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G	� Flux vectors’ matrix
h	� Water depth
he	� Element size
hL	� Water depth in the upstream channel
hR	� Water depth in the downstream channel
hi	� Numerical depth results in each node
i	� Node number
K	� Stiffness matrix
L	� Length of the computational domain
M	� Mass matrix
n	� Manning’s roughness coefficient
S	� Topographical and frictional source terms
Sbx	� Depth gradients in the x-directions
Sby	� Depth gradients in the y-directions
Sfx	� Friction slopes along x-directions
Sfy	� Friction slopes along y-directions
s	� Bore speed
t	� Time
U	� Matrix of variables
u	� Depth-integrated velocity in the x-directions
v	� Depth-integrated velocity in the y-directions
x	� x-direction space
y	� y-direction space
Ψi	� Basis-function

1  Introduction

In numerical analysis, dam-break is the immediate release 
of an initially stationary water body by removing a verti-
cal obstacle. When a dam is broken, flash flooding occurs 
as the impounded water flees through the opening in the 
downstream river. The dynamics of dam-break shock 
waves is rather complex, and its behavior does not meet 
the terms of the conventional assumptions of the steady 

Abstract  A new numerical scheme based on the finite-
element method with a total-variation-diminishing property 
is developed with the aim of studying the shock-capturing 
capability of the combination. The proposed model is for-
mulated within the framework of the one-step Taylor–
Galerkin scheme in conjunction with the Van Leer’s limiter 
function. The approach is applied to the two-dimensional 
shallow water equations by different test cases, i.e., the par-
tial, circular, and one-dimensional dam-break flow prob-
lems. For the one-dimensional case, the sub- and supercriti-
cal flow regimes are considered. The results are compared 
with the analytical, finite-difference, and smoothed particle 
hydrodynamics solutions in the literature. The findings show 
that the proposed model can effectively mask the sources of 
errors in the abrupt changes of the flow conditions and is 
able to resolve the shock and rarefaction waves where other 
numerical models produce spurious oscillations.

Keywords  Taylor–Galerkin method · Total-variation-
diminishing · Shallow water equations · Dam-break flow

List of symbols
B(r)	� Van Leer’s limiter
d	� Constant coefficient
F	� Flux vectors’ matrix
g	� Gravity

Technical Editor: Jader Barbosa Jr.

 *	 Ali Akbar Akhtari 
	 akhtari@razi.ac.ir

1	 Department of Civil Engineering, Kermanshah University 
of Technology, 6715685420 Kermanshah, Iran

2	 Department of Civil Engineering, Razi University, 
6714967346 Kermanshah, Iran

http://orcid.org/0000-0002-7304-8094
http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-017-0776-y&domain=pdf


4394	 J Braz. Soc. Mech. Sci. Eng. (2017) 39:4393–4401

1 3

and gradually varied open-channel flows. This fact is prob-
ably the major factor in the lag of investigations of dam-
break flows compared to other free surface problems. The 
difficulty is to choose an appropriate technique for cap-
turing the abrupt changes in the bore formation and flow 
velocity values while the wave propagates. To comply with 
these constraints, the employed numerical model must be 
founded on advanced techniques that inherent non-oscilla-
tory advection [1].

In recent years, developing shock-capturing models 
has been the center of attention for engineers. There is a 
significant amount of literature dedicated to the satisfac-
tory solutions of the shallow water equations for shock-
dominated problems. These include the finite-difference 
method (FDM) [2–5], finite-volume method (FVM) [6, 
7], finite-element method (FEM) [8–11], and smoothed 
hydrodynamic particle (SPH) models [12, 13]. For exam-
ple, Zhang et  al. [14] developed a hydrodynamic and 
sediment transport model for dam-break flow simulation 
using an explicit FVM based on the shallow water equa-
tion (SWE) system. FEM has also been effectively applied 
to similar flow problems [15, 16]. An attentive historical 
report of FEMs in this context is reported by Wang et  al. 
[17] employing the Galerkin scheme to solve wave equa-
tions. Wang et al. [17] showed that the classic FEM is more 
efficient than the ordinary FDMs due to its rigorous math-
ematical theory and efficiency of creating complex geom-
etries. Moreover, isogeometric analysis (IA) is superior to 
the SPH models for the imposition of boundary conditions 
[5]. However, Wang et al.’s [17] study was conducted using 
classic techniques, which results in fluctuations in the sharp 
discontinuities.

Accordingly, employing advanced numerical methods 
with the shock-capturing ability was inevitable. These tech-
niques were later implemented by researchers such as Sheu 
and Fang [18] who merged the FEM and flux-corrected 
transport (FCT) methods and applied it to the SWEs. Later, 
Ortiz [9] also developed a finite-element model based on 
the FCT technique for shallow water flows to predict the 
evolution of coastlines.

The total-variation-diminishing (TVD) model is another 
shock-capturing scheme, which was initiated by Harten 
[19] to describe oscillations in the calculated results. The 
scheme was employed by Wang et al. [20] through a sec-
ond-order Lax–Wendroff method in conjunction with 
an FDM to discretize the two-dimensional SWEs. More 
recently, Boulahia et  al. [21] employed a similar TVD 
scheme for the numerical simulation of a one-dimensional 
flow for an inert gas mixture. Many other relevant works 
on applying this technique to the engineering applications 
of shock-dominated flow problems have been published 
[3, 22–24]. However, no work has been reported so far on 

a combination of the FEM and TVD models to investi-
gate the engineering problems with abrupt changes in the 
results, especially for the SWEs. Most of these studies are 
limited to the implementation of the TVD scheme along 
with the FDMs. Accordingly, this study proposes a finite-
element model founded in the TVD concept based on Van 
Leer’s flux-limiter. Here, the basal idea of the TVD method 
is to correct the algorithms with large oscillation errors in 
the water elevation, and velocity fields with anti-oscillation 
contributions using a local criterion to flag and correct the 
nodes for the maximum and minimum fluxes. The simula-
tions are conducted in two-dimensional domains to dem-
onstrate the features of the developed scheme. Here the 
topographic effects are ignored to simplify the validation 
process of the model. The accuracy of the obtained results 
is compared against the pre-existing analytical and numeri-
cal results as a validation process to the model [25, 26].

The rest of this paper is organized as follows. In Sect. 2, 
the governing equation system is presented and discussed. 
Section 3 describes the developed numerical procedure. In 
Sect. 4, four regularly used benchmarks are considered and 
employed to validate the developed model. Finally, Sect. 5 
summarizes the findings of the study.

2 � Mathematical theory

SWEs are typically derived by depth averaging the Navier–
stokes equations under the hydrostatic and Boussinesq 
approximations. Here, the resulting system yields the two-
dimensional SWEs.

in which U represents the solution vector of conservative 
variables, F and G denote the flux vectors; S accounts for 
the topographical and frictional source terms, and the sub-
scripts t, x and y represent the partial derivatives of the time 
and space, respectively.
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where u and v are the depth-integrated velocity compo-
nents in the x- and y-directions; respectively. g is gravity, 
h denotes the water depth, Sbx and Sby are defined by the 
depth gradients while Sfx and Sfy correspond to the friction 
slopes along the x- and y-directions, respectively.

where n denotes manning’s roughness coefficient.
To simplify the validation process, the homogeneous 

case is considered [25].

in which

where

3 � Numerical scheme and resolution techniques

The process is the standard scientific approach to the com-
putational fluid dynamics. The scheme is first order in 
space and second-order in time. In a view to discretize the 
governing equations in time, the following Taylor series 
expansion in its weak form was used in the time increment 
�t [27].
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in which Ψi is the set of basis functions.
Conducting the Taylor series expansion of the fluxes, 

and combining the expressions into the second-order time 
derivative:

Here, applying the Gauss theorem to the weak form of 
Eq. (8) yields:

This equation was discretized in space using the Bub-
nov–Galerkin method. However, the solution may suf-
fer from spurious oscillations in the results near the sharp 
changes in the flow conditions. The strategy is to add a new 
term to the system functioning as a flux-limiter [28]:

where d is a coefficient, which is varied within the range [0, 
1], and Kij =

∑

l

∫

Tl
i
ΨiΨjdΩ. RH is the combination of the 

integral terms of the weak form equations’ right-hand side 
terms.

3.1 � Flux‑limiter

The second-order TVD scheme was obtained here through 
identifying the location of the probable oscillations and 
inserting a new term to reduce the dissipation. In a two-
dimensional case, using the extrapolated points {i∗} and 
{k∗}, the following variations were produced for each seg-
ment [29]:

where qi is the unknown parameter. qi∗ = qk − 2
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as follows:
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where

in which B(r) is Van Leer’s limiter, which varies within the 
range [0, 1]:

The dissipation coefficient was identical throughout 
the governing equations, while water depth was the main 
variable to obtain the sensor. Moreover, due to the explicit 
nature of the calculations, the Courant–Friedrichs–Lewy 
(CFL) criterion was honored as the stability condition [30]. 
According to this criterion, the time step ∆t fulfill the fol-
lowing inequality:

where he is the element size.

4 � Results and discussion

The developed TVD Taylor–Galerkin (TVD-TG) model 
was applied to four typical test cases, namely the one-
dimensional dam-break considering both the sub- and 
supercritical flows, and the asymmetric and circular dam-
break problems. The MATLAB software was devised to 
code the numerical procedure. Two constant relative water 
depths were defined as the Dirichlet boundary condition at 
the inlet and outlet sets. All other boundaries are defined as 
solid walls and described by a combination of Dirichlet and 
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≤ 1,

Neumann boundary conditions by the integrations in the 
weak form of the equations.

4.1 � One‑dimensional dam‑break problem (subcritical 
flow)

In this benchmark, the assumption of the immediate and 
complete dam break is considered, which is suitable for 
a reinforced concrete arch dam. The test demonstrates 
the flow field at t = 36 s. The computational domain is 
a 2000× 200 m2 horizontal and rectangular channel dis-
cretized by 2000 linear triangular elements. The chosen 
time step for the time discretization is �t = 0.39 s. The 
dam is located in the middle of a horizontal channel, and 
the water body is assumed stationary with unequal depths 
on both sides of the dam (Fig. 1). The normal velocities 
along the boundary are assumed zero.

Figure  2 depicts the finite-element grid form of the 
computational domain.

The subcritical and supercritical flow regimes were 
obtained by changing the up- to downstream water depth 
ratios. For example, h0

h1
= 5

10
 denotes the subcritical flow 

regime while h0
h1

= 1
10

 represents a supercritical flow. The 
obtained results were compared with Stoker’s [25] ana-
lytical solution, obtained by solving the following poly-
nomial equations.
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Fig. 1   Initial conditions for the 
dam-break problem

Fig. 2   The employed grid form
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where

in which s is the positive root of (u2 + 2c2 − 2
√
ghL), 

where L is the length of the domain, hL is water depth on 
the left-hand side of the dam, and hR denotes the water 
depth in the downstream channel.

To demonstrate the model’s efficiency, the results were 
also compared with two ideal FDM solutions regularly 
used for dam-break modeling. Accordingly, consider-
ing the same initial and boundary conditions, the SWEs 
were solved by the Lax–Wendroff and MacCormack 
procedures (Figs.  3, 4). All computations, including the 
numerical and analytical solutions, were performed in 
MATLAB 7.0.4.

Figures  3 and 4 show that the proposed TVD model 
produces the best fitting results comparing with the ana-
lytic solution. Moreover, it can be seen that the developed 
model is successful in predicting the formation of the 
shock and rarefaction waves without showing spurious 
fluctuations.
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

4.2 � One‑dimensional dam‑break problem (supercritical 
flow)

Accurate simulation of supercritical flows is often com-
plicated. Most of the numerical models introduced in the 
literature suffer from severe fluctuations in the abrupt 
changes of the flow conditions [13, 31, 32]. In this sec-
tion, the capability of the developed model is assessed 
and compared to the analytical, FDM, and Chang et al.’s 
[13] SPH models. Figure 5 demonstrates the solution of a 
supercritical flow induced by dam-break, where the water 
depth ratio is 0.1.

Fig. 3   One-dimensional dam-break flow problem (h1 = 10 m, 
h0 = 5 m and t = 36 s)

Fig. 4   Flow velocity results for the analytical and numerical simu-
lation of the one-dimensional dam-break problem (h1 = 10 m, 
h0 = 5 m and t = 36 s)

Fig. 5   Dam-break flow water depth results of the analytical solution 
with the current model, MacCormack, and the results of Chang et al. 
[13]
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It can be seen that there is a deformation in the wave-
form in the MacCormack predictions. Moreover, the SPH 
model was not able to capture the shock formation. How-
ever, the developed model produces acceptable results.

4.3 � Partial dam‑break problem

The purpose of this benchmark is to evaluate the capabil-
ity of the TVD-TG model to resolve the two-dimensional 

wave propagation. There is no analytical solution to this 
problem. However, its numerical solutions are avail-
able in the literature [33–36]. Figure  6 depicts the geo-
metric dimensions of the computational domain used 
for the flow simulation. Initially, the upstream discharge 
is assumed zero while the water depths are 10 m in the 
upstream, and 5  m in the downstream sections. The 
domain dimension is 200 × 200 m2, divided by 3200 tri-
angular elements.

After the removal of the barrier, water sets free to flow 
through the downstream channel reach. The shock and 
rarefaction waves are formed in the domain propagating 
in reverse directions. Figure  7 demonstrates the water 

Fig. 6   The geometry of the partial dam-break problem

Fig. 7   The partial dam-break problem; a water surface elevation (m), b depth contours (m)

Fig. 8   The partial dam-break problem. Velocity field at t = 7.2 s
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surface, water depth contours, and the velocity field at 
t = 7.2, respectively.

According to the results, the shock and rarefac-
tion waves propagation to the right and left side of the 
breached dam are evidently predicted. Figure  8 depicts 
the velocity vectors in the flow region.

4.4 � Circular dam‑break problem

The developed model was also validated using the sce-
nario of a circular dam break, as described by [33, 37, 
38]. This case considers the breaking of a cylindrical dam 
to study the properties of the model to preserve symme-
try. The initial condition is comprised of two regions of 
stationary water bodies, which are separated by a thin-
walled cylinder of diameter 22 m located in the center of 
a 50× 50 m2 horizontal and frictionless channel (Fig. 9). 
The domain was discretized by 5000 triangular elements. 
The water depth inside and outside the wall are 10 and 
1 m, respectively.

Figure  10 represents the obtained depth contours and 
velocity vectors.

The model shows the symmetry preserving and shock-
capturing characteristics. However, some variations of 
water depth in the form of isles are notable in Fig. 10a, b, 
which are the negative features of using a Cartesian coordi-
nate system in this particular case. The model is compara-
ble to Zachariah’s [26] solution.

Fig. 9   The initial conditions for the circular dam-break problem

Fig. 10   Circular dam-break 
flow using the TVD–Taylor–
Galerkin method at t = 0.69 s. a 
Three-dimensional view of the 
water elevation (m), b contours 
of water depth (m), c velocity 
field
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5 � Conclusions

A mixed TVD Taylor–Galerkin model was developed and 
applied to the shallow water equations. The performance of 
the model was evaluated by various benchmarks, including 
the one-dimensional, asymmetric, and circular dam-break 
flows. The following conclusions were drawn:

•	 The developed finite-element model has shown to act as 
an effective shock-capturing model.

•	 The model is tested to simulate both the sub- and super-
critical dam-break flows with the water depth ratios of 
0.5 and 0.1. Comparing the predicted results with the 
results of other researchers, it was noticed that the cur-
rent model performs better, in terms of accuracy, espe-
cially in the supercritical flow regimes.

•	 Regarding the ability of the TVD-TG model to predict 
supercritical flows, this model can be used with some 
approximations to predict flows with dry beds. Accord-
ingly, new models can be carried out by considering 
lower depth ratios while ignoring the corresponding 
source terms in the SVEs. This can result in faster cal-
culations.

•	 The partial dam-break case revealed the scheme’s effi-
ciency to predict the salient features of a two-dimen-
sional flow emanating from an asymmetric dam-break. 
On the other hand, the circular dam-break benchmark 
confirms the model’s symmetry-conserving capability.

It can be seen that the combination of the TVD and 
Taylor–Galerkin schemes presented here can be a valu-
able practical tool for engineers to mitigate the spurious 
oscillations in the shock-dominated problems. Here, the 
TVD scheme operates when it is required to. Therefore, 
this approach can be useful in terms of time and computa-
tional costs, in order to maintain larger time steps than the 
CFL criterion, which can be further investigated in future 
works.

References

	 1.	 Lauritzen PH (2011) Numerical techniques for global atmos-
pheric models. In: Lecture notes in computational science and 
engineering, vol 73. Springer, Berlin, p 572

	 2.	 Akkerman I et al (2011) Isogeometric analysis of free-surface 
flow. J Comput Phys 230:4137–4152

	 3.	 Ouyang C, He S, Xu Q (2014) MacCormack-TVD finite differ-
ence solution for dam break hydraulics over erodible sediment 
beds. J Hydraul Eng 141:06014026

	 4.	 Luo Z, Gao J (2015) The numerical simulations based on the 
NND finite difference scheme for shallow water wave equa-
tions including sediment concentration. Comput Methods Appl 
Mech Eng 294:245–258

	 5.	 Amini R, Maghsoodi R, Moghaddam N (2016) Simulating free 
surface problem using isogeometric analysis. J Braz Soc Mech 
Sci Eng 38:413–421

	 6.	 Wang P, Zhang N (2014) A large-scale wave-current coupled 
module with wave diffraction effect on unstructured meshes. 
Sci China Phys Mech Astron 57:1331–1342

	 7.	 Zhang M-L et al (2016) Numerical simulation of flow and bed 
morphology in the case of dam break floods with vegetation 
effect. J Hydrodyn Ser B 28:23–32

	 8.	 Triki A (2013) A finite element solution of the unidimensional 
shallow-water equation. J Appl Mech 80:021001

	 9.	 Ortiz P (2014) Shallow water flows over flooding areas 
by a flux-corrected finite element method. J Hydraul Res 
52:241–252

	10.	 Isakson MJ, Chotiros NP, Piper J (2015) Finite element mode-
ling of propagation and reverberation shallow water waveguide 
with a variable environment. J Acoust Soc Am 138:1898

	11.	 Yin J, Sun J-W, Jiao Z-F (2015) A TVD-WAF-based hybrid 
finite volume and finite difference scheme for nonlinearly disper-
sive wave equations. Water Sci Eng 8:239–247

	12.	 Crespo A, Gómez-Gesteira M, Dalrymple R (2008) Mod-
eling dam break behavior over a wet bed by a sph technique. J 
Waterw Port Coast Ocean Eng 134:313–320

	13.	 Chang T-J et al (2011) Numerical simulation of shallow-water 
dam break flows in open channels using smoothed particle 
hydrodynamics. J Hydrol 408:78–90

	14.	 Zhang M et  al (2014) Integrating 1D and 2D hydrodynamic, 
sediment transport model for dam-break flow using finite vol-
ume method. Sci China Phys Mech Astron 57:774–783

	15.	 Zarmehi F, Tavakoli A, Rahimpour M (2011) On numerical 
stabilization in the solution of Saint-Venant equations using 
the finite element method. Comput Math Appl 62:1957–1968

	16.	 Atallah MH, Hazzab A (2013) A Petrov–Galerkin scheme for 
modeling 1D channel flow with varying width and topography. 
Acta Mech 224:707–725

	17.	 Wang H-H et al (1972) Numerical solutions of the one-dimen-
sional primitive equations using Galerkin approximations with 
localized basis functions. Mon Weather Rev 100:738–746

	18.	 Sheu TWH, Fang CC (2001) High resolution finite-element 
analysis of shallow water equations in two dimensions. Com-
put Methods Appl Mech Eng 190:2581–2601

	19.	 Harten A (1983) High resolution schemes for hyperbolic con-
servation laws. J Comput Phys 49:357–393

	20.	 Wang J, Ni H, He Y (2000) Finite-difference TVD scheme 
for computation of dam-break problems. J Hydraul Eng 
126:253–262

	21.	 Boulahia A, Abboudi S, Belkhiri M (2014) Simulation of vis-
cous and reactive hypersonic flows behaviour in a shock tube 
facility: TVD schemes and flux limiters application. J Appl 
Fluid Mech 7:315–328

	22.	 Ouyang C et al (2013) A MacCormack-TVD finite difference 
method to simulate the mass flow in mountainous terrain with 
variable computational domain. Comput Geosci 52:1–10

	23.	 Huang Z, Lee J-J (2014) Modeling the spatial evolution of roll 
waves with diffusive Saint Venant equations. J Hydraul Eng 
141:06014022

	24.	 Vacondio R, Dal Palù A, Mignosa P (2014) GPU-enhanced 
finite volume shallow water solver for fast flood simulations. 
Environ Model Softw 57:60–75

	25.	 Stoker JJ (1992) Water waves; the mathematical theory with 
applications. Pure and applied mathematics. Interscience Pub-
lishers, New York

	26.	 Zachariah C (2000) A characteristics finite-element algorithm 
for computational open channel flow analysis. The University 
of Tennessee, Knoxville



4401J Braz. Soc. Mech. Sci. Eng. (2017) 39:4393–4401	

1 3

	27.	 Selmin V (1987) Finite element solution of hyperbolic equa-
tions II. Two dimensional case. Inria, Paris

	28.	 Yee H, Warming R, Harten A (1983) Implicit total variation 
diminishing (TVD) schemes for steady-state calculations. In: 
6th computational fluid dynamics conference danvers. Ameri-
can Institute of Aeronautics and Astronautics

	29.	 Toro EF (2001) Shock-capturing methods for free-surface 
shallow flows, vol xv. Wiley, Chichester, p 309

	30.	 Zienkiewicz OC, Taylor RL (eds) (2000) The finite element 
method. Butterworth-Heinemann, Oxford

	31.	 Falconer RA (1986) Water quality simulation study of a natu-
ral harbor. J Waterw Port Coast Ocean Eng 112:15–34

	32.	 Ransom O, Younis B (2015) Selective application of a total 
variation diminishing term to an implicit method for two-
dimensional flow modelling. J Flood Risk Manag 8:52–61

	33.	 Alcrudo F, Garcia-Navarro P (1993) A high-resolution Godu-
nov-type scheme in finite volumes for the 2D shallow-water 
equations. Int J Numer Meth Fluids 16:489–505

	34.	 Ying X, Wang S, Khan A (2003) Numerical simulation of flood 
inundation due to dam and levee breach. In: World water and 
environmental resources congress. American Society of Civil 
Engineers, pp 1–9

	35.	 Liang S-J, Tang J-H, Wu M-S (2008) Solution of shallow-water 
equations using least-squares finite-element method. Acta Mech 
Sinica 24:523–532

	36.	 Chou C et al (2015) Extrapolated local radial basis function col-
location method for shallow water problems. Eng Anal Bound 
Elem 50:275–290

	37.	 Neumann P, Bungartz H-J (2015) Dynamically adaptive Lattice 
Boltzmann simulation of shallow water flows with the Peano 
framework. Appl Math Comput 267:795–804

	38.	 Touma R, Klingenberg C (2015) Well-balanced central finite vol-
ume methods for the Ripa system. Appl Numer Math 97:42–68


	Two-dimensional numerical modeling of dam-break flow using a new TVD finite-element scheme
	Abstract 
	1 Introduction
	2 Mathematical theory
	3 Numerical scheme and resolution techniques
	3.1 Flux-limiter

	4 Results and discussion
	4.1 One-dimensional dam-break problem (subcritical flow)
	4.2 One-dimensional dam-break problem (supercritical flow)
	4.3 Partial dam-break problem
	4.4 Circular dam-break problem

	5 Conclusions
	References




