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1  Introduction

One of the fundamental problems in musculoskeletal bio-
mechanics is estimating the muscle forces of different 
motor tasks. Mathematical models for muscle mechanics, 
such as Hill-type viscoelastic models, can be used for this 
purpose. Alternatively, microscopic models are based on 
cross-bridge mechanics, as proposed by Huxley [1]. Sev-
eral muscle model formulations have been proposed after 
that in the literature [2–12].

Most of the studies mentioned above do not include the 
reflex feedback system in the control of muscle contraction. 
Naves [13, 14] used a muscle dynamics formulation that 
takes neural feedback reflexes into account. It is based on 
Winters’ muscle-reflex model to simulate a standing pos-
ture [4, 5]. The model behavior was compared to data col-
lected from an analogous situation with volunteers standing 
on a force platform. The results showed that the dynamic 
behavior predicted by the model was compatible with 
experimental data [15]. If used in forward dynamics simu-
lations, reflex models are likely to improve low-intensity 
spring-like responses of equilibrium positions that occur in 
daily life activities such as walking or standing [5].

Electromyographic signals (EMGs) can be combined 
with muscle models to estimate in vivo muscle forces not 
invasively. This approach is known as EMG-driven mode-
ling [16]. The EMG signal is rectified, low-pass filtered and 
normalized by the maximum voluntary contraction (MVC-
EMG), generating an input signal to the muscle model. The 
ordinary differential equations of muscle mechanics are 
integrated numerically, resulting in a set of dynamic states. 
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Such states include muscle forces. They are then multiplied 
by the respective moment arms, resulting in estimated joint 
torques. Such torques can be simultaneously measured by a 
dynamometer. Both estimated and measured torques can be 
compared [9]. This approach allows an indirect validation 
of the accuracy of muscle models.

Physiological feedback elements contribute significantly 
to muscle force generation at low contraction levels, such 
as standing upright, etc. [4, 5]. In the context of muscle 
biomechanics, motor tasks commonly investigated are fre-
quently associated with moderated or high muscle contrac-
tion levels. In general, they are represented by an EMG 
envelope as input to muscle models.

The EMG envelope extraction procedure, which aims to 
determine muscle excitation, requires a digital low-pass filter 
with a very low cut-off frequency (see Sect. 2.2). A possible 
reason for the decrease in the accuracy of the EMG-driven 
model, at low force levels, may be related to a loss of neu-
ral drive information generated by reflexes. Such reflexes, as 
calculated by Winters’ model, produce an additional excita-
tion signal at low contraction levels which is likely to increase 
the excitation input to the EMG-driven model and attenu-
ate the excessive filtering used for the extraction of the sig-
nal envelope. From the physiology point of view, the EMG 
signal already contains the reflex component; however, we 
have hypothesized that this strategy will work as feedforward 
controller, able to compensate for the low excitation error 
observed in [17], using a physiologically-based function.

The objective of this study is to evaluate whether the 
addition of reflex feedback components in muscle dynam-
ics influences the accuracy of its force/torque prediction 
when using the EMG-driven model.

2 � Materials and methods

2.1 � Muscle models: basic description

Figure  1 shows a simplified block diagram of Winters’ 
muscle-reflex model [4, 5]. Hill-type muscle models take 
only extrafusal fibers (EF) into account, while Winters’ 

model includes the dynamic properties of intrafusal fibers 
(IF). Such fibers present muscular length sensors (mus-
cle spindles) and are modeled similar to Hill-type muscle 
models, containing a contractile element (CE) and a series 
elastic element (SE). However, they work only as a length 
sensor that generates no contraction forces. The model also 
includes a Golgi tendon organ muscle force sensor. Signals 
from both sensors (nsp for spindle and ngt for Golgi) are a 
feedback to the spinal cord, resulting in the neural reflex 
signal nrf, which modulates the descending efferent con-
traction command nin, assumed here as the EMG envelope. 
Neural reflexes modulate the excitation level up to 10% of 
the Maximum Voluntary Contraction (MVC). The reflex is, 
therefore, able to compensate for small length variations 
(stretch) or force production [20] and is especially suitable 
for posture control simulations. The whole model has five 
first-order differential equations and dynamical states: exci-
tation (ne), activation (na), extrafusal contraction dynamics, 
intrafusal contraction dynamics, and attachment dynamics.

Excitation dynamics takes the feedback signals from mus-
cle spindles, Golgi tendon organs, and Renshaw cells into 
account. Activation dynamics time constants vary in function 
of activation, while the Zajac model depends on excitation. 
The model also includes attachment dynamics, simulating 
force drops caused by a breakdown of cross-bridge bonds 
after stretch. Regarding the force–length relation, the maxi-
mum value for the active part shifts to the right (up to 20%) 
with a decreasing activation. The state variables of contraction 
dynamics are the lengths of series elastic elements (SE), both 
for extrafusal (xse) and intrafusal (xseif) fibers. Muscle force 
(Fm) is found by an exponential equation (SET) that takes into 
account the relation “toe” region of the SE force x length.

The neural feedback reflex signal is given by

which depends on spindle (nsp) and Golgi (ngt) tendon 
organs reflexes:

(1)

nrf = spk

[

nsp −
(nin − nr)

2

]

+ gtk
(

nr − ngt
)

+ rck(nr − ne)

(2)nsp =
1

sprng

[

nsp0 + spkv
dnsp0
dt

]

Fig. 1   Simplified block 
diagram of the muscle-reflex 
model
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where nsp0 = e
−

[

xse−IF−spoo
spsh

]2

.
In the equations above, spk, gtk, rck, spkv, spoo, gtoo, spsh, 

and gtsh are the standard values for transducer gain and sen-
sitivity, while gtrng and sprng are physiological range values 
varying from 0.0 (strain representing zero firing) to 0.04 
(peak sensor firing). To simulate the extrafusal-only Win-
ters’ model, nrf is zeroed. For a sensitive analysis of Win-
ters’ model, see [8].

Menegaldo and Oliveira [9] formulated a Hill-Type 
EMG-driven musculotendon model based on Zajac [3] 
including parallel elastic and damping elements to improve 
numerical performance. This model is a modification of 
the Zajac model [3], which is mathematically simpler than 
Winters’ and will be called Zajac’s model modified by 
Menegaldo (ZM) from now on (Fig.  2). Therefore, as an 
intermediate step, the complexity of activation and con-
traction dynamics formulations will be increased (ZM to 
W-EF) and tested before including the reflex. Compared 
to Winters’ model, it is similar to the extrafusal fibers part 
only although with a different formulation. The ZM model 
has been used in some publications, and its accuracy for 
torque estimation has been assessed experimentally [18]. 
The most relevant aspects of the Zajac model rely on a 
generic and non-dimensional set of variables and param-
eters, which can be defined for any skeletal muscle of the 
body. This model was the basis for the development of the 
SIMM (Software for Interactive Musculoskeletal Mode-
ling) and its open-source counterpart, OpenSim [21], which 
is becoming a standard in musculoskeletal biomechanics 
modeling studies. According to Menegaldo and Oliveira 
[9], a muscle can be modeled using a system of three dif-
ferential equations:

where a is neural activation, u is excitation input signal, k1 
and k2 are time constants, FT is tendon force, kT is tendon 
stiffness, vMT is musculotendon velocity (an input variable), 
vM is contractile element velocity, α is the pennation angle, 
and LM is contractile element length. The ~superscript 
means that state variables are normalized and non-dimen-
sional. The Hill hyperbole (FT × vM) is scaled by activation 
level and force–length FM × LM scales of maximum muscle 
force. The first line of Eq.  (4) is activation dynamics [22] 
and the second line represents contraction dynamics. The 
third is an auxiliary equation for explicitly integrate muscle 
velocity, obtaining muscle length to compute a force–length 

(3)
ngt =

1

gtrng
e
−

[

xse−gtoo
gtsh

]2

(4)

ȧ = (u− a)(k1u+ k2)

˙̃
FT

= k̃T
(

ṽMT
− ṽM cosα

)

˙̃
LM = ṽM

relation. Contraction dynamics requires expressing muscle 
velocity as an algebraic function of tendon force, activa-
tion, and muscle length.

To evaluate the EMG-driven problem, the same pro-
cessed EMG signals are considered as input both by Win-
ters’ (nin) and ZM (u) models, as described in the next 
section. In addition, aiming to maintain a compatibility 
between the models for comparison purposes, excitation 
and activation dynamics were included in all simulated 
models. In this way, it was guaranteed that reflex modeling 
was the only different characteristic between them. For 
the extrafusal part of Winters’ model, both reflex and non-
reflex versions, as well as the ZM model, musculotendon 
parameters from OpenSim two-legs model [21] were used. 
In this study, no scaling of parameters or subject-specific 
technique was applied. The parameters’ list includes maxi-
mum isometric force, moment arm, tendon slack length, 
optimal muscle length, pennation angle, among others. Rel-
ative to the reflex part of the Winters’ model, we adopted 
default values from [4].

2.2 � Experimental setup

The isometric plantar flexion torque produced by the tri-
ceps surae muscle was chosen for the present study. Sur-
face electromyography (EMG) signals were collected from 
12 healthy young adult males. The experimental protocol 
was approved by the Ethics Committee of the University 
Hospital of the Federal University of Rio de Janeiro (Pro-
cess no. 031/07 HUCFF).

Subjects laid prone on a Norm/Cybex™ Dynamometer, 
with knees extended and the ankle at the neutral position 
(90°) (Fig.  3). The right foot was firmly fixed to the foot 
adaptor. The familiarization session consisted of submaxi-
mal plantar flexion contractions followed by one maximal 
effort and step trials. The isometric plantar flexion torque 

Ac�va�on
dynamics

u

FM x LM Contrac�on
dynamics FT

∫
ve LM

LMT

Tendon mechanics

KTd/dt
vMT

a

Fig. 2   Simplified block diagram of the Zajac Hill-type model formu-
lated by Menegaldo et al. (2009) (ZM model)



3272	 J Braz. Soc. Mech. Sci. Eng. (2017) 39:3269–3276

1 3

associated with the MVC was collected during 5  s twice, 
with a 2-min rest between tests. The highest value was 
selected as the maximum subject torque. Each volunteer 
was instructed to follow a protocol consisting of two 10-s 
steps with submaximal isometric loads of 20 and 60% of 
the individual MVC, separated by 30-s relaxing intervals. 
This contraction range represents two different strategies of 
the nervous system to control muscle force. In 20% MVC, 
raising the motor unities (MUs) recruitment rate is the pref-
erable strategy. On the other hand, at 60% MVC, approx-
imately all MUs are already recruited, and the firing rate 
becomes the control option [23]. The intermediary levels of 
MVC represent these two strategies in different extends.

A feedback display of the actual torque output was 
provided to the subject, who attempted to match it to a 
masking protocol. Torque signal and surface EMG were 
synchronously collected using an electromyographic equip-
ment (EMG 800C—EMGSystem™, Brazil), with a com-
mon-mode rejection ratio (CMRR) of 106 dB, an analogi-
cal band-pass filter of 10–500 Hz, a 2 kHz sampling rate, 
and 16 bits A/D converter. Ag/AgCl pre-gelled bipolar 
electrodes were positioned on the gastrocnemius medialis 
(GM), gastrocnemius lateralis (GL), soleus (SOL), and 
tibialis anterior (TA) muscles, according to SENIAM rec-
ommendations [24], after skin preparation. The reference 
electrode was positioned on the left lateral malleolus.

The digitized EMG signal from each muscle was ini-
tially band-pass filtered (10–350  Hz) to remove artifacts, 
then rectified, and low-pass filtered with a second-order 
Butterworth filter (2  Hz cut-off frequency). EMG-driven 

models require the normalization of the input signal by the 
mean EMG value obtained during 1  s of MVC torque x 
time curve when the maximal torque was achieved. Hence, 
the resulting envelope signal was normalized by the maxi-
mum value of the EMG-MVC signal and considered as the 
excitation input for all experimented muscle models.

2.3 � Simulation of EMG‑driven models

The analysis has been carried out using the muscle-reflex 
model proposed by Winters [4, 5]. It was simulated in 
two situations using the same set of EMG data: (1) with-
out reflex feedback, working as a Hill-type muscle model 
(Winters’ extrafusal model—W-EF) and (2) with reflex 
feedback, providing a reflexive model (Winters’ intrafusal 
model—W-IF). The EMG signal is directly related to the 
α-motoneuron activity, which is an output for spinal cord 
feedback computation based on the reflex information. In 
addition, we compared the torque prediction accuracy of 
Winters’ formulations to our own Hill-type muscle model 
as performed in the previous works [9], which does not 
include reflex.

The excitation signal is considered as an input to mus-
cle differential equations. The equations were converted 
to Simulink Blocks and integrated numerically using a 
third-order Runge–Kutta Matlab/Simulink R2009a imple-
mentation (Core 2 Duo P8600 2.4  GHz, 4  GB RAM, 
Windows 7). Integration step size was fixed at 0.0005 s, 
which is compatible with the EMG sampling. The simula-
tion time was approximately 60 s per running. The force 

Fig. 3   Position of the subject 
on the experimental set. a 
Visual feedback with the actual 
ankle torque superimposed to a 
mask with the desired torque is 
shown to the subject. b Position 
of the EMG electrodes on the 
triceps surae
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produced by a muscle and transmitted by its tendon is a 
function of maximum muscle force, excitation input, ini-
tial conditions, muscle length, degree of activation, pen-
nation angle, and several other anatomical and functional 
parameters [9]. If the muscle is excited to the maximum, 
the highest tendon force will be produced regarding the 
actual muscle length, velocity, and additional operating 
conditions. One must be aware that, despite only iso-
metric contractions are being addressed here, the muscle 
contractile element shortens at the expense of the length-
ening of the respective tendon to keep the musculotendon 
length the same. The torque output can be determined 
by summing each simulated muscle force multiplied by 
its respective ankle angle moment arm, as presented by 
Eq. (5):

where TTotal is total ankle torque, rGM, rGL, rSOL, and rTA 
are ankle joint moment arms of GM, GL, SOL, and TA, 
respectively, and forces FGM etc. and muscle torques TGM 
etc.

The simulation was divided into two stages. First, 
the extrafusal part of the Winters’ model was iso-
lated and simulated, resulting in a typical Hill-type 
muscle model. Second, extrafusal and muscle-reflex 
(extrafusal  +  intrafusal) Winters’ models were imple-
mented and tested.

For the first stage, the activation signal na, obtained by 
the rectified and normalized EMG (nin), was assumed as 
the input signal for the W-EF model (see Fig. 1). The same 
signal was used to integrate the ZM model. To evaluate the 
role of the reflex system, the W-IF model was simulated 

(5)
TTotal = rGMFGM + rGLFGL + rSOLFSOL − rTAFTA

= TGM + TGL + TSOL − TTA

with inputs from both EMG signal envelopes considered in 
the first stage and the components generated by reflex sys-
tem modulations, which depend on the feedback from the 
Golgi tendon and spindle sensors.

The concordance between torque curves measured by 
the dynamometer and curves estimated by each EMG-
driven model was evaluated by the Root Mean Square Error 
(RMSE) between the two curves:

where TM is dynamometer-measured torque, TS is simu-
lated torque, N is number of samples in the time series, and 
TMMAX is maximum torque measured by the dynamometer 
at MVC for each subject.

The differences in the average %RMSE among ZM, 
W-EF, and W-IF, for each step contraction, were analyzed 
using ANOVA with repeated measures and Tukey’s post 
hoc test. Differences between each model for 20 and 60% 
MVC were tested using the Wilcoxon test after verifying 
normality using the Shapiro–Wilk test at a 95% (p = 0.05) 
significance level.

3 � Results

The root mean square error (%RMSE) between torques 
estimated by the dynamometer-measured and EMG-driven 
model is shown in Table 1 for 20 and 60% of MVC con-
traction intensity. All RMSEs from the three models at 20% 
MVC were significantly lower than the respective values 
for the 60% MVC step (p = 0.0005).

(6)

%RMSE =
1

TMMAX

√

∑N
i=1 (TM(i)− TS(i))2

N
× 100%

Table 1   %RMSE of ankle 
torque estimates between 
dynamometer-measured and 
model-estimated

ZM Zajac/Menegaldo model, W-EF Winters’ model, extrafusal-only, W-IF Winters’ model, muscle reflex

Subject 20% MVC 60% MVC

ZM W-EF W-IF ZM W-EF W-IF

1 6.84 8.04 5.67 9.54 15.79 44.52

2 2.53 3.34 2.75 8.66 21.35 55.90

3 6.56 8.12 6.71 14.99 29.52 53.64

4 13.28 14.53 11.31 16.54 14.77 18.71

5 6.57 7.79 5.77 24.49 20.49 11.92

6 18.31 18.50 16.00 48.83 47.20 40.45

7 17.41 18.99 15.58 21.31 21.06 12.73

8 10.19 10.02 7.34 17.00 13.30 31.51

9 12.68 13.67 10.85 36.29 34.57 23.81

10 19.08 20.53 17.53 51.74 53.92 48.83

11 4.64 4.62 5.46 11.03 14.42 26.66

12 7.28 7.86 5.87 15.18 12.99 27.84

Mean ± SD 10.44 ± 5.62 11.33 ± 5.77 9.23 ± 4.89 22.96 ± 14.79 24.94 ± 13.72 33.04 ± 15.38
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The error levels associated with the 20% MVC con-
traction were statistically different among the tree mod-
els (p = 0.0001). W-IF was the best torque predictor. The 
ZM model resulted in significantly reduced errors when 
compared to W-EF (p < 0.05).

At 60% of MVC, the RMSE was similar among mod-
els. In Fig.  4, it is possible to observe a sample (one 
subject) of the torque measured by the dynamometer 
(continuous gray line) and the estimates from ZM and 
W-EF models. Figure 5 shows a graphical comparison of 
the measured torque and the estimates for the W-IF and 
W-EF models, also for one subject.

4 � Discussion

The discussion evolves to determine whether introduc-
ing the reflex feedback (W-IF) could provide better mus-
cle force estimations. Our group has extensively used the 
ZM model in numerous EMG-driven model studies [18], 
and the comparison with the performance of Winters’ 
model will be helpful to assess whether this model is still 
valid or should be replaced by a more sophisticated model 
such as Winters’ model. The comparison between the two 
extrafusal models (ZM and W-EF) resulted in an approxi-
mately 11% error, with a better relative accuracy for 20% 

Fig. 4   Measured torque and estimations from the extrafusal-only muscle models: Winters’ (W-EF) and Zajac/Menegaldo (ZM) models

Fig. 5   Measured torque and estimates from reflex (W-IF) and non-reflex (W-EF) Winters’ models
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MVC when compared to the 60% MVC (all compari-
sons between intensities for the three model versions had 
p < 0.05). The ZM model was most accurate. In Fig. 4, it is 
possible to observe that the estimated torque curves of the 
models oscillate around the dynamometer-measured curve. 
However, the W-EF model presented greater oscillation 
amplitudes when compared to the ZM model. For the reflex 
model (W-IF), the accuracy of torque estimation increased 
by approximately 2% about the W-EF for the 20% MVC 
step. For 60% MVC, statistically equivalent error levels 
were observed for W-EF, W-IF, and ZM (Fig. 5).

An increase in statistical accuracy was observed when 
the reflex system was included in the low-level activation 
case (20% MVC). This was not observed for 60% MVC, 
which is an interesting finding. Actually, the reflex system 
plays a significant role in lower levels of muscle activation 
related to postural control reflexes [4]. For greater activa-
tion levels, the relative contribution of the reflex system is 
expected to decrease progressively [25]. This is also in line 
with classic studies that documented in detail how open-
loop muscle behavior differs from systems that include 
autogenic reflex activity, especially for small force levels 
[26]. Therefore, the closed-loop reflex formulation pre-
sented here should be considered primarily for force esti-
mation of small muscle contraction levels. Regarding the 
numerical behavior, no significant increases in computa-
tional cost or numerical instability were observed for the 
reflex model.

The apparent drift related to the dynamometer measure-
ment, shown in Figs.  4 and 5, can be associated with the 
remaining passive plantar flexor torque when the ankle is in 
neutral position [27]. The amount of muscle actuation pro-
vided by reflex mechanisms is likely to increase in a joint 
neutral position [25], which was adopted here. Thus, for 
model estimation, the residual torque can be associated with 
the EMG activity of the remaining muscle tonus. Some lim-
itations of this analysis should be pointed out. Bipolar EMG 
is prone to several sources of errors [28]. No technique to 
adjust individual muscular parameters was used, only litera-
ture average values. Only two levels of isometric contrac-
tions were analyzed. The contribution to the plantar flexor 
torque by muscles other than triceps surae was not consid-
ered. Because they are deep muscles, the access to them by 
EMG would require an invasive EMG. The small foot dis-
placement provided by the fixing dynamometer apparatus 
and the deformation of body soft tissue and dynamometer 
seat cushion was not considered. Regarding the applicability 
of the reflex model, when muscle activity is high, the esti-
mation of force becomes less accurate than the extrafusal-
only model. For improving force estimation accuracy, from 
the limitations mentioned above, obtaining subject-specific 
parameters, from medical imaging, functional tests, scaling, 
etc. is the most efficient way [19].

5 � Conclusion

It was possible to observe that, for low-level muscle 
activation, reflex contributes to a more accurate muscle 
force estimation based on simulations of the Winters’ 
reflex model for the triceps surae in studies on EMG-
driven model when compared to the extrafusal-only Hill-
type models simulated here. Such increase in accuracy 
has been inferred indirectly from isometric ankle torque 
curves measured with the ankle in the neutral position. 
This study points towards a possible direction for a new, 
hybrid and more realistic muscle model incorporating the 
reflex system, being the dependence on the reflex action 
a function of muscle activation level. Such model would 
be based on ZM contraction dynamics, which has shown 
to be more accurate than W-EF. However, the reflex part 
from W-IF would be incorporated. In this case, Eqs.  (2) 
and (3) should be multiplied by a shape factor that 
decreases with increasing activation level.
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