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1 Introduction

The torsional vibration of drill-strings is one of the most 
destructive types of vibration present in drilling operations 
and if lateral and axial vibrations are small, a pure torsional 
model is able to represent the main features of the nonlin-
ear drill-string dynamics [30]. The stick–slip phenomenon 
is considered the worst case in torsional vibration [1, 20, 
42] and is commonly associated to the non-linear relation-
ship between friction torque and the angular speed at the 
bit [17]. Given its origin, the stick–slip only occurs when 
the bit is in contact with the rock [1, 20, 42].

A variety of models have been developed to study the 
torsional vibration of drill-strings. In [2, 4, 7, 13, 39], the 
torsional vibration is modeled using a distributed param-
eter approach. On the other hand, the drill-string was 
modeled as a torsional pendulum in a lumped param-
eter approach in [14, 24, 29], with usually one or two 
degrees of freedom (DOF). Recently, the torsional pendu-
lum model was used in [9, 18, 36, 43] and is the strategy 
adopted in this article.

The top rotational system is responsible for imposing the 
rotational speed of the drill-string and is sometimes mod-
eled as a inertia with a control system [5, 23, 25] or, as in 
this paper, using the boundary condition of constant top 
rotational speed [17, 28, 29, 36, 42, 43].

The bit–rock interaction also plays an important role 
in every model in the literature. The uncoupled tor-
sional vibration analysis usually use a friction model to 
include the bit–rock interaction into the model. Some 
authors use the dry friction model [17, 36, 43], while 
others include a decaying function in the slip phase 
[25, 37, 38]. The approach with the decaying function 
is observed in experimental results given in [5, 30]. 
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Recently, Liu Hong et. al. [16] used the torsional pen-
dulum modeling together with a decaying model for the 
torque on bit in order to estimate downhole conditions 
based on the measurements on the surface using Kalman 
estimators. A similar model is also used in [41] to design 
a robust output-feedback control to eliminate stick–slip 
oscillations.

In contrast to this approach, a different model was 
proposed by Detournay et. al. [10, 11] in which the 
bit–rock interaction is decomposed into cutting and 
frictional components. This approach is more common 
for the analysis of axial–torsional coupled vibration 
and was recently used in [3, 6, 9, 18]. Another model 
for the bit–rock interaction was recently proposed 
by Franca [12] for bits under rotary and percussive 
actions.

The bit–rock interaction is a source of many uncertain-
ties in the drilling operation [6]. Hence, stochastic mod-
els have been developed to quantify these uncertainties 
such as the works by Spanos and Chevallier [35], Kot-
sonis and Spanos [21] and Ritto and colleagues [31–34]. 
The uncertainties were also taken into account in the 
dynamics of horizontal drill-strings in [8, 31]. The sto-
chastic models are very important because they give us a 
lot of information that deterministic models are incapable 
of giving.

Concerning the drilling operation, it should be 
emphasized that the drill-string has to pass through dif-
ferent rocks to reach the petroleum reservoir, as illus-
trated in Fig. 1. The fact that rocks may present differ-
ent mechanical characteristics as the drill-string moves 
downwards may be taken into account by means of an 
effective model associated to the bit-rock interaction. 
The functions adopted in this paper for rock transition 
were inspired by the measurements in [15, 26, 27]. To 
the authors’ best knowledge, such modeling has not been 
done yet.

The main contributions of this to work are (1) to 
approach the analysis of drill-string torsional dynam-
ics when there is a passage from a soft to a harder rock 
layer, and (2) to assess the impact of uncertainties (in the 
bit–rock interaction model) on the drill-string dynamics. 
A simple 1-DOF lumped parameter model, based on [5, 
25], is considered, and three different transition scenarios 
for the passage from a soft to a harder rock layer are pro-
posed and analyzed.

In the first part of this paper the deterministic sys-
tem is depicted, then a stochastic model is developed in 
order to assess the impact of uncertainties on the drill-
string dynamics. In the second part, the numerical results 
are presented and analyzed and, finally, the concluding 
remarks are made in the last section.

2  Deterministic model

A drill-string consists basically of a Bottom Hole Assem-
bly (BHA) and drill pipes that are attached to each other. 
The BHA is composed of the bit, stabilizers, and heavy 
pipes known as drill collars. Also, drilling mud is injected 
at the top of drill-string to clean, cool down and lubricate 
the bit, among other functions. The rotation is applied at 
the top of the drill-string by the top drive.

The mathematical model proposed in this paper is 
based on the work by Navarro-Lopez and Suarez [25] and 
is illustrated in Fig. 1. The drill-string is modeled as a 
torsional pendulum, and the bit–rock interaction is mod-
eled as a friction torque at the bit.

This model has some simplification assumptions: (1) the 
borehole and drill-string are aligned in vertical position; 
(2) axial and lateral motions can be neglected; (3) the top 
rotational speed is constant; (4) a viscous damping model 
is considered to model the drilling mud friction, and any 
other friction (among pipes, connections etc).

The drill pipes are represented as a torsional spring and they 
connect two inertias, representing the top rotary system and 
the BHA. The drilling mud is represented by the viscous fric-
tion at the bit. The bit–rock interaction is modeled by a friction 
torque. The equation of motion is then presented in Eq. 1.

where � is the constant speed imposed at the top; k and c are 
the stiffness and damping of the torsional spring, respectively; 
Jb is the bottom inertia and is the sum of the BHA inertia with 
1/3 of the drill pipes inertia [5, 25]; cb is the viscous param-
eter used to represent the mud and Tfb if the torque on bit. The 
bit-rock interaction model considered here was first presented 
in [25] and is a combination of the switch model [22] and 
the dry friction model with a zero velocity band (Karnopp’s 
model) [19]. This model was chosen due to the fact that it can 

(1)Jbθ̈b + c(θ̇b −�)+ k(θb −�t) = −cbθ̇b − Tfb ,

Fig. 1  Model sketch
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provide predictions in accordance with measured data [5]. 
Thus,

where Teb is the reaction torque in equilibrium that must over-
come Tsb to make the bit rotate; µcb and µsb are the Coulomb 
and static friction coefficients that contribute to Tcb and Tsb 
friction torques, respectively; Tb is the friction torque when the 
bit is rotating; Wob is the weight on bit; Rb is the bit radius; 
γb is a positive constant used to model the transition between 
static and Coulomb friction torque by an exponential law and; 
sign(x) is a function that returns 1 if x is positive and −1 if x 

(2)Tfb =







Teb(t, θ̇b, θb), θ̇b < Dv and |Teb| < Tsb

Tsbsign(Teb), θ̇b < Dv and |Teb| > Tsb

Tbsign(θ̇b), θ̇b > Dv

,

(3)Tb = Tcb + (Tsb − Tcb)e
−γbθ̇b ,

(4)Teb(t, θ̇b, θb) = c(�− θ̇b)+ k(�t − θb)− cbθ̇b ,

(5)Tsb = RbWobµsb ,

(6)Tcb = RbWobµcb ,

is negative. The friction torque is plotted against bit rotational 
speed in Fig. 2 for the model parameters shown in Table 1.

The first line of Eq. 2 represents the stick regime 
where the bit is stuck and the reaction force is not large 
enough to overcome the static friction torque. As the top 
rotary system continues to rotate, drill-string accumulates 
energy and increases the reaction torque until it reaches 
the static friction torque and the bit starts moving. Due to 
numerical problems, a zero velocity band is specified in a 
small enough neighborhood of θ̇b = 0 which is character-
ized by the parameter Dv as shown in Eq. 2. The second 
line of Eq. 2 specifies the stick–slip transition where the 
friction torque is equal to Tsb. The last line is about the 
slip regime and presents an exponential behavior between 
static and Coulomb friction torque.

The numerical values for the parameters used in this 
model are presented in Table 1.

Given that the friction torques Tsb and Tcb are essen-
tial for the bit-rock interaction model, and they mainly 
depend on the rock properties, they are chosen to model 
the passage from a soft to a harder rock layer during drill-
ing operation.

In fact, the friction torques transition takes place as the 
drill-string moves downwards. Therefore, these changes 
can be modeled as a function of depth, as illustrated in 
Fig. 1. Nevertheless, for the sake of simplicity, this con-
dition is modified, such that the friction torques are writ-
ten as functions of time, i.e., Tcb(t) and Tsb(t). Three mod-
els are proposed to model the transition from a soft to a 
harder rock layer: step, linear and hyperbolic tangent (tan 
h). The step function is the sharpest one, followed by the 
linear and then the tanh function.

The friction torques transition in time is shown in 
Fig. 3. The static friction torque goes from Tsb1 = 6 N m to 
Tsb2 = 8 N m, and the Coulomb friction torque goes from 
Tcb1 = 3 N m to Tcb2 = 5 N m. These values were chosen 
arbitrarily due to the lack of an effective model that uses 
rock characteristics measured in field and the lack of field 
data in which both rock characteristics and dynamic data 
are measured. But, despite the arbitrarity of the choice, 
the models proposed here appears to be qualitatively good 
enough to be adjusted to fit rock strength experimental data 
as the ones presented in [15, 26, 27], for example. The ini-
tial time for the transition is set to t1 = 30 s to let the sys-
tem enter the steady state, and transition is completed at 
t2 = 70 s, i.e., the transition takes 40 s. The final values for 
both friction torques are the ones given in Table 1.

3  Stochastic model

The stochastic model allows us to model uncertainties 
and evaluate their impact on the systems response. As 

Fig. 2  Friction torque at the bit

Table 1  Parameters values

Variable Value

Jb 0.0318 kg m2

c 0.0001 N m s/rad

cb 0.03 N m s/rad

k 0.073 Nm/rad

Tcb 5 N m

Tsb 8 N m

γb 0.9

� 20 rad/s

Dv 10−6 rad/s
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stated before, the drilling operation is a process full of 
uncertainties, specially when it comes from the interac-
tion of the drill-string with the rock. The magnitude of 
the static and Coulomb torques, as well as the time where 
the layer transitions occur, are modeled as random vari-
ables (boldface). As a consequence, the static and Cou-
lomb torques become stochastic processes.

It is assumed that the supports of the variables are 
known and they satisfy the following conditions: (1) only 
positive values in a compact support are allowed for all 
variables; (2) coulomb friction torque (Tcb) is always less 
than static friction torque (Tsb) and; (3) the initial time of 
transition (t1) is always less than the end time (t2). The 
mean and variance are also known. The mean values were 
set as those in Sect. 2 and are equal to the mean of the 
support limits. The variance is such that the coefficient of 
variation is 5% and is less than the variance for a uniform 
distribution over the same support. This coefficient of 
variation is sufficient to let stick–slip oscillations to take 
place. The distribution chosen is the truncated Gaussian 

according to the maximum entropy principle [40]. The 
distribution parameters for each variable are found in 
Table 2.

Due to the above modeling, the response of the system 
becomes random. Thus, the model (1)–(4) becomes:

4  Numerical results

4.1  Deterministic response—no transition 
between layers

In this section the response of the system is analyzed 
without considering a transition between layers. This is 

(7)Jbθ̈b + c(θ̇b −�)+ k(θb −�t) = −cbθ̇b − Tfb(θ̇b) ,

(8)Tfb =







Teb(t, θ̇b, θb), θ̇b < Dv and |Teb| < Tsb

Tsbsign(Teb), θ̇b < Dv and |Teb| > Tsb

Tb(t, θ̇b)sign(θ̇b), θ̇b > Dv

,

(9)Tb(t, θ̇b) = Tcb(t)+ (Tsb(t)− Tcb(t))e
−γbθ̇b ,

(10)Teb(t, θ̇b, θb) = c(�− θ̇b)+ k(�t − θb)− cbθ̇b,

(a)

(b)

Fig. 3  Models for the transition between layers (a) static friction 
torque and (b) Coulomb friction torque

Table 2  Parameters for the truncated gaussian distributions

Variable Support Mean Std. Dev.

Tcb1 (N m) [2.4 , 2.6] 3.0 0.15

Tcb2 (N m) [4.0 , 6.0] 5.0 0.25

Tsb1 (N m) [4.8 , 7.2] 6.0 0.30

Tsb2 (N m) [6.4 , 9.6] 8.0 0.40

t1 (s) [24 , 36] 30 1.5

t2 (s) [56 , 84] 70 3.5

Fig. 4  Deterministic response of the system with and without stick–
slip. Full line � = 20 rad/s; dashed line � = 10 rad/s
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an important step in order to understand some character-
istics of the system under analysis.

Two bit speed responses are shown in Fig. 4. The 
response without stick–slip was computed with the param-
eters shown in Table 1, while the response with stick–slip 
was computed using half of the top rotational speed.

The response in Fig. 4 without stick–slip presents a zero 
velocity in the beginning (up to 5 s) due to the stick regime 
in the bit. As soon as the drill-string accumulates enough 
energy, the static friction torque is reached and the bit is 
released. After a transient period of time (about 15 s), the 
bit speed reaches the top rotational speed, as expected.

Otherwise, the response in Fig. 4 with stick–slip shows 
that the response reaches a limit cycle with high torsional 
oscillations. In the stick phase (bit speed equals to zero), 
the bit is stuck and the systems is accumulating energy. 
In the slip phase, the bit is released and it gains velocity.

Another interesting way to analyze the system response 
is by plotting the friction torque on the bit, which is shown 

in Fig. 5. The response without stick–slip presents an initial 
increasing of friction torque, due to the energy accumulation, 
until it reaches the static friction torque and then converges 
exponentially to the Coulomb friction torque. The exponential 
behavior happens very fast and cannot be noticed in Fig. 5a.

The stick–slip oscillations are characterized by the 
switch between static and Coulomb friction torques. A 
detailed analysis of the torque is shown in Fig. 5b. Before 
the bit sticks, the friction torque increases fast (first peak 
in Fig. 5b) because it passes through the static friction 
torque. It happens because of the exponential behavior of 
the chosen model. When the bit gets stuck, the drill-string 
starts accumulating energy again and the torque increases 
linearly, as shown in Fig. 5b.

4.2  Passage from a soft to a harder rock layer

Before solving the stochastic problem, the determinis-
tic response is simulated considering the three proposed 

(a)

(b)

Fig. 5  Friction torque on the bit for a total simulation time and b 
between 21 and 28 s. Full line � = 20 rad/s; dashed line � = 10 rad/s

(b)

(a)

Fig. 6  Rotational speed of the bit with the change in bit-rock interac-
tion parameters following: a step, linear and hyperbolic tangent func-
tions in 0 < t < 90 and; b step function in 29.9 < t < 30.5
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functions for the transition between two layers (step, lin-
ear and tanh). Figure 6 shows the bit rotational speed. 
Before the transition (t < 30 s), the system presents the 
same initial oscillations discussed in Sect. 4.1 for the three 
functions. It can be noticed that none of the transitions 
presented stick–slip oscillations. However, when a step 
function is considered, the bit sticks for a while and then is 
released again. As a consequence, it presents a higher oscil-
lation in its transient. A detailed view is given in Fig. 6b 
and it shows that the bit does not stick immediately because 
of the system dynamics.

The system response for linear and tanh cases are very 
similar but with some peculiarities. In both cases, the bit 
does not stick but decelerates enough to accumulate energy 
in order to compensate the raise in friction torque. It can 
be seen in the zoomed view of Fig. 6a that, for the linear 
case, the bit reaches a new constant velocity value during 
the transition. It occurs because the bit does not stick and 
the particular solution for θb in Eq. 1 is also linear, which 
sums to homogeneous solution and adds a gap in angular 
velocity θ̇b. There are some oscillations at the beginning 
and at the end of the transition due to system dynamics. 
On the other hand, in tanh case, there is no oscillation and 
the system response presents a behavior very similar to the 
tanh function itself because the deceleration increases and 
decreases in a progressive way, like the derivate of tangent 
function. Hence, the smoother the transition function is, 
the less oscillations occur in the bit rotational speed. This 
conclusion is in agreement with the investigation done by 
[23], where the concern was with how the driller applies 
the weight on bit.

The friction torque is shown in Fig. 7. For linear and 
tanh cases, the change in the friction torque on bit is the 
same as the function proposed for the change in Coulomb 
friction torque. This is due to the absence of bit sticking. 
In the case of the step function transition, a more detailed 
analysis should be done; see Fig. 7b. The friction torque on 
the bit raises immediately to Tcb2 at t = 30 s, then it raises 
again to the static torque value (exponential shape), and 
then decreases when the bit finally sticks (about 30.4 s). 
After that, the drill-string starts accumulating energy again 
until it overcome the static friction and the bit is released. 
Thus, the torque on bit reaches the new Coulomb friction 
torque.

Now the stochastic results are analyzed. They were 
obtained using Monte Carlo Simulations, where the trun-
cated samples from the truncated Normal random variables 
were obtained by the rejection method. It was performed 
10,000 simulations in order to assure the convergence in 
mean square. The results are presented in Figs. 8 and 9 
using a statistical envelope of 99%, which means that 99% 
of the results are between the two dashed lines (green and 
red), and the full black line is the mean value.

The stochastic results show that, for some Monte Carlo 
simulations, the system presented stick–slip oscillations 
before the beginning of transition between rock layers. 
The more severe case is a hard transition, represented by 
the step function. Figure 8a shows that many samples pre-
sent stick–slip oscillations after the layer transition, which 
yields a very large statistical envelope. On the contrary, a 
smooth transition, represented by the linear and tanh func-
tions, presented a statistical envelope very close to the 
mean value after the layer transition. This is because the 
stick–slip oscillations die out at the end of the transition 
because there is a reduction in Tsb/Tcb ratio. It can be seen 
in Fig. 8b for the linear case, which is very similar to tanh 
case. This means that sharp transitions between rock lay-
ers is very bad for the system performance, concerning tor-
sional oscillations.

The friction torque on the bit is shown in Fig. 9. In the 
step case, due to the occurrence of stick–slip oscillations, 
the envelope is much wider when compared to the other 

(a)

(b)

Fig. 7  Friction torque on the bit with rock transition following: a 
step, linear and hyperbolic tangent functions in 0 < t < 90 and; b 
step function in 29.9 < t < 30.5
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cases. In the linear and tanh cases, there are stick–slip oscil-
lations in the beginning, as commented before, but, after 
the transition, the envelope ends up with only the uncer-
tainties in the Coulomb friction. This behavior is shown in 
Fig. 9b only for linear case. The tanh case is similar, only 
the shape of the curves are smoother in the transition.

It should be noted that even though the envelope anal-
ysis did not show stick–slip oscillations in linear and tanh 
cases, it was observed that a few simulations presented 
this kind of behavior, but it was not enough to make a dif-
ference in the 99% envelope.Another way to analyze the 
presented stochastic results is proposed. If we fix the time 
at 100s and analyze the random bit speed at this instant 
time, it is possible to calculate the cumulative density 
function (CDF). The CDF for the step case is shown in 
Fig. 10 and is a combination of a discrete distribution 
concentrated at 0 and 20 rad/s and a continuous distri-
bution with values from 0 to 80 rad/s. This is observed 

(a)

(b)

Fig. 8  Envelope of 99% for the rotational speed of the bit when the 
change in bit-rock interaction parameters follow a a step function and 
b linear function

(a)

(b)

Fig. 9  Envelope of 99% for the friction torque on bit when the 
change in bit-rock interaction parameters follow a a step function and 
b linear function

Fig. 10  Cumulative density function of bit rotational speed at 
t = 100 s when the change in bit-rock interaction parameters follow 
a step function
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because of the jump type discontinuities in CDF. It also 
shows that most of simulations presented a rotational 
speed of 20 rad/s, indicating that there are no stick–slip 
oscillations. In the presence of stick–slip, different speeds 
appear at 100 s. The frequency of zero velocity values is 
higher because there are no variations in bit rotational 
speed when it is stuck and, in one stick–slip oscillation, 
the bit is stuck during almost half of the time. When the 
bit is slipping, there is a variation between zero and max-
imum velocities. The CDFs for linear and tanh cases are 
not shown because they were very similar to each other 
and only the discrete distribution at 20 rad/s appeared 
because there were very few responses with stick–slip 
oscillations.

5  Concluding remarks

This paper considered a simplified torsional dynamical 
model of one degree-of-freedom to describe drill-string 
dynamics. The rotational speed is prescribed at the top 
rotary system and the bit-interaction model is nonlinear. 
A stochastic model was also proposed to evaluate the 
impact of uncertainties in the system response.

To evaluate the passage from a soft to a harder rock 
layer, three transition functions were proposed: step, lin-
ear, tanh. Depending on the shape of this transition, the 
results are quite different. It was concluded that sharp 
transitions give worse results in terms of undesirable 
torsional oscillations. Uncertainties were considered in 
the bit–rock parameters. For the case considered, it was 
shown that the stick–slip oscillations vanished in the case 
of soft transitions, but it continued and increased for the 
sharp transition.

Further analysis should be performed in order to effec-
tive control the drill-string system to avoid stick–slip 
oscillations, and to analyze the probability of the system 
to become unstable.
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