-operative.

Higher stresses were found in HF over the medial cor-

tical wall from mid-diaphysis to proximal for NW due to a

higher bending moment when compared with US and DS,

where a predominant compressive situation leads to stres-

ses concentration in the neck (Fig. 3a–c). Also is observed

that the higher stresses are located in femurs necks for the

healthy condition for the three load cases (Fig. 3a–c). In

contrast, in FP, the higher stresses were found in mid-

diaphysis, being the most critical situation for NW, due to a

higher bending moment (Fig. 3d–f). In FP neck, an

unloading situation was detected proximally due to stress

shielding, being critical for US activity.

There are also plotted the stresses along HF and FP

medial inner and outer cortical walls (Fig. 3 right panels),

from a point p located proximally in femurs necks (at lesser

trochanter height) to a point d located in the mid-diaphysis.

Note that the outer cortical stresses for HF shown peaks at

region 3 for NW, US, and DS, then stresses remained

almost constants in mid-diaphysis for NW, while decreased

distally for US and DS.

Inner cortical HF stresses exhibit similar patterns for the

three load cases with no significative peaks. In the FP outer

cortical bone, the unloading situation is observed in region

4 for NW, US, and DS, followed by a slightly stresses

increasing down to the region 2 peaks, followed by a

sharply decrease distally. Inner cortical FP stresses shown

the jumps due to the interfaces changes, from cortical–

spongious to cortical bone–prosthesis proximally and at the

stem distal tip-cortical bone (Fig. 3d–f).

Fig. 2 Loads, boundary conditions, and meshes for HF and FP. a
Proximal part of the model domains, applied load regions for daily

activity loads and abductor forces (Fab), with a ¼ 28�. a.1 Zero

displacements BC in HF and FP distal ends. a.2 Daily activity load

values (x and y components) over time for 100% of one cycle for NW,

US, and DS. Load function values for the three physical activities

(NW, US, and DS) were taken from public database Orthoload [5],

with permission. b Meshes of HF and FP proximally. b.1, b.2 Mesh

details showing the coupled structure–structure model for HF and FP.

The y-axis denotes the direction of an imaginary axis passing through

the femoral medullary canal from distal to proximal

Table 1 Material properties for cortical and spongious tissues and for

prosthesis biomaterials

E (MPa) m k (MPa) m (MPa)

Cortical bone 16,000 0.3 9230 6153

Spongious bone 2000 0.3 1153 769

Ti6Al4V alloy 110,000 0.3 63,461 42,307

Co–Cr alloy 230,000 0.3 132,692 88,461

E, m: Young modulus and Poisson ratio
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As shown in Fig. 3, stresses were higher in FP medial

cortical wall mid-diaphysis (region 2) than in HF analo-

gous region for the three load cases, indicating that for a

prosthetic condition, bone is significantly overloading (in

about 10 MPa) in the outer cortical wall due to the higher

bending moment and at inner cortical wall due to the

Fig. 3 Von Mises stress distribution at physical activity times where

maximum stresses were attained, critical regions, and stresses along

medial cortical walls from proximal to distal (outer and inner cortical

stresses values from point p to point d), in HF (left) and FP (right) for

a, d Normal walk case (NW) at t ¼ 0:55 s (the red arrows describes

the displacements vector field); b, e going up stairs case (US) at

t ¼ 0:81 s; c, f going down stairs case (DS) at t ¼ 0:8 s. Being 1, 2, 3,

and 4, the critical regions. Red and blue arrows at HF medial and

lateral cortical walls are only representative of compression and

tension
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prosthesis distal tip load transferring as previously obtained

by other authors [2, 36]. We hypothesized that these critical

areas (Fig. 3d–f) could be one of the causes of peripros-

thetic fractures that commonly occur underneath of

implanted prosthesis, see, for instance, [21, 25, 26].

Regarding FP neck (region 4, Fig. 3d–f), stresses were

lower (in about 17 MPa) than in the analogous HF region

for the three load cases due to the unloading situation

proximally (stress shielding). It was also significant that

stresses over FP medial cortical wall were higher and more

uniformly distributed through the cortical thickness for DS

than for NW and US activities (Fig. 3d–f), suggesting that

DS activity may stimulate bone in the medial cortical wall

and may reduce the unloading situation in FP proximally.

Maximum stresses (Fig. 3) were below cortical bone

compressive and tensile yield strength values (ryc = 115

and ryt = 121 MPa), without compromise bone integrity. In

the prosthesis, most significative stresses were found in the

neck between 70 and 97 MPa (Fig. 3d–f), in agreement

with [8]. Stresses obtained were below the titanium alloy

compressive and tensile yield strength (ryc = 970 and ryt =
880 MPa). Even though a fatigue analysis is required;

however, fatigue is out the scope of the current work.

In addition, four probes were positioned in the regions

of interest to analyze stresses and strains behavior through

the time for the three load cases, as shown in Fig. 4. From

the analysis of intervals: 10–50% NW, 15–55% US, and

50–90% DS, stresses were significantly higher in FP region

2 than in HF region 1 all over the referred intervals

(Fig. 4a–c), confirming that bone in the mid-diaphysis is

submitted to higher stress levels post-operatively (from 7 to

10 MPa overloaded), being NW activity, the most critical

situation.

Regarding femoral neck, for prosthetic condition (region

4), stresses were significantly lower than for healthy con-

dition (region 3), confirming the unloading situation (from

13 to 17 MPa less), found previously. From the strains

analysis over the intervals defined above, Fig. 4d–f shows a

strain increase in FP region 2 (from 130 to 274 le) with
respect to HF region 1, due to higher stress levels in the

mid-diaphysis post-operatively. In FP (region 4), strains

were significantly lower than for healthy condition (region

3), as a result of stress reduction (from 365 to 458 le less).
Maximum stresses and strains found in regions of interest

at: 50% NW, 52% US, and 53% DS, are shown in Table 2.

This part of the study has examined the biomechanical

behavior of healthy femur and its post-operative condition

after a THA surgery for three daily physical activities.

From a qualitative point of view, there were found higher

stresses in compressed cortical wall medially than in tensed

cortical wall laterally, in agreement with [36, 62]. In

addition, Von Mises stress results reproduced the typical

bending stress distribution reported in the literature with

maximum values located in mid-diaphysis medial cortical

bone for healthy and prosthetic condition [36, 51, 62].

It is worth to mention that direct comparisons with other

authors reports are often difficult, due to the load-level

variability in numerical and experimental studies and also

due to the material properties and the boundary conditions

considered in numerical studies. However, from a quanti-

tative point of view, Von Mises stress results shown

agreement with previously results published in the litera-

ture [8, 36, 51, 62].

The Von Mises criterion was adopted as a first

approximation. Despite the fact that is recommended for

ductile materials, this criterion has been considered for

estimate proximal femoral fracture loads and to assess hip

fracture risk [20, 37]. In addition, several studies correlate

Von Mises stress levels to bone mineral density for healthy

and prosthetic femur [36, 55, 59].

Furthermore, strain-based criteria is suggested as suffi-

cient to predict femoral bone behavior [37]. In this regard,

a strain analysis was conducted and maximum strains

obtained shown agreement with strains determined exper-

imentally and using FEM [9, 22, 62], reporting maximum

values between 1000 and 2000 le for normal physical

activities.

6.2 Example 2: density growth model

In this example, it implemented a density growth FEM

model for HF and FP submitted to loads equivalent to the

physical activities studied previously, following the for-

mulation presented in Sects. 2 and 3, to predict bone

density distribution, and to locate bone growth and

resorption zones, for the post-operative condition.

Since total times of the physical activities studied are

too small (and load values too high) for density growth

process which takes place, a multiple step load type was

considered [42, 61], and was applied on HF and FP heads

as an average daily load, in increments of 250 N each

five dimensionless units of time. To simulates an NW

load level, which is the most frequent and time-con-

sumed activity performed in daily routines, the maxi-

mum value was considered of 1850 N; moreover, a 250

N increment was added to include DS load levels

(Fig. 5d).

Abductor muscle force and zero displacement BC in

femurs distal ends (from previous example), and a 240 N

load in �x direction (NWx, Fig. 2a.2), were considered.

Cortical and spongious tissues were treated as hyperelastic,

homogeneous, and isotropic. The corresponding density

variables were defined as qKc and qKe and were computed

using the density evolution expression from the governing
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equations of Sect. 3. The corresponding mass sources CKc

and CKe were implemented using the expression (4) from

Sect. 2.2.

Initial density was qK
� = 600 kg=m3 for both tissues,

under homogeneous density assumption at simulation start.

The stimulus attractor considered was wK
� ¼ 0:01 MPa

following [9, 39, 42] and the n and m parameter values

were n ¼ 2, m ¼ 3 according to [39, 42, 61]. Prosthesis

materials were considered according to the material prop-

erties shown in Table 1, as in the previous example. In

addition, the previous example model mesh was adopted

(Fig. 2b). Simulation total time was t ¼ 40 dimensionless

time units, and the time step for the incremental problem

was Dt ¼ 0:01.

Fig. 4 Stresses and strains in HF and FP critical regions through the

time for the three physical activities simulated. a–c Von Mises stress

vs time of critical regions for NW, US, and DS, respectively. d–

f Strains vs time of critical regions for NW, US, and DS, respectively.

Intervals 10–50% NW, 15–55% US, and 50–90% DS are the higher

load-level intervals determined for each physical activity
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6.2.1 Density growth model results

As in the previous example, the main interest is focus in

cortical bone tissue; however, spongious bone density

patterns for HF will briefly described. Figure 5a–c shows

density distribution results at times t ¼ 15, t ¼ 25, and

t ¼ 35. Density distribution in HF at simulations end

agrees with cortical walls and spongious bone arrange of an

anatomical femur, according to [64], spongious column

from the head to calcar region, and the system from lateral

cortical bone to superior neck were well reproduced

(Fig. 5c), see also [1, 46].

Ward’s triangle was reproduced well for initial simula-

tion times while appears slightly displaced upwards at

simulations end. In addition, cortical and spongious density

distribution obtained agrees with previous results reported

for a healthy femur [41, 42] and for post-operative femur

condition after a THA [39].

An increase of density in high-stress concentration areas

and a bone resorption situation associated with low-stress

regions are observed in Fig. 5c, consistent with [4, 36, 39].

In addition, this phenomenon was confirmed, since signi-

ficative growth and resorption regions coincide with criti-

cal stresses regions found in the previous example.

Density evolution in these regions was measured over

time (Fig. 5e), exhibiting a relaxation tendency to biolog-

ical equilibrium, where each load increases is followed by

changes in density towards to a new equilibrium state, as

obtained in [41, 42, 61]. Also is observed (in Fig. 5e), an

initial resorption in regions 1 and 2 due to low-stress levels,

and in region 4 due to stress-shielding effect, followed by

density growth evolution in all regions, for the loading

history �s.
At simulations end, density values obtained for HF were

in agreement with values reported by [3, 48]. In FP mid-

diaphysis, there were found higher density values of around

1649 kg=m3 in contrast with the 1615 kg=m3 found in the

analogous HF region, for 1850 N load (1776 and 1760

kg=m3, respectively, for 2100 N), resulting from the

overloading situation in the mid-diaphysis (Fig. 5e). It was

expected a higher difference between the obtained density

values in these regions. However, due to the complexity of

the presented model, it is difficult to determine if this

difference is real or if is associated with numerical uncer-

tainties of the model without conducting a previous sta-

tistical analysis.

In FP neck, there were found lower density values of

around 1118 kg=m3 in contrast with the 1847 kg=m3 found

in the same region for HF, for 1850 N load (1259 kg=m3 in

contrast with 1951 kg=m3 for 2100 N), confirming evi-

dence of a significative proximal–medial bone resorption

post-operatively (Fig. 5e).

In FP, as determined in the previous example, load is

transferred to the stem distal tip leading to the stress-

shielding phenomenon as a consequence of the mechanical

system configuration. Consequently, a density growth

(mass deposition) occurs at stem distal tip-cortical bone

interface and a bone resorption (bone loss) take place in

region 4, due to the unloading situation proximally

(Fig. 5c, e), in agreement with [4, 36, 39].

Regarding biological stimulus and stress evolution, the

nonlinear behavior and the relaxation behavior of these

quantities towards to biological equilibrium are observed in

Fig. 5f, g. Each load increase of �s is followed by changes in

density converging to a new equilibrium state, where bio-

logical stimulus equals the attractor wK
�, mass sources

CKc, and CKe vanishes and qKc and qKe undergo no further
changes in cortical and spongious tissues, providing HF

and FP the optimal density distributions to support the load

environment simulated, in agreement with [42, 50, 61].

Note also the higher stresses values in the mid-diaphysis

post-operatively compared with the same region for heal-

thy condition, and the significative stress reduction in the

neck region 4 due to the unloading situation proximally,

compared with the analogous healthy region 3 (Fig. 5g). It

should be highlighted that the present study was developed

according to the reporting parameters and considerations

for FEM studies of biological structures suggested by [24],

in a consistent and reproducible manner.

Although results shown good agreement with previous

contributions in the field, the proposed models have some

limitations and simplifications. For instance, the two-di-

mensional nature of the model was chosen as a first

approximation to focus the study on density growth

principal effects. However, the extension to 3D is

straightforward. Despite this limitation, the proposed

models considering the coupling cortical–spongious, in

principle, may be more accurate than models considering

femur as a single domain without geometrical distinction

between cortical and spongious tissues, as assumed by

other authors.

Table 2 Maximum stresses and strains in HF and FP critical regions

at 50% NW, 52% US, and 53% DS of physical activities

Stress ðMPaÞ Strain ðleÞ

NW US DS NW US DS

[50%] [52%] [53%] [50%] [52%] [53%]

HF 1 40.36 24.00 33.00 1120 677 906

FP 2 46.00 32.80 43.14 1250 899 1180

HF 3 42.50 41.17 52.00 1117 1180 1430

FP 4 29.00 28.00 35.40 800 788 972

le microstrains
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Concerning abductor force simulated, it suggested the

inclusion of muscles such as Illio-tibial band and Illiopsoas

to attained maximal physiological relevance [22]. How-

ever, remains controversially whether muscle force must be

taken into account when testing implants fixations [6]. In

addition, there were considered proximal and distal parts of

the femur with zero displacement BC at distal ends (lateral

and medial condyles), which may also be, in principle,

more accurate, realistic, and physiologically accept-

able than considering only the proximal femur fixed at the

mid-diaphysis, as commonly treated in the literature.

Regarding prosthesis, in the case of the anchorage stem

system, which makes differences in load transfer, certainly

exist several prosthesis designs in the market. However, for

Fig. 5 Density prediction for HF and FP, multiple step average daily

load, density evolution, biological stimulus, and stresses in the

regions of interest (1, 2, 3, and 4). a–c Density prediction for HF and

FP at times t ¼ 15, t ¼ 25, and t ¼ 35. At the end of simulation,

cortical walls were formed in medial and lateral cortexes (in red) for

HF and FP, and spongious bone areas were formed in the medullary

canal (in blue) for HF. d Multiple step load �s. First time step was

divided into two sub-steps, a 100 N ramp (from t ¼ 0 to 0.1) followed

by a 250 N constant value (from t ¼ 0:1 to 5), followed by increments

of 250 N constant values. e Density evolution in the regions of

interest. f Biological stimulus. g Stresses
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a 150 mm stem length of THA implant considered, no

substantial geometrical variations exist among prosthesis

design models [14, 27]. On the other hand, we only con-

sider a cementless prosthesis type in this study. For a

cemented case, a geometrical domain and material prop-

erties corresponding to a cement mantle between the bone

and the stem surface would need to be included in the

model. In addition, other phenomena such as adhesion

would also need to be included. These issues will be the

subject of a future research.

Homogeneous and isotropic considerations for bone

tissues were adopted in a preliminary research stage.

Despite this considerations are commonly assumed in hip

replacements behavior studies [8, 15, 39], transversally

isotropic or orthotropic bone properties can be introduced

without additional complexities.

The density growth model implemented is only valid for

multiple step load cases, since computational time is not

related to real physical time, and density saturation for the

average daily load chosen could be considered as a bone

density stable condition reached by the femur for long term

from a clinical point of view, as indicated in [4]. Therefore,

further studies considering the cyclic nature of daily

physical activities must be conducted, especially focusing

on the constitutive law for the mass source. Regarding

density distribution results for healthy and prosthetic con-

dition, and despite the agreement with previous studies

reported, a qualitative–quantitative validation through a

direct comparison with several patient-specific medical

images is also required. Therefore, the extension to the 3D

model, the inclusion of additional physiological muscle

forces and boundary conditions in the analysis although

with a comparison with clinical cases and considering the

cyclic character of daily physical activities in the density

growth model are among the issues to developed in our

research for future works.

7 Conclusions

A density growth model for bone tissues based on a con-

tinuum theory for biological growth and remodeling pro-

cesses was presented in this work and was implemented in

an FEM software to simulate bone density behavior in a

healthy and a prosthetic femur due to mechanical loads.

In the model considering daily physical activities,

results shown that for post-operative condition:

1. Bone in the mid-diaphysis is significantly overloading,

situation that may lead eventually to periprosthetic

fractures being more critical for a normal walk

activity.

2. Going down stair activity is suggested to stimulate

bone density growth and to reduce the unloading

situation detected proximally in the medial cortical

wall.

Regarding the density growth model, for healthy condition,

results agree with real bone morphology and density dis-

tribution in the proximal femur. For the prosthetic femur

condition:

1. A densification was localized in the mid-diaphysis

medially due to the overloading situation generated by

the stem distal tip load transmission.

2. A significative resorption was localized in the proxi-

mal–medial region due to stress shielding which may

lead to the aseptic loosening of the implant.

Comparison of qualitative and quantitative results obtained

with previous results reported by other authors was con-

ducted showing good agreement. Therefore, from the

clinical point of view, results obtained may help in the

study of physiotherapy treatments, to reduce the risk of

periprosthetic fractures and to achieve adequate physio-

logical density levels during the recovery phase after sur-

gery as well as for long term.

Finally, the implemented bone density growth model

combined with the evolutive model for daily physical

activities loads presented represents a potentially compu-

tational assessment tool for orthopedic surgeons. In addi-

tion, the proposed tool can be useful to identify possible

zones of periprosthetic fractures and to detect zones of

bone density growth and resorption due to mechanical

loads, for the healthy femur and its post-operative condi-

tion after a THA procedure.

Acknowledgements The authors gratefully acknowledge the finan-

cial support provided by CNPQ under Grant (870068/1997.0) and

CAPES PNPD (31001017030D4).

Compliance with ethical standards

Conflict of interest The authors declare no conflict of financial

interest in the work presented as well as any kind of involvements that

might raise the question of bias.

References

1. Ambrosi D, Ateshian G, Arruda E, Cowin S, Dumais J, Goriely

A, Holzapfel G, Humphrey J, Kemkemer R, Kuhl E, Olberding J,

Taber L, Garikipati K (2011) Perspectives on biological growth

and remodeling. J Mech Phys Solids 59(4):863–883

2. Andreaus UA, Colloca M, Toscano A (2008) Mechanical beha-

viour of a prosthesized human femur: a comparative analysis

between walking and stair climbing by using the finite element

method. Biophys Bioeng Lett 1(3)

3. Ashman RB, Rho JY (1988) Elastic modulus of trabecular bone

material. J Biomech 21(3):177–181

3754 J Braz. Soc. Mech. Sci. Eng. (2017) 39:3743–3756

123



4. Avval PT, Samiezadeh S, Klika V, Bougherara H (2015) Inves-

tigating stress shielding spanned by biomimetic polymer-com-

posite vs. metallic hip stem: a computational study using

mechano-biochemical model. J Mech Behav Biomed Mater

41:56–67

5. Bergmann G, Orthoload (eds) (2009) Charit�e Universi-

taetsmedizin Berlin (2008). http://www.OrthoLoad.com. Acces-

sed 1 Feb 2009

6. Bergmann G, Graichen F, Rohlmann A, Bender A, Heinlein B,

Duda GN, Heller MO, Morlock MM (2010) Realistic loads for

testing hip implants. Bio Med Mater Eng 20(2):65–75

7. Blanco JO, Madrigal MR, Calas H, Moreno E, Salas LL, Palo-

mares E (2013) Modelación y Simulación de Sistemas
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