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Abstract The importance of incorporating the surface

bubbles in acoustic modeling lies in the significant effects

of the bubbly layer of the sea surface on the sound scat-

tering, attenuation, and reflection. In the present paper, an

acoustical system consisting of water, air, and bubbly water

is considered and a particular approach incorporating a new

version of the power-law concept for volumetric and

scattering attenuation of bubbles is presented for the pre-

diction of low-frequency damping of the sound in near-

surface propagation. Sound attenuation in this system is

traced in four steps and each step is considered as an

individual case. Through applying the new power-law

attenuation, the corresponding damping coefficient is

derived. It has been shown by comparing the obtained

results with experimental data that, at lower frequencies,

the present model has better agreement with experiments

than the theoretical model. Furthermore, a parametric study

is conducted on different volume fractions and surface

roughness, from which the equivalent damping coefficient

of the free surface region is extracted using a mechanical

and acoustical analogy to model the sound attenuation due

to impedance difference, rough interface, bubbly water,

and propagation range. It has been demonstrated that the

present model can be used as an effective simple method

for predicting the attenuation of sound in bubbly media

with different bubble sizes.

Keywords Sound attenuation � Power-law attenuation �
Bubble resonance dispersion � Damping coefficient �
Acoustical system

1 Introduction

There are many different underwater sound sources such as

underwater explosions, military training, marine vessels,

active volcanoes, among others. Grelowska et al. [1]

studied the main sources of acoustic waves related to

marine vessels and different sources were identified at a

low frequency ranging from 100 to 1000 Hz. It was con-

cluded that generated noise in this spectral range is affected

by the physical features of the propagation medium. The

generated underwater noise propagates in various direc-

tions and hits different boundaries with particular proper-

ties. Accordingly, water–air interface occupying 2/3 of the

earth’s surface has important implications in hydro-

acoustics [2]. As a result, it is quite natural that researchers

would concentrate on the sound variation at water–air

interface. Sea surface is studied from different point of

views such as scattering, attenuation, and transmission of

the incident sound. Hayat [3] developed a method for

sound scattering near a penetrable plane which can be

considered as a mathematical approach for the sea surface

modeling. Sikora et al. [4], by focusing on ultrasounds,

recently developed a beam tracing with refraction (BTR)

method which simulates the reflection and refraction of

sound in a medium. Although the goal of the majority of

these studies has been the investigation of sound in the

propagation medium, sound attenuation in the spectral

region from 20 to 200 Hz remains largely an unexplored

area in underwater acoustics [5]. However, various factors

that are involved in sound attenuation cause major
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difficulties in seeking an accurate solution. Influential

factors such as the presence of waves, bubbles cloud, wind

speed, and foam among others are some of the important

factors. Understanding the effects of these factors and their

originators is the complication of the next step. Tolstoy [6]

presented an approach for calculating the damping coeffi-

cient of the interface of two different media with rough

interface. By applying his relation and the known factors

such as impedances of the two media, surface roughness

parameter, and sound frequency, it is possible to calculate

the sound damping factor.

In the real ocean surface, the generated sub-surface

bubbles can significantly affect the incident sound to sea

surface at low frequencies. Theory of sound propagation in

fluid containing bubbles has been studied by different

acousticians including Medwin [7], Hall [8], McDonald

[9], Henyey [10], Prosperetti [11], Gauss and Fialkowski

[12], Verestchagina and Fedotovsky [13], Godin [14–16],

Kuo [17], and White et al. [5]. For instance, Prosperetti

[11] suggested the natural sound-producing mechanisms at

frequencies between 20 and 500 Hz due to wave turbu-

lence and oscillating bubble clouds. Medwin and Clay [18]

examined the depth dependence of the bubbly layer on the

attenuation of incident sound and concluded that it is a non-

ignorable factor. Fialkowski and Gauss ([12] studied the

important role of bubbles in surface scattering strength by

decreasing the grazing angle and increasing the frequency

and wind speed in the ocean. Verestchagina and Fedo-

tovsky [13] concluded that for sound propagation in the

bubbly medium at low frequencies (below 200 Hz), the

dynamic density of bubbly water medium should be taken

into account due to the effects of bubbles dispersion. In the

spectral region of 5–200 Hz, when the acoustic waves

spread in a bubble medium due to progressive and volu-

metric deformation oscillations, the phase sound velocity is

obtained using the effective dynamic density and effective

dynamic compressibility of the medium [13]. This implies

that impedance of the medium is different from the phys-

ical properties. Verestchagina and Fedotovsky [19] derived

a mathematical model for the resonance dispersion of the

sound in gas–liquid media which showed good agreement

with the experimental data. By applying their theory, it is

possible to obtain the resonance-dependent phase velocity

and sound damping factor in bubbly water medium at low

frequencies. Despite the extensive applications of sound

attenuation, not only in underwater sound propagation but

also in the areas of biological studies like that reported by

Klimonda [20], research on sound attenuation especially at

low-frequency range has not been developed enough to

fulfill the industrial and medical requirements. In under-

water acoustics, almost all of the studies have concentrated

on one or two effective parameters. Therefore, one can

conclude that sound attenuation phenomenon at low

frequencies suffers from the lack of a comprehensive study

which may include essential factors of sound attenuation in

water and particularly near the air–water interface.

The main contribution of the present study is the pre-

sentation of a new version of the power-law attenuation for

volumetric and scattering attenuation taking into account

an acoustical system consisting of water, air, and bubbly

water medium. In addition, a clear and comprehensive

explanation of the free surface damping calculation, taking

into account the bubble deformations and oscillations is

provided to facilitate the reproduction of the model for the

scientific community. Furthermore, the presented mathe-

matical and parametric results in this study may have a

wide range of applications in underwater communication

channels, acoustic Doppler current profiler (ADCP), sonar

performance, marine life, oceanography among others. For

instance, in underwater communication channels, it is vital

to know the effect of underwater boundaries such as sea

surface on the signals to process the received signals and

filter their noises. On the other hand, to send an appropriate

signal securely in the media while it is capable of retaining

the given information, it is crucial to have a clear view of

sound attenuation in the propagation media. Therefore,

knowing how sound is attenuated at the sea surface can

significantly help acousticians in their studies. Accord-

ingly, the aim of the current study is to present a particular

mathematical model for studying the sound attenuation in

water and air–water rough bubbly interface to approach a

more realistic ocean condition. Therefore, to examine the

sound attenuation in the spectral region of 5–200 Hz, a new

version of power-law attenuation relation which considers

both volumetric and scattering attenuations is derived.

Subsequently, it is applied in an ocean-like acoustical

system, where bubbles with the same radii are distributed

in water to obtain the damping coefficient of the considered

acoustical system.

2 Damping coefficient of two media with rough
interface

If an acoustic medium is considered (as shown in Fig. 1)

that occupies volume V (bounded by the boundary S) in

which sound speed and density are, respectively, c and q,
the wave equation for the acoustic pressure p(x, t) in such a

medium, is described by
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where a is the damping coefficient of the medium, t is time,

while x, y, and z are the principal directions, x is the
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propagation vector of the generated sound by the source Q,

UðQ) is the source strength, and xs is the vector of the

source position.

If volume V in Fig. 1 is considered to have the same

boundary as the second medium V2 with different impe-

dance (q2c2), as shown in Fig. 2, through a mathematical

process, it is possible to derive the damping coefficient a
for the propagation media of Fig. 2 as follows:

a ¼ aSV ¼ lnP2 � lnP1

T � Rð Þx ¼ lnPB � lnPD

T � Rð Þx ; ð2Þ

where aSV is the damping coefficient due to the scattering

and volumetric attenuations, P1 or PD is the acoustic

pressure arriving at the interface of the two media and P2

or PB is the boundary wave at the interface, and x is the

total propagation range. In addition, T and R are the

transmission and reflection coefficients. Equation (2) may

be considered as a new version of power-law attenuation in

which volumetric and scattering attenuations are involved.

On the other hand, previous investigators including Szabo

[22, 23] and Chen [24] have proposed a relation to obtain

damping coefficient of a homogeneous medium as follows:

aV ¼ lnP2 � lnP1

x
; ð3Þ

where aV is the damping coefficient due to only volumetric

attenuation and x is the propagation range. Tolstoy [6]

proposed a relation to calculate the damping factor due to

the presence of a rough interface between two media with

different impedances. Through his proposed relation, it is

possible to calculate the scattering attenuation for an

acoustic wave, when it passes the rough boundary of two

media. His derived relation is

aTol ¼
1

2N

g1 b2 þ 0:5a20
� �

k31

1þ q1g1
q2g2

� � ; ð4Þ

where aTol is Tolstoy’s damping coefficient for the rough

interface of the two media. Other variables in Eq. (4) are

defined as

gi ¼ k2 � x2

c2i

� �0:5

; ð5aÞ

a0 ¼ s 1þKð Þ 1� q1=q2

� �
; ð5bÞ

s ¼ 0:5NV0; ð5cÞ

b ¼ s 1� m1=m2

� �
; ð5dÞ

where k is the acoustic wave number, ci is the sound

velocity of each medium, and x is the circular frequency.

Additional variables are defined in Table 1.

3 Acoustical system of air–water media
with rough bubbly interface

In the real sea states, mostly sub-surface bubbles are

generated as a result of different phenomena such as

breaking waves, moving floating objects, rainfall, etc. The

bubbles cloud under air–water interface can cause sig-

nificant effects on the incident sound features. These

effects at frequencies below 200 Hz are more important

when resonance dispersion of the incident sound occurs.

In addition, due to the resulting dynamic density and

Fig. 1 Acoustic medium occupying volume V bounded by surface S

[21]

Fig. 2 Propagation of wave in media containing two different

impedances with rough interface

Table 1 Definition of some parameters in Tolstoy’s damping relation

Parameter Definition

K Virtual mass coefficient of the full scatterer

m1=m2
Ratio of compressibilities of the two media

V0 Full scatterer volume

h Correlation distance for a random surface

N ¼ 1
h2

ffiffiffiffiffi
1
2:3

q
Number of scatterers per unit area

m ¼ 1
qc2

Isentropic compressibility

c2 ¼ op
oq

Sound speed in classical mechanics
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phase velocity, the impedance of the medium can be

different from an ordinary one without the dispersion

effects. Therefore, the sub-surface layer of bubbles is

considered as an extra third medium (in addition to air

and water) having its own features. In the current study,

bubbly layer sandwiched between air and water media is

considered to have homogenous property in sizes of

bubbles. Although in reality bubbles vary in their sizes

and distributions, to simplify the modeling, it is possible

to consider a dominant radius for the bubbles in the

bubbly water medium [18]. However, in an ideal case, it

would be more physically appropriate to consider the 3D

spatial distribution of bubbles and wide distribution of

sizes. In the current study, the bubble’s radius is consid-

ered to be 1 mm. In addition, the air and water densities

are considered to be 1.2 kg/m3 and 1020 kg/m3, respec-

tively. The speed of sound in air and water are considered

to be 340 and 1500 m/s, respectively.

To simulate the physical phenomenon of sound atten-

uation due to rough bubbly water interface more realis-

tically, an acoustical system is considered which is shown

in Fig. 3. In the present modeling, the considered acous-

tical system is excited by a localized point source in the

water which emits a ping towards rough bubbly air–water

interface. The emitted ping will be damped in the

acoustical system due to the impedance differences

between the three media of air–water–rough interface and

resonance dispersion in the bubbly medium. Therefore, to

examine the damping phenomenon in the considered

acoustical system, the emitted ping is followed in the

media through four different sequences. These sequences

are displayed in Fig. 4. Traveling the distance x in the

water, the initial ping with pressure Pinc1 will face the

imaginary interface of water–bubbly water in its first

sequence, as shown in Fig. 4a. Volumetric and scattering

attenuation will be the results of this step. Impedance

difference between two media causes transmission and

scattering of the remaining ping pressure. In the second

step, transmitted pressure Pinc2 is volumetrically

attenuated while passing the bubbly water medium

(Fig. 4b). Finally, the part of the pressure which strikes

the air–bubbly water interface simultaneously experiences

two different damping phenomena. It is attenuated due to

the rough interface and the impedance differences

between air and bubbly water media. To examine the

attenuation practically, this sequence is divided into two

different steps which are shown in Fig. 4c, d.

By eliminating the source singularity at the distance R,

where k � R, it is possible to consider the emitted spher-

ical wave as a plane wave in the acoustical system.

Therefore, plane wave relations can be used in the rough

bubbly surface region within the acoustical system.

Applying the following equation, Brekhovskikh et al. [25]

expanded the generated spherical wave (R�1 exp ikRð Þ) into
plane wave:

Pi ¼
exp ikRð Þ

R

¼ i 2pð Þ�1

ZZ1

�1

k�1
z exp i kxxþ kyyþ kzz

� �	 

dkxdky: ð6Þ

For the converted plane wave Eq. (6), the reflected and

transmitted waves can be obtained, respectively, as

follows:

Pr ¼ i 2pð Þ�1

ZZ1

�1

k�1
1z R k1zð Þ exp i k1xxþ k1yyþ k1z zþ z0ð Þ

� �	 

dk1xdk1y;

ð7Þ

Pt ¼ i 2pð Þ�1

ZZ1

�1

k�1
2z T k2zð Þ exp i k2xxþ k2yyþ k2z zþ z0ð Þ

� �	 

dk2xdk2y;

ð8Þ

where k1 and k2 and their components are wave numbers in

medium V and medium V1, and R is the reflection

coefficient.

Evaluating the integrals in Eqs. (7) and (8), the reflected

and transmitted pressure fields within the acoustical system

can be obtained as in [25]

Pr ¼ R h1ð ÞR�1
1 exp ikR1ð Þ; ð9Þ

Pt ¼ T h1ð ÞR�1
2 exp ik1R2ð Þ; ð10Þ

where h1 is the incidence angle, R h1ð Þ is the reflection

coefficient, T h1ð Þ is the transmission coefficient, and R1

and R2 are, respectively, Q and Q0 distances away from the

struck element (ds) on the boundary S (Fig. 2). Applying

the theory of plane wave, the reflection and transmission

coefficients can be derived as
Fig. 3 Schematic of the simulation
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R ¼ m0 cos h1 � n0 cos h2
m0 cos h1 þ n0 cos h2

¼ m0 cos h1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n02 � sin2 h1

p
m0 cos h1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n02 � sin2 h1

p ;

ð11Þ

T ¼ 2m0 cos h1

m0 cos h1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n02 � sin2h1

p ; ð12Þ

where h2 is the inclination angle in the medium V1, and n0

and m0 are defined as follows:

n0 ¼ k1

k2
¼ c2

c1
; ð13aÞ

m0 ¼ q2
q1

: ð13bÞ

In the following subsections, the emitted ping will be

followed in the acoustical system in four sequences, as

shown in Fig. 4, and damping coefficient of each sequence

will be derived.

3.1 Damping coefficient of case (a)

In this case, the incident ping generated by a point source is

emitted towards the interface of water and bubbly water

(Fig. 4a). Considering the propagation range from the

source location to the element ds (in Fig. 2), the incident

pressure Pinc1 and its scattering from the interface of the

two media, Pr1, are, respectively, the acoustic arrival PD

and boundary wave PB for the current case. By substituting

Eqs. (6) and (9) as arriving and boundary waves in Eq. (2),

the damping coefficient of case (a) labeled as aSVa can be

obtained as follows:

aSVa ¼
lnPB � lnPD

T � Rð Þx ¼ lnPr1 � lnPinc1

T a �Rað Þxa
¼ 1

T a �Rað Þxa
� ln

RaR
�1
r1 exp ik1Rr1ð Þ

R�1
1 exp ik1R1ð Þ ; ð14Þ

where Ra and T a are reflection and transmission coeffi-

cients of case (a), R1 is the propagation range of the

arriving wave, Rr1 is the propagation range of the boundary

wave, and xa ¼ Rr1 þ R1 is the total distance traveled by

both waves in medium V (Fig. 2). Equation (14) can be

rewritten as

T a �Rað ÞxaaSVa ¼ ln
RaR1

Rr1

þ ik1 Rr1 � R1ð Þ: ð15Þ

Since the left-hand side of Eq. (15) is real, the imaginary

component on the right-hand side of the equation should be

zero. As a result, the damping coefficient of the case (a) is

as follows:

aSVa ¼ < 1

T a �Rað Þxa
� ln

RaR1

Rr1

� �
þ ik1 Rr1 � R1ð Þ

� �� �
:

ð16Þ

3.2 Damping coefficient of case (b)

In this case, the damping factor of the bubbly water itself is

targeted. As pointed out earlier, based on the resonance

Fig. 4 Four different sequences in damping phenomenon: a Incident

ping Pinc1 is emitted to water and bubbly water interface, b
transmitted pressure of the first sequence Pinc2 passes the bubbly

water medium. Remaining pressure of the last sequences strikes, c
bubbly water and air interface by Pinc3, and d rough surface by Pinc4
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dispersion model (RDM) at low frequencies, bubble

deformation can play a major role in damping of the

entering sound. Furthermore, it causes dynamic density of

the medium and phase velocity of the passing sound.

Although the resonance dispersion of bubbly water is tar-

geted in this paper, both simple non-deformed bubbles and

RDM in bubbly water medium are examined for compar-

ison purposes. In the current case [i.e., case (b)], by

applying RDM model, the dynamic density, sound phase

velocity, and damping coefficient of the medium are

obtained via the following relations [19]:

q�bw ¼ qw
q�

q

� �
0

þ /
c0

A0

a

� �2
2x=x2ð Þ2

1� 2x=x2ð Þ2
; ð17Þ

q�

q

� �
0

¼ 1� /ð Þ= 1þ 2/ð Þ; ð18aÞ

c0 ¼
1þ 2/
2 1� /ð Þ ; ð18bÞ

b� ¼ 1� /
qwC2

w

þ /
qaC2

a

; ð18cÞ

C� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
b�q�bw

p ; ð18dÞ

where q�bw is the dynamic density of bubbly water med-

ium,a is the bubble radius, Cw and Ca are, respectively, the

speed of sound in water and air, qw and qa are, respec-

tively, water and air densities, c0 is the added mass

parameter for the spherical bubbles, / is the void fraction,

b� is the effective compressibility, C� is the RDM sound

velocity, x ¼ 2pf (where f is sound frequency) is the

angular frequency of sound, x2 is the natural angular fre-

quency of the spheroid oscillations of bubble [26] which is

determined by x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12s=qwa3

p
, where s is the surface

tension. For the considered conditions of

qw ¼ 1020 kg=m3, a ¼ 0:001 m, s ¼ 0:074 N/m.

In the current study, x2 is taken to be 933 rad/s. In

addition, A0 ¼ U0=x is the amplitude of medium oscilla-

tions, and as discussed and derived by Verestchagina and

Fedotovsky [19], U0 is the oscillation velocity of the

medium (which is hereby water). Verestchagina and

Fedotovsky [19] stated that the first term of Eq. (17) rep-

resents the dynamic density of the medium with spherical

bubbles, and the second term represents the effect of res-

onance dependence of dynamic density at frequencies close

to half of the natural frequency of the oscillation of bub-

bles. Damping coefficient of the bubbly water medium

which is the damping coefficient in case (b), can be

obtained as follows [19]:

ab ¼
g�

2

ffiffiffiffiffiffiffi
b�

q�bw

s
þ x2

x0

b1qwCw/n; ð19Þ

where x0 is the natural angular frequency of the volumetric

oscillations of bubbles [18] which can be calculated based

on the radius and depth of the bubble (for instance, its

value is around 3.25 kHz). In addition, b1 is the polytropic
compressibility of gas in bubbles, which calculation was

discussed by Minnaert [27], Nakoryakov et al. [28], and

Skudzuk [29]. It should be pointed out that higher modes of

oscillation have much lower impact on the damping of

sound in low frequencies and, therefore, have not been

incorporated in the formulation. In addition, detailed pro-

cedure for obtaining the translation velocity g� was pre-

sented by Verestchagina and Fedotovsky [19]. In addition,

parameter n in Eq. (19) consists of two items as follows:

1s ¼
qx3a3

3jP0C
¼ qðx0aÞ3

3CwqaC2
a

x
x0

� �3

; ð20Þ

1th ¼
3 j� 1ð Þ
a

ffiffiffiffiffiffiffiffiffiffi
2x=v

q ; ð21Þ

where j and v are the thermal conductivity and index of

polytropic of gas in the bubbles, respectively. Both 1s and
1th can be obtained as discussed by Verestchagina and

Fedotovsky [19]. It should be mentioned that the volu-

metric resonance does not significantly affect the phase

velocity in Eq. (18d) due to the fact that phase velocity

depends on the dynamic density of the bubbly water

medium and the effective compressibility. The volumetric

resonance affects these two parameters in time. However,

the current analysis is not relevantly close to volumetric

resonance frequencies.

Individually and independent of the considered sequences

in the acoustical system, damping coefficient for this case is

obtained. However, it is necessary to discuss the input and

output acoustic pressures of the bubbly water medium to

follow the third and fourth sequences of the considered

acoustical system. When the arriving wave PD ¼ Pinc1 in

case (a) hits the water–bubbly water interface, it is trans-

mitted to the next medium, while part of its energy is

attenuated due to the damping of case (a). In addition, the

boundary wave in case (a) can be obtained as follows:

aSVa ¼
lnPB � lnPD

ðT a �RaÞxa
¼ lnPB � lnPinc1

ðT a �RaÞxa
! PB

¼ e T a�Rað ÞxaaSVaPinc1: ð22Þ

Therefore, part of the boundary wave which is trans-

mitted to the bubbly water medium is obtained as

Pinc2 ¼ T aPB ¼ T ae
T a�Rað ÞxaaSVaPinc1

¼ T a

R1

exp ik1R1 þ T a �Rað ÞxaaSVað Þ½ �: ð23Þ

Hence, through Eq. (23), the arriving wave to the bubbly

medium can be obtained. The computed damping
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coefficient for case (b) in different volume fractions is

displayed in Fig. 5.

3.3 Damping coefficient of case (c)

In this case, the transmitted pressure of case (a) to the

bubbly water medium propagates within bubbly water with

a new angle (h1) which is caused by the difference in the

impedances. For the same reason, the wave number is

changed and it is labeled as k2. In addition, since the

arriving pressure Pinc2, while passing through the bubbly

medium, is damped due to the bubble presence, whether

according to RDM or non-dispersion models, it is sug-

gested that Pinc2 is multiplied by eab to eliminate the

interactions of all cases. Practically, cases (c) and (d)

occur, simultaneously. Therefore, the same arriving pres-

sures for these cases are considered as

Pinc3 ¼ Pinc4 ¼ eabPinc2

¼ T a

R1

exp ik1R1 þ T a �Rað ÞxaaSVa þ ab½ �: ð24Þ

On the other hand, since the impedance difference and

rough surface in cases (c) and (d) are the causes of damping

phenomenon, boundary waves of these cases will be dif-

ferent. Therefore, Prc and Prd which are, respectively,

boundary waves in case (c) as a result of impedance dif-

ference and in case (d) as a result of rough interface, are

individually obtained. Therefore, Prc for the boundary

wave of the current case is

Prc ¼ Rc h1ð Þ exp ik1R3ð Þ; ð25Þ

where Rc h1ð Þ is the reflection coefficient of case (c) which

is the result of the impedance differences between air and

bubbly water media, and R3 is the propagation range of the

boundary wave Prc. Applying Eq. (25), the damping

coefficient of case (c) can be computed as follows:

aSVc ¼
1

T c h1ð Þ � Rc h1ð Þð Þxc
� ln

Prc

Pinc3

¼ 1

T c h1ð Þ � Rc h1ð Þð Þxc
� ln

R1Rc h1ð Þ exp ik1R3ð Þ
T aR3 exp ik1R1 þ T a �Rað ÞxaaSVa þ ab½ � ;

ð26Þ

where xc is the propagation distance in case (c). By con-

sidering the real part of Eq. (26), aSVc can be obtained as

follows:

aSVc ¼ < 1

T c h1ð Þ � Rc h1ð Þð Þxc
� ln

R1Rc h1ð Þ
R3T a

� ���

� T a �Rað ÞxaaSVa þ ab þ ik1 R3 �
1

R1

� ���
:

ð27Þ

3.4 Damping coefficient of case (d)

In this case, effects of rough surface on the arriving sound

are targeted. As pointed out earlier, the arriving wave is

the transmitted sound of case (a) multiplied by eab . In

addition, boundary wave Prd can be calculated through

reflection coefficient of small perturbation method (SPM)

as follows:

Rd ¼ RPert ¼ 1� 7:682� 10�5 f 3=2h8=5rmsC
� �

: ð28Þ

Here, Rd ¼ RPert: is the reflection coefficient of case

(d), f is the sound frequency, hrms is the rms of the wave

height, and C ¼ cos h1 is the polar angle of the arriving

wave direction. In the proposed approach, hrms is equal to

the correlation distance for a random surface (h) defined by

Tolstoy [6]. Therefore, for the boundary wave Prd, the

following relation can be assumed:
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Prd ¼ R�1
4 Rdð Þ exp ik1R4ð Þ; ð29Þ

where R4 is the propagation range of boundary wave Prd.

Therefore, by applying Eq. (2), the damping factor of the

present case can be obtained as follows:

aSVd ¼
1

T d h1ð Þ � Rd h1ð Þð Þxd
� ln

Prd

Pinc4

¼ 1

T d h1ð Þ � Rd h1ð Þð Þxd
� ln

R1 Rdð Þ exp ik1R4ð Þ
T aR4 exp ik1R1 þ T a �Rað ÞxaaSVa þ ab½ � ;

ð30Þ

where xd is the total propagation range of case (d) and

T d h1ð Þ is the transmission coefficient of case (d). It is now

possible to compute the damping coefficient of each case

through the derived relations. In the following section, the

effects of different parameters involved in damping phe-

nomenon within the acoustical system will be discussed.

4 Parametric study

To apply the derived relations in the previous sections, an

acoustical system which is a representation of a real sea

condition consisting of water, bubbly water, and air media

is selected. However, for simplification purposes, the

dominant bubbles of 1 mm radius are considered to be

distributed in the bubbly medium. In this acoustical sys-

tem, a localized point source which emits a ping towards

the sea surface region causes an excitement in the envi-

ronment. As outlined earlier, the derived relations can be

applied to the range k � R. In this paper, propagation at

low frequencies 5 Hz\f\200 Hzð Þ is investigated and

by considering the speed of sound in water as 1500 m/s, k

is varied from 7.5 to 300 m. Therefore, to satisfy the

range condition, a mean value R1 ¼ 1000 m in water is

considered for all frequencies. A mean value for all fre-

quencies is considered to study the sound damping coef-

ficient in the same source condition and omit its influence

on the damping coefficient. For the current acoustical

system, the damping variations of case (a) with respect to

the frequency and in three different volume fractions are

displayed in Fig. 6. As evident in this figure, results of the

resonance dispersion are different from those of the non-

resonance dispersion model. Equation (22) is applied to

calculate the damping coefficient of case (a) in two dif-

ferent conditions: (1) considering the resonance dispersion

and (2) not considering the resonance dispersion. To

verify the accuracy of the damping values in all volume

fractions, the obtained results are compared to that of

Tolstoy’s approach. Furthermore, according to Eq. (22)

and the RDM model, due to sudden fall in sound velocity

around 50 Hz frequency, the value of the damping coef-

ficient increases abruptly. Verestchagina and Fedotovsky

[19] mentioned that resonance dispersion of the sound for

bubbly medium takes place at a frequency of about

50–60 Hz. In this frequency range, resonance dispersion

of the sound and resonance damping occur due to the

increase of progressive oscillations amplitude of bubbles

and also the increase of viscous losses at resonance of

deformation–progressive oscillations of bubbles. Conse-

quently, the peak of the damping results in the frequency

range 50–60 Hz, as seen in Fig. 6, seems reasonable. In

addition, based on the RDM, the resulting damping

coefficients of the dispersion state are hereby higher than

those of non-dispersion state due to phase velocity of the

sound and dynamic density of the bubbly medium. In

Fig. 6, it can be seen that the results of Tolstoy’s approach

are generally less than those of the considered approach in
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the current study, and also do not show the peaked

damping in the frequency range of 50–60 Hz. This might

be due to ignoring the viscous losses in the Tolstoy’s

approach [6] because, as mentioned, based on the RDM

approach, the damping due to viscous losses at resonance

of deformation–progressive oscillations of bubbles is one

of the two reasons that increases the damping coefficients

abruptly at frequency range 50–60 Hz.

In both resonance dispersion and non-resonance dis-

persion states, the Tolstoy’s approach [6] and the approach

adopted in the current study depend on the physical fea-

tures of the medium such as density of medium and sound

velocity. However, the considered approach here also

considers the attenuation due to the propagation range

which is directly involved in the damping relations. Since

in the Tolstoy’s approach [6], the propagation range is not

involved, the resulting damping coefficients from Tolstoy’s

approach are generally less than those of the current study

which considers the propagation range as a variable which

causes the attenuation.

Figure 7 illustrates the damping coefficient vs. the fre-

quency for case (c). Equation (27) is taken into account to

calculate the damping coefficients of case (c) for the res-

onance dispersion model and the none-resonance disper-

sion model. As volume fraction increases, a growth in the

damping coefficients in both resonance dispersion and none

resonance dispersion states is observed. In fact, in this case,

at the same volume fractions, the damping coefficients of

the resonance dispersion state are generally higher than

those of the non-resonance dispersion case. Figure 8

depicts the results of damping coefficient for case (d).

Since in this case, the surface roughness is an important

variable in the variation of damping coefficients, studying

its influence becomes necessary. Therefore, two different

surface values of 0.75 and 1.5 m are considered for the

surface roughness. As evident in Fig. 8, a growth in surface

roughness causes an increase in damping coefficient which

seems reasonable. This growth is seen in all volume frac-

tions and in both resonance dispersion and non-resonance

dispersion states. At the same surface roughness and
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volume fraction and at frequencies higher than half of the

natural frequency of the spheroid oscillations of bubbles

(which is hereby between 50 and 60 Hz), the damping

coefficients of the resonance dispersion state are higher

than those of the non-resonance dispersion state. Below the

mentioned frequency range, the damping coefficients of the

non-dispersion state are higher than those of the dispersion

state. These variations in the damping coefficients, as fre-

quency varies, are related to the effect of the surface

roughness. In fact, the reflection and transmission coeffi-

cients of case (d) are functions of the frequency and surface

roughness, despite the reflection and transmission coeffi-

cients of the other cases, which are functions of sound

speed and density of the medium. However, as volume

fraction increases, the results of resonance dispersion state

tend to overcome those of non-resonance dispersion state at

all frequencies. This is related to the effects of bubbly

medium (volumetric effects) which become more influen-

tial than the effects of surface roughness, as volume frac-

tion increases.

Since cases (c) and (d) occur simultaneously, the results

of Tolstoy’s approach [6] for both cases can be utilized.

Results are seen in Fig. 9. Indeed, it is possible through

Tolstoy’s approach [6] to calculate the damping coefficient

of two media with rough interface. Therefore, it is not

necessary to separate case (c) from case (d) in this

approach. Figure 9 shows the results of Tolstoy’s approach

[6] for both dispersion and non-dispersion states in two

different considered surface roughness. In addition,

through his approach, growth in damping coefficients is

observed as volume fraction and frequency increase.

As illustrated in Fig. 9a (for 0.08 volume fraction), at

100 Hz frequency and 1.5 m surface roughness, the value

of damping coefficient is 2.15 (1/m). Through considering

the resonance dispersion state, and the related damping

coefficients for 0.08 volume fraction and 100 Hz frequency

in Fig. 7a, and also for 0.08 volume fraction, 1.5 m surface

roughness, and 100 Hz frequency in Fig. 8a, it can be seen

that the damping coefficients are 1 (1/m) and 1.15 (1/m) for

cases (c) and (d), respectively. Therefore, the sum of these

values of damping coefficients is equal to the one in the

Tolstoy’s approach [6]. Considering the same conditions,

but for 0.15 volume fraction, the damping coefficients of

case (c) (Fig. 7) and case (d) (Fig. 8) are 1.175 (1/m) and

1.415 (1/m), respectively. In the same conditions (1.5 m

surface roughness, 0.15 volume fraction, and 100 Hz fre-

quency), the damping coefficient of the Tolstoy’s approach

[which is, in fact, the result of combined cases of (c) and

(d)] is 2.53. On the other hand, the sum of the two men-

tioned damping coefficients for 0.15 volume fraction is

2.58. Therefore, the final values are almost equal and the

difference might be related to neglecting the viscosity in

Tolstoy’s approach, which is an important factor as volume

fraction increases. Despite case (a), where the gap between

the resulting values from the current scheme and Tolstoy’s

approach [6] is wider, here the differences may just be due

to neglecting the viscous effects. In fact, since in case

(a) the propagation range is a lot larger than that of com-

bined cases of (c) and (d) and the Tolstoy’s approach [6]

neglects the role of propagation range, the accumulation

error in Tolstoy’s approach may occur where both propa-

gation range and viscous effects are important.

5 Analogies between the acoustical
and mechanical systems

In the previous section, the calculated damping coefficients

of the acoustical system in four different cases were pre-

sented, and results were compared to those through
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Tolstoy’s approach [6]. However, to compute the total

damping coefficient of the system, analogies between the

acoustical and mechanical systems are studied. For the

mechanical system arrangement, the dampers are consid-

ered as illustrated in Fig. 10. In the considered acoustical

system, sound attenuation due to the water and bubbly

water interface is represented by a1 in the mechanical

system. In the next sequence, sound attenuation in a bubbly

water medium is symbolized by a2 in the mechanical

system. These two sequences occur one after another and

the dampers a1 and a2 are arranged in a series in the

mechanical system. On the other hand, since cases (c) and

(d) occur simultaneously, the dampers a3 and a4 in the

mechanical system that represent air–bubbly water inter-

face and surface roughness attenuations in the acoustical

system are positioned in a parallel arrangement. As dis-

cussed in the previous section, this arrangement might be

appropriate since the resulting equivalent damping coeffi-

cient for the combined cases of (c) and (d) showed good

agreement with that of Tolstoy’s approach. Therefore, the

considered acoustical system is identical to a mechanical

system which is shown in Fig. 10.

If the mechanical system is excited by a sudden and

momentary force F, the equivalent damping of the system

can be obtained as

aeq ¼
a1a2

a1 þ a2
þ a3 þ a4ð Þ: ð31Þ

Through the analogies made between the acoustical and

mechanical system, the total damping coefficient of the

acoustical system is to be calculated using damping coef-

ficients of the considered cases. Applying Eq. (31), the

predicted equivalent damping coefficients of the acoustical

system vs. frequency are shown in Figs. 11 and 12 for both

surface roughness of 0.75 and 1.5 m. Figure 11 shows the

difference between the damping coefficients for dispersion

and non-dispersion states and the resulting damping coef-

ficients in the resonance dispersion state are generally

higher. Furthermore, in the damping curves of dispersion

states, crests are seen in the spectral region of 50–70 Hz.

This happens due to the sudden reduction of the sound

speed in this spectral region [19]. These crests are quite

visible in Fig. 12, too. In both roughness heights of 0.75

and 1.5 m, generally damping coefficients grow within the

acoustical system when the frequency and the volume

fraction increases.

As seen in Fig. 5, as volume fractions increase, the

difference between the resulting damping coefficients from

the RDM scheme and those of experimental tests grows.

However, in the current study, volume fractions of 0.08,

0.12, and 0.15 are considered for which bubbles of radius

1 mm are distributed. As discussed by Medwin and Clay

[18], the probability of the existence of bubbles of radius

1 mm in nature might not be too much. In fact, Medwin

and Clay [18] mentioned that the dominant bubble radius

generated from natural phenomena such as breaking waves

Fig. 10 Mechanical system excited by momentary exciting force F.
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and wind blow is in the order of microns. In addition, as

outlined by Medwin and Clay [18], it might be possible to

study the marine environment by considering the dominant

bubble radius and consequently calculate the resulting

volume fraction. Therefore, the assumed volume fractions

in this study, based on the dominant bubble radius, might

be the most extreme cases for the bubble’s population and

volume fractions in reality, since the volume fraction in

nature might be less than or at best equal to (in extreme

cases) the ones considered here. Therefore, the error due to

an increase in the volume fractions in the real conditions

may not happen since the volume fractions are probably

less than the ones considered here. However, as mentioned

in the previous sections, some inexorable errors may occur

in the final predicted results due to the assumptions such as

considering a dominant bubble radius representing all

bubbles of the bubbly medium. Nevertheless, through

considering more realistic radii and distributions for bub-

bles, probable accumulation of errors might be addressed.

6 Conclusions

A new version of power-law attenuation is presented and

applied to calculate the damping coefficients due to volu-

metric and scattering attenuation in an acoustical system

which represents a real-sea condition. The acoustical sys-

tem consists of water, bubbly water, and air media. To

calculate the total damping inside the acoustical system,

sound propagation within the system is divided into four

different sequences and through the derived power-law

attenuation relation, the attenuation relations for each

sequence are derived, separately. The calculated damping

coefficients resulting from the derived relations in each

sequence are compared with Tolstoy’s [6] results and

reasonable agreement is achieved. In the resonance dis-

persion states, a peak is observed in the damping results at

the frequency range of 50–60 Hz for all cases. In addition,

when the interface of two media is smooth, the results of

the resonance dispersion state are higher than those of non-

resonance dispersion state at all frequencies. However,

when the interface is rough, it is observed that below half

of the natural frequency of the oscillation of bubbles, the

results of resonance dispersion are higher than those of

non-resonance dispersion state. Also, above half of the

natural frequency range of the oscillation of bubbles, the

results of non-resonance dispersion state are higher than

the results of resonance dispersion state. Finally, after

obtaining the damping coefficients of each sequence

though the analogies of mechanical and acoustical systems,

the total damping coefficient of the acoustical system is

predicted at low frequencies in both resonance dispersion

and non-resonance dispersion states. Results of total

damping coefficient vs. frequency at two different surface

heights and three different volume fractions are presented.

In the proposed modeling for the bubbly medium, a sim-

plified model is considered in which bubbles of 1 mm

radius are distributed in water and the vertical incident

angle for the incident sound to the sea surface is taken into

account. This can be considered as the first step before

solving the very general problem of 3D spatial distribution

of bubbles and wide distribution of sizes. Future work may

also address more complicated conditions such as studying

the influence of incident angles and propagation range on

the attenuation of sound at sea surface.
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