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Abstract Vibration of functionally graded sandwich (FGS)

cylindrical nanoshell is investigated. For this purpose, the

first shear deformable shell theory as well as material length

scale parameter as considered by the couple stress theory is

used, and Hamilton’s principle is employed to derive the

equations of motion of the FGS cylindrical nanoshell and the

boundary conditions. In the end, using Navier solution, the

natural frequency is determined for three types of FGS

cylindrical nanoshells. Results of the new model are com-

pared with the classical theory. According to the results, the

rigidity of the FGS cylindrical nanoshell in the couple stress

theory is higher than that in the classical theory, which leads

to increased natural frequency. Besides, the effect of the

material length scale parameter on natural frequency of the

FGS cylindrical nanoshell in different wavenumbers and

lengths is considerable.

Keywords Functionally graded sandwich cylindrical

nanoshell � First shear deformable shell theory � Couple
stress theory � Material length scale parameter

1 Introduction

Modern achievements in the nanoscience have encouraged

the researchers to more seriously consider the use of

micro/nanoshells for modeling micro/nanostructures. The

minute size of the structure of nanoshells has impeded the

study of the dynamic behaviors of such components with

conventional methods. Hence, researchers have to use

various procedures such as experimental methods and

continuum theories in this respect. Most experimental

methods, however, are not economical due to their high

costs and lengthy processes. Therefore, researchers have

recently begun to use continuum theories which take the

effect of material length scale (MLS) parameter into con-

sideration. Those theories include non-local elasticity the-

ory [1–8], couple stress theory [9–18], strain gradient

theory [19–22], and surface stress theory [23–26].

Functionally graded materials are non-homogeneous

materials which enhance the mechanical and thermal

properties of structures by modifying nanoscopic

structures. They are used for constructing sandwich

structures which are widely used in different industries

due to their high strength to weight ratio. Common

sandwich structures are made up of a core and two

faces, which can be made of functionally graded

materials. In recent years, bucking and vibration of

functionally graded sandwich (FGS) microbeams have

been studied by the researchers. For instance, Nguyen

et al. [27] examined the vibration and buckling of the

FGS beam. In doing so, they used three FGS beams in

different boundary conditions. Pradhan et al. [28]

examined the vibration of the FGS beam and demon-

strated that an increase in Pasternak foundation is

accompanied by an increase in FGS beam frequency.

Using finite elements method, Vo et al. [29] studied the

vibration and buckling of FGS beam for different

boundary conditions. Fereidoon et al. [30] investigated

the bending of a curved FGS beam by using Euler–

Bernoulli beam for modeling. They computed the beam

deflection for the variations of Young’s modulus.
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In recent years, researchers have used couple stress

theory to study the behavior of nano/microbeams and nano/

microshells. In couples stress theory, strain energy is

dependent on both strain and strain variation [31–34].

Mindlin’s strain gradient theory was initially simplified by

Fleck and Hutchinson and was named strain gradient the-

ory, only to be rewritten later on by Lam et al. who

eliminated the asymmetric part of the strain gradient tensor

from the equations. Instead of the five constants developed

by Mindlin, the modified strain gradient theory has only

three constants for handling the effect of the MLS

parameter. Couple stress theory is developed by setting two

MLS parameters out of the three parameters to zero

[35, 36]. Thai et al. [37] investigated the critical load and

natural frequency of an FGS microbeam. They showed that

an increase in the MLS parameter leads to an increase in

the beam’s natural frequency and a decrease in its defor-

mation. Researches have started to investigate the dynamic

behavior of micro/nanostructures using the shell theory

because modeling in this model enjoys more accuracy than

that in the beam model. Using strain gradient theory,

Zeighampour et al. [38] developed the governing equations

of a nanoshell. In their model, by using Donnell shell

theory, they showed that in shorter nanoshell lengths, the

effect of MLS parameter on nanoshell natural frequency is

stronger. Also, in another study, using first shear deform-

able shell theory and couples stress theory, Zeighampour

et al. [39] attempted to examine the effect of vibration

frequency on the nanoshell, demonstrating that an increase

in MLS parameter leads to an increase in natural fre-

quency. Zhang et al. [40], using strain gradient theory,

investigated the vibration of an FG cylindrical microshell.

They determined the natural frequency of the FG cylin-

drical microshell for various values of length and diameter

of the microshell, wavenumber, and MSL parameter. Using

Donnell shell theory, first shear deformable shell theory,

and couple stress theory, Tadi et al. [41] investigated the

vibration of an FG cylindrical microshell.

A review of the related literature demonstrates that

sandwich nanostructures based on shell model have not

been investigated sufficiently so far. Nanostructure mod-

eling has been mainly based upon the beam model [37].

Besides, as regards the shell case, most nanostructure

modeling has addressed homogeneous [38, 39] and FG

materials [40, 41]. Hence, the present paper attempts to

investigate the vibration of sandwich nanostructures. In

doing so, the couple stress theory is used to take into

account MLS, and the first shear deformable shell theory is

employed in nanostructure modeling. In addition, three

different sandwich nanostructures are used to model the

nanoshell. Hamilton’s principle is employed to derive the

equations of motion and boundary conditions, and the

Navier solution is used to compute the frequency of FGS

cylindrical nanoshell on the assumption that the nanoshell

is simply supported. Finally, the effect of the MLS

parameter, wavenumber and nanoshell length on natural

frequency is investigated and it is demonstrated that the

MLS parameter has a strong impact on natural frequency.

2 Preliminaries

2.1 Modified couple stress theory

Strain energy in the modified couple stress theory incor-

porates a non-classical constant of the MLS parameter as

well as classical constants. In this theory, the strain energy

for elastic and isotropic material in area K (for an element

at volume V) with infinitesimal deformation is expressed as

[35]:

U ¼ 1

2

Z
X

rijeij þ mijvij
� �

dV ð1Þ

where eij and vij are the strain tensor and symmetric rota-

tion gradient tensor, respectively, which are defined as

eij ¼
1

2
oiuj þ ojui
� �

ð2Þ

vij ¼
1

4
eipqeqj;p þ ejpqeqi;p
� �

ð3Þ

where ui and ejpq are the displacement vector components

and permutation symbol, respectively. Also, rij is the

Cauchy stress tensor and ms
ij is the higher-order stress

tensor, respectively, which are defined as

rij ¼ Cijklekl ð4Þ

mij ¼ 2llvij ð5Þ

In Eq. (5), l is the additional and independent MLS

parameter associated with the symmetric rotation gradients.

The stress–strain equations in the plane stress case

ðrzz ¼ 0Þ for the first shear deformable isotropic shell

model are expressed as:

rxx
rhh
rxh
rzx
rzh

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

C11ðzÞ C12ðzÞ 0 0 0

C12ðzÞ C22ðzÞ 0 0 0

0 0 C33ðzÞ 0 0

0 0 0 C44ðzÞ 0

0 0 0 0 C55ðzÞ

2
66664

3
77775

exx
ehh

2ksexh
2ksezx
2ksezh

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ð6Þ

In Eq. (6), the elastic constants are defined as:

C11ðzÞ ¼ C22ðzÞ ¼
EðzÞ

1� m2ðzÞ ; C12ðzÞ ¼
tðzÞEðzÞ
1� m2ðzÞ ;

C33ðzÞ ¼
EðzÞ

2 1þ mðzÞð Þ ; ks ¼ 5=6:
ð7Þ
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where G, E, m, and ks represent shear modulus, Young’s

modulus, Poisson’s coefficient, and shear coefficient,

respectively. And, material distribution in the FGS cylin-

drical nanoshell along the direction of thickness and based

on power-law form is expressed as:

PðzÞ ¼ Pc � Pmð ÞVc þ Pm ð8Þ

In Eq. (8), Pc and Pm stand for Young’s modulus and

Poisson’s coefficients of the density of ceramic and metal

materials, respectively.

This paper uses three types of models to model FGS

cylindrical nanoshell: Cylindrical nanoshell type ‘a’ with

FG faces and homogeneous ceramic core, cylindrical

nanoshell type ‘b’ with FG faces and homogeneous metal

core, and cylindrical nanoshell type ‘c’ with homogeneous

ceramic and metal faces and FG core. Figure 1 displays the

three types of models.

The volume fraction of the ceramic phase V j
c for FGS

cylindrical nanoshell is expressed for the three types as:

V j
c for type ‘a’ is expressed as (Fig. 1a):

V j
c zð Þ ¼

V1
c zð Þ ¼ z� h2

h1 � h2

� �p

�h=2� z� � h=6

V2
c zð Þ ¼ 0 �h=6� z� h=6

V3
c zð Þ ¼ z� h3

h4 � h3

� �p

h=6� z� h=2

8>>>><
>>>>:

ð9Þ

V j
c for type ‘b’ is expressed as (Fig. 1b):

V j
c zð Þ ¼

V1
c zð Þ ¼ z� h1

h2 � h1

� �p

�h=2� z� � h=6

V2
c zð Þ ¼ 0 �h=6� z� h=6

V3
c zð Þ ¼ z� h4

h3 � h4

� �p

h=6� z� h=2

8>>>><
>>>>:

ð10Þ

V j
c for type ‘c’ is expressed as (Fig. 1c):

V j
c zð Þ ¼

V1
c zð Þ ¼ 0p �h=2� z� � h=6

V2
c zð Þ ¼ z� h2

h3 � h2

� �p

�h=6� z� h=6

V3
c zð Þ ¼ 1 h=6� z� h=2

8>><
>>:

ð11Þ

In Eqs. (8)–(11), hi and p are height from the center

of the core of FGS cylindrical nanoshell and power

function, respectively, the value of which is determined

as follows:

h1 ¼ �h=2; h2 ¼ �h=6; h3 ¼ h=6; h4 ¼ h=2;

ð12Þ

2.2 Displacement field of the FGS cylindrical

nanoshell

Figure 2 displays FGS cylindrical nanoshell. In this figure,

R and h represent radius and height thickness of the FGS

cylindrical nanoshell, respectively.

Based on the first shear deformable shell model, the

displacement field is expressed as:

uðx; h; z; tÞ ¼ Uðx; h; tÞ þ zwxðx; h; tÞ
vðx; h; z; tÞ ¼ Vðx; h; tÞ þ zwhðx; h; tÞ
wðx; h; z; tÞ ¼ Wðx; h; tÞ

ð13Þ

where u, v, and w are the x-, y- and z-components of the

displacement vector u of a point (x, y, z), respectively; also,

U, V , and W stand for the displacement vector in the

middle surface of the cylindrical shell, respectively; and t

represents time. Also, wx and wh are rotations around the x

and h axes.

2.3 Governing equations of motion

and corresponding boundary conditions

In this section, equation of motion and boundary conditions

of the FGS cylindrical nanoshell is developed using the

couples stress theory. Figure (2) illustrates the coordinate

system and displacement vector. By substituting Eq. (13)

into Eq. (2), the nonzero strain components are expressed

as:

exx
ehh
exh

0
@

1
A ¼

e0xx
e0hh
e0xh

0
@

1
Aþ z

e1xx
e1hh
e1xh

0
@

1
A; ð14Þ

And, in Eq. (14),

Fig. 1 Modeling of FGS

cylindrical nanoshell
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e0xx

e0hh

e0xh

e0zx

e0zh

0
BBBBBBB@

1
CCCCCCCA

¼

oU

ox

1

R

oV

oh
þW

� �

1

2

1

R

oU

oh
þ oV

ox

� �

1

2
wx þ

oW

ox

� �

1

2
wh þ

1

R

oW

oh
� V

R

� �

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

;

e1xx

e1hh

e1xh

e1zx

e1zh

0
BBBBBBB@

1
CCCCCCCA

¼

owx

ox

owh

oh
1

2

1

R

owx

oh
þ owh

ox

� �

0

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð15Þ

exh ¼ ehx; exz ¼ ezx; ezh ¼ ehz ð16Þ

By substituting Eq. (15) into Eq. (3), higher-order stress v

is expressed as [39]:

vxx
vhh
vzz
vhx
vhz
vzx

0
BBBBBB@

1
CCCCCCA

¼

v0xx
v0hh
v0zz
v0hx
v0hz
v0zx

0
BBBBBB@

1
CCCCCCA

þ z

v1xx
v1hh
v1zz
v1hx
v1hz
v1zx

0
BBBBBB@

1
CCCCCCA
; ð17Þ

And, in Eq. (17),

v0xx

v0hh

v0zz

v0hx

v0hz

v0zx

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

1

2R

o2W

oxoh
� oV

ox
� R

owh

ox

� �

1

2R

oV

ox
� 1

R

oU

oh
� o2W

oxoh
þ owx

oh

� �

1

2

1

R2

oU

oh
� 1

R

owx

oh
þ owh

ox

� �

1

4

1

R2

o2W

oh2
� oV

oh

� �
� o2W

ox2
� 1

R

owh

oh
þ owx

ox

� �

1

4R

oW

ox
� 1

R

o2U

oh2
þ o2V

oxoh
� wx

� �

1

4

V

R2
� 1

R

o2U

oxoh
þ o2V

ox2
� 1

R2

oW

oh
� wh

R

� �

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

;

v1xx

v1hh

v1zz

v1hx

v1hz

v1zx

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

0

1

2R

owh

ox

� �

0

0

1

4R

o2wh

oxoh
� 1

R

o2wx

oh2

� �

1

4

o2wh

ox2
� 1

R

o2wx

oxoh

� �

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð18Þ
vhx ¼ vxh; vhz ¼ vzh; vzx ¼ vzx ð19Þ

By substituting classical and higher-order stresses and

strains into Eq. (1), the strain energy of FGS cylindrical

nanoshell is determined as:

dUs ¼
Z 2p

0

Z L

0

Nxxde
0
xx þMxxde

1
xx þ Nhhde

0
hh þMhhde

1
hh

�

þ 2Nxhde
0
xh þ 2Mxhde

1
xh þ 2Nzhde

0
zh þ 2Nxzde

0
xz þ Yxxdv

0
xx

þ Yhhdv
0
hh þ Thhdv

1
hh þ Yzzdv

0
zz þ 2Yxhdv

0
xh þ 2Yzhdv

0
zh

þ 2Tzhdv
1
zhþ2Yxzdv

0
xz þ 2Txzdv

1
xz

�
Rdxdh

ð20Þ

In the above equation, classical and non-classical forces

and moments are written as follows:

Nij ¼
Xn
k¼1

Z hkþ1

hk

rkijdz; Mij ¼
Xn
k¼1

Z hkþ1

hk

rkijzdz; ð21Þ

Yij ¼
Xn
k¼1

Z hkþ1

hk

mk
ijdz; Tij ¼

Xn
k¼1

Z hkþ1

hk

mk
ijzdz; ð22Þ

The kinetic energy for FGS cylindrical nanoshell is

stated as follows:

Fig. 2 Coordinates and displacements of a FGS cylindrical nanoshell
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T ¼ 1

2
q
Z 2p

0

Z L

0

Z h=2

�h=2

oU

ot
þ z

owx

ot

� �2

þ oV

ot
þ owh

ot

� �2

þ ow

ot

� �2
( )

Rdzdxdh

ð23Þ

Now, using Hamilton’s principle

Zt2

t1

dUs � dTð Þdt ¼ 0 ð24Þ

By substituting Us and T values into Eq. (24), the

equations of motion of the FGS cylindrical nanoshell are

expressed as:

A1

o2U

ox2
þ A2

o2U

oh2
þ A3

o4U

oh4
þ A4

o4U

ox2oh2
þ A5

o4V

ox3oh

þ A6

o4V

oxoh3
þ A7

o2V

oxoh
þ A8

oW

ox
þ A9

o3W

oxoh2
þ A10

o2wx

ox2

þ A11

o2wx

oh2
þ A12

o4wx

ox2oh2
þ A13

o4wx

oh4
þ A14

o4wh

ox3oh

þ A15

o4wh

oxoh3
þ A16

o2wh

oxoh
þ I0

o2U

ot2
þ I1

o2wx

ot2
¼ 0;

ð25Þ

B1

o2U

oxoh
þ B2

o4U

ox3oh
þ B3

o4U

oxoh3
þ B4

o2V

ox2
þ B5

o2V

oh2

þ B6

o4V

ox4
þ B7

o4V

ox2oh2
þ B8V þ B9

oW

oh
þ B10

o3W

ox2oh

þ B11

o3W

oh3
þ B12

o2wx

oxoh
þ B13

o4wx

ox3oh
þ B14

o4wx

oxoh3

þ B15

o4wh

ox4
þ B16

o4wh

ox2oh2
þ B17

o2wh

ox2
þ B18

o2wh

oh2

þ B19wh þ I0
o2V

ot2
þ I1

o2wh

ot2
¼ 0; ð26Þ

C1

oU

ox
þ C2

o3U

oxoh2
þ C3

oV

oh
þ C4

o3V

ox2oh
þ C5

o3V

oh3
þ C6

o2W

ox2

þ C7

o4W

ox4
þ C8

o4W

ox2oh2
þ C9

o4W

oh4
þ C10

o2W

oh2
þ C11

owx

ox

þ C12

o3wx

ox3
þ C13

o3wx

oxoh2
þ C14

o3wh

ox2oh
þ C15

o3wh

oh3

þ C16

owh

oh
þ I0

o2W

ot2
¼ 0 ð27Þ

D1

o2U

ox2
þ D2

o2U

oh2
þ D3

o4U

ox2oh2
þ D4

o4U

oh4
þ D5

o2V

oxoh

þ D6

o4V

oxoh3
þ D7

o4V

ox3oh
þ D8

oW

ox
þ D9

o3W

ox3
þ D10

o3W

oxoh2

þ D11

o2wx

ox2
þ D12

o2wx

oh2
þ D13

o4wx

ox2oh2
þ D14

o4wx

oh4

þ D15wx þ D16

o4wh

ox3oh
þ D17

o4wh

oxoh3
þ D18

o2wh

oxoh

þ I1
o2U

ot2
þ I2

o2wx

ot2
¼ 0 ð28Þ

E1

o2U

oxoh
þ E2

o4U

ox3oh
þ E3

o4U

oxoh3
þ E4

o2V

ox2
þ E5

o2V

oh2
þ E6V

þ E7

o4V

ox4
þ E8

o4V

ox2oh2
þ E9

o3W

ox2oh
þ E10

o3W

oh3
þ E11

oW

oh

þ E12

o2wx

oxoh
þ E13

o4wx

ox3oh
þ E14

o4wx

oxoh3
þ E15

o4wh

ox4

þ E16

o4wh

ox2oh2
þ E17

o2wh

ox2
þ E18

o2wh

oh2
þ E19wh

þ I1
o2V

ot2
þ I2

o2wh

ot2
¼ 0 ð29Þ

The boundary conditions at the two ends of the FGS

cylindrical nanoshell and for the simple support are as

follows:

a1
oU

ox

�
þ a2

o3U

oxoh2
þ a3

oV

oh
þ a4

o3V

ox2oh
þ a5

o2W

oh2
þ a6W

þ a7
owx

ox
þ a9

o3wx

oxoh2
þ a10

o3wh

ox2oh
þ a11

owh

oh

�����
x¼0;L

¼ 0;

Ujx¼0;L 6¼ 0
	 


ð30Þ

V jx¼0;L¼ 0 ð31Þ

b1
o2U

oxoh
þb2Vþb3

o2V

ox2
þb4

oW

oh
þb5

o2wx

oxoh
þb6

o2wh

ox2
þb7wh

� �����
x¼0;L

¼0;

oV

ox

����
x¼0;L

6¼0

 !
:

ð32Þ
W jx¼0;L¼ 0; ð33Þ

c1
oV

oh
þ c2

owx

ox
þ c3

o2W

oh2
þ c4

o2W

ox2
þ c5

owh

oh

� �
x¼0;L

¼ 0;

oW

ox

����
x¼0;L

6¼ 0;

 !
:

ð34Þ
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d1
oU

ox

�
þ d2

o3U

oxoh2
þ d3

oV

oh
þ d4

o3V

ox2oh
þ d5

o2W

ox2

þ d6
o2W

oh2
þ d7W þ d8

o3wx

oxoh2
þ d9

owx

ox
þ d10

o3wh

ox2oh

þ d11
owh

oh

�����
x¼0;L

¼ 0; wxjx¼0;L 6¼ 0;
	 


: ð35Þ

whjx¼0;L¼ 0; ð36Þ

e1
o2U

oxoh
þe3

o2V

ox2
þe2Vþe4

oW

oh
þe6

o2wh

ox2
þe5

o2wx

oxoh
þe7wh

� �����
x¼0;L

¼0;

owh

ox

����
x¼0;L

6¼0;

 !
:

ð37Þ

In order to solve Eqs. (25)–(27), given the fact that FGS

cylindrical nanoshell is simply supported, the Navier

solution with the assumption of the displacements is used

as follows [42]:

Uðx; h; tÞ ¼
X
n

X
m

U0 cos
mpx
L

	 

cosðnhÞ;

Vðx; h; tÞ ¼
X
n

X
m

V0 sin
mpx
L

	 

sinðnhÞ;

Wðx; h; tÞ ¼
X
n

X
m

W0 sin
mpx
L

	 

cosðnhÞ;

wxðx; h; tÞ ¼
X
n

X
m

Wx cos
mpx
L

	 

cosðnhÞ;

whðx; h; tÞ ¼
X
n

X
m

Wh sin
mpx
L

	 

sinðnhÞ;

ð38Þ

where m and n are the axial half-wave and circumferential

wave numbers, respectively.

By substituting Eq. (52) in Eqs. (23–27), the equations

are rewritten in a matrix form as follows

½K� df g þ ½M� €d
� �

¼ 0 ð39Þ

where df gT¼ U V W Wx Whf gT is the displacement vector.

df g ¼ d0f gext ð40Þ

By substituting Eq. (40) in Eq. (39), the results are

rewritten as follows:

½K� þ x2½M�
� �

d0f g ¼ 0 ð41Þ

where d0f gT¼ U0 V0 W0 Wx Whf gT is the undetermined

displacement amplitude vector and x is the frequency.

To obtain a non-trivial solution of Eq. (41), it is neces-

sary to set the determinant of the coefficient matrix to

zero.

3 Numerical results and discussions

In this section, the impact of MLS parameter, wavenumber

and natural frequency of the FGS cylindrical nanoshell is

investigated. Geometric dimensions and mechanical prop-

erties are as follows:

Em ¼ 70GPa; tm ¼ 0:3; qm ¼ 2702 kg=m3;

Ec ¼ 427GPa; tc ¼ 0:17; qc ¼ 3100 kg=m3;

R ¼ 5� 10�9 m; h ¼ 0:5� 10�9 m:

ð42Þ

In view of shortage of studies on FGS nanoshell vibra-

tion, in Table 1, the developed model is compared with

Refs. [40, 43] in the case of isotropic cylindrical nanoshell.

In Ref. [40], vibrational analysis of the FG cylindrical shell

is investigated using first shear deformable shear theory

and the Navier procedure. In Ref. [43], vibration of single-

walled carbon nanotube (SWCNT) has been examined

using the elasticity theory in three dimensions. Considering

the results demonstrated in Table 1, in the classical case,

the results of the present study have good consistency with

the aforementioned references. Dimensionless natural fre-

quency is X ¼ xR
ffiffiffiffiffiffiffiffiffi
q=E

p
, and the nanoshell mechanical

and geometric characteristics are expressed as follows:

E ¼ 1:06TPa; t ¼ 0:3; q ¼ 2300 kg=m3; L=R ¼ 5;
R ¼ 2:32 nm; h ¼ 0:34 nm:

ð43Þ

Table 1 Comparison of the dimensionless natural frequency for a

cylindrical nanoshell based on classical theory

(m,n) h/R Ref. [40] Ref. [43] Present study

(1,1) 0.02 0.19536 0.19686 0.19618

0.05 0.19542 0.20036 0.19625

0.10 0.19561 0.20036 0.19646

(2,2) 0.02 0.25285 0.25632 0.25310

0.05 0.25969 0.26331 0.25910

0.10 0.28164 0.28080 0.27908

(3,3) 0.02 0.27627 0.27730 0.27581

0.05 0.31667 0.31577 031317

0.10 0.42508 0.40671 0.41634

(4,4) 0.02 0.30209 0.30178 0.30061

0.05 0.41734 0.40671 0.41006

0.10 0.66718 0.62705 0.62529

(5,5) 0.02 0.34335 0.34375 0.34043

0.05 0.57205 0.55360 0.56059

0.10 0.99311 0.93134 0.97405
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Due to a lack of experimental as well as MD results in

connection with FGS cylindrical nanoshell vibration, the

results of the present study are investigated using

SWCNT vibration as demonstrated in Ref. [44]. In this

reference, the MD method is used to compute SWCNT

natural frequencies. The results obtained for the simply

supported SWCNT are list in Table 2. Using couple stress

theory, the MLS parameter for (10,10) SWCNT and

(15,15) SWCNT was calculated as 0.0280 nm and 0.0178

nm, respectively. The parentheses in the Table 2 indicate

the percentage of error of the results obtained using the

two theories in comparison with the MD method. The

degree of error in the couple stress theory is lower than

that in the classical theory, indicating the efficiency of

couple stress theory in investigating vibrations in nan-

odimensions. In this table, mechanical and geometric

properties are used [44].

E ¼ ð3:19þ 3:15D�0:37Þ TPa; q ¼ 11726 kg/m3;
h ¼ 0:066 nm; t ¼ 0:19:

ð44Þ

Table 3 shows a comparison between the variation of

natural frequency of FGS cylindrical nanoshell in dif-

ferent thicknesses and power-law indexes in the classical

theory and couple stress theory. Besides, the natural

frequency for three types of FGS cylindrical nanoshells

has been determined. In this section, the assumption is

that L ¼ 5Rð Þ and m ¼ n ¼ 1ð Þ. An increase in MLS

parameter leads to an increase in natural frequency.

Considering the fact that FGS cylindrical nanoshell

stiffness in couple stress theory is dependent on MLS, it

can be argued that the increase in the natural frequency

of the FGS cylindrical nanoshell is due to the increase in

FGS cylindrical nanoshell rigidity. Moreover, increase in

Table 2 Comparison of the natural frequency (THz) of couple stress

shell model with MD simulation in different aspect ratios

SWCNT L (nm) (m,n) Natural frequency (THz)

MD

[44]

Present

study

(classical

theory)

Present

study

(couple

stress

theory)

SWCNT
(10,10)

l = 0.0280 nm

2.8 (1,2) 1.079 0.7629 (29.3) 0.8700 (19.4)

(2,2) 2.085 1.8967 (9.0) 1.9987 (4.1)

5.5 (1,2) 0.547 0.4563 (16.6) 0.5973 (9.2)

(2,2) 0.952 0.7795 (18.1) 0.8855 (7.0)

SWCNT
(15,15)

l = 0.0178 nm

2.8 (1,3) 0.957 0.7004 (26.8) 0.7744 (19.1)

(1,4) 1.216 1.0477 (13.8) 1.2071 (0.73)

4.0 (1,3) 0.718 0.5710 (20.5) 0.6497 (9.5)

(1,4) 1.074 0.9859 (8.2) 1.1430 (6.4)
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power-law index leads to decrease in natural frequency,

and increase in nanoshell thickness leads to increase in

natural frequency. The MLS parameter has a stronger

effect in higher nanoshell thicknesses. Furthermore, the

FGS cylindrical nanoshell type ‘b’ and type ‘a’ have the

highest and lowest natural frequency, respectively.

The effects of MLS parameter and power-law index are

displayed in Figs. 3, 4, 5. The natural frequency for the

three types of FGS cylindrical nanoshells is determined,

too. In this section, the assumption is that

L ¼ 5R; h ¼ 0:1Rð Þ and m ¼ n ¼ 1ð Þ. An increase in MLS

parameter leads to an increase in natural frequency, which

is indicative of higher prediction of stiffness by couple

stress theory in comparison with the classical theory.

Increase in power-law index leads to decrease in natural

frequency. Moreover, the FGS cylindrical nanoshell type

‘b’ and type ‘a’ have the highest and lowest natural fre-

quencies, respectively. In fact, type ‘b’ has more rigidity

than the two other types. In type ‘c,’ in comparison with the

other two types, in a certain MLS parameter, natural fre-

quency variation in different power-law indexes is lower.

Figures 6, 7, and 8 display the natural frequency of FGS

cylindrical nanoshell based on nanoshell length, MLS

parameter, and the three nanoshell types. In this section,

the assumption is that h ¼ 0:1Rð Þ and m ¼ n ¼ 1ð Þ. As

nanoshell length increases, natural frequency decreases.

Besides, as nanoshell length increases, the effect of MLS

parameter on natural frequency decreases. In FGS cylin-

drical nanoshell with couple stress theory, considering the

fact that the size of MLS parameter is a dimension degree,

variation of this parameter in FGS nanoshells with shorter

lengths exerts a stronger effect on natural frequency. As

displayed in Figs. 6, 7, and 8, FGS cylindrical nanoshell

type ‘b’ and type ‘a’ undergo the highest and lowest

variations in natural frequency, respectively.

Variations of the natural frequency of FGS cylindrical

nanoshell based on MLS and circumferential

wavenumber are displayed in Figs. 9, 10, and 11. In this

section, the assumption is that L ¼ Rð Þ, m ¼ 1ð Þ, and

l=h ¼ 1ð Þ. Increase in circumferential wavenumber in the

couple stress theory is accompanied by increased natural

frequency, with higher frequency increase in higher

MLSs. In fact, increase in nanoshell rigidity leads to

Fig. 3 Natural frequency based on MLS parameter and power-law

indexes and for type ‘a’

Fig. 4 Natural frequency based on MLS parameter and power-law

indexes and for type ‘b’

Fig. 5 Natural frequency based on MLS parameter and power-law

indexes and for type ‘c’

Fig. 6 Natural frequency based on MLS parameter and L/R and for

type ‘a’
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increased natural frequency. In fact, the rigidity of FGS

cylindrical nanoshell type ‘b’ is more than that of types

‘a’ and ‘c.’ In addition, the size and degree of the

variation of natural frequency in type b is greater than

that in types a and c.

4 Conclusion

In this paper, the vibration of FGS nanoshell was

investigated using couple stress theory. For this pur-

pose, the first shear deformable shell model was

employed. Governing equations and boundary condi-

tions were developed using Hamilton’s principle.

Equations of FGS nanoshell in the special case were

reduced to shell equations in the classical theory. By

considering the simply supported FGS cylindrical

nanoshell, the Navier solution was used to compute the

natural frequency of the FGS cylindrical nanoshell.

Afterward, the natural frequency was investigated

based on different parameters such as MLS parameter,

and axial and circumferential wavenumbers of the

nanoshell. Results demonstrated that increase in MLS

parameter and the consequent increase in rigidity leads

to increase in natural frequency. Moreover, the MLS

parameter has a considerable effect on natural fre-

quency in different nanoshell lengths and

wavenumbers.

Fig. 7 Natural frequency based on MLS parameter and L/R and for

type ‘b’

Fig. 8 Natural frequency based on MLS parameter and L/R and for

type ‘c’

Fig. 9 Natural frequency based on MLS and circumferential

wavenumber and for type ‘a’

Fig. 10 Natural frequency based on MLS and circumferential

wavenumber and for type ‘b’

Fig. 11 Natural frequency based on MLS and circumferential

wavenumber and for type ‘c’
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Appendix

In equations of motion (25)–(29), the constant coefficients

Ai, Bi, Ci, Di and Ei are rewritten as follows:

A1 ¼ �~A11; A2 ¼ �
~A33

R2
�

~A66l
2

R4
; A3 ¼

~A66l
2

4R4
; A4 ¼

~A66l
2

4R2
;

A5 ¼ �
~A66l

2

4R
;A6 ¼ �

~A66l
2

4R3
; A7 ¼ �

~A12

R
�

~A33

R
þ

~A66l
2

4R3
;

A8 ¼ �
~A12

R
; A9 ¼ �

~A66l
2

2R3
;A10 ¼ �~B11;

A11 ¼ �
~B33

R2
þ 5~A66l

2

4R3
; A12 ¼

~B66l
2

4R2
; A13 ¼

~B66l
2

4R4
;

A14 ¼ �
~B66l

2

4R
;A15 ¼ �

~B66l
2

4R3
;

A16 ¼ �
~A66l

2

4R2
�

~B33

R
�

~B12

R
þ

~B66l
2

2R3
:

ðA:1Þ

B1 ¼ �
~A12

R
�

~A33

R
þ

~A66l
2

4R3
; B2 ¼ �

~A66l
2

4R
; B3 ¼ �

~A66l
2

4R3
;

B4 ¼ �~A33 �
~A66l

2

2R2
;B5 ¼ �

~A66l
2

4R4
�

~A22

R2
; B6 ¼

~A66l
2

4
;

B7 ¼
~A66l

2

4R2
; B8 ¼

~A66l
2

4R4
þ

~A55ks

R2
;

B9 ¼ �
~A55ks

R2
�

~A22

R2
�

~A66l
2

4R4
; B10 ¼

3~A66l
2

4R2
; B11 ¼

~A66l
2

4R4
;

B12 ¼ �
~A66l

2

2R2
�

~B12

R
�

~B66l
2

4R3
�

~B33

R
; B13 ¼ �

~B66l
2

4R
;

B14 ¼ �
~B66l

2

4R3
;B15 ¼

~B66l
2

4
; B16 ¼

~B66l
2

4R2
;

B17 ¼ �~B33 �
~B66l

2

4R2
� 3~A66l

2

4R
;B18 ¼ �

~B22

R2
�

~A66l
2

4R3
;

B19 ¼ �
~A66l

2

4R3
�

~A55ks

R
;

ðA:2Þ

C1 ¼
~A12

R
; C2 ¼

~A66l
2

2R3
; C3 ¼

~A66l
2

4R4
þ

~A55ks

R2
þ

~A22

R2
;

C4 ¼ � 3~A66l
2

4R2
;C5 ¼ �

~A66l
2

4R4
; C6 ¼ �

~A66l
2

4R2
� ~A44ks;

C7 ¼
~A66l

2

4
; C8 ¼

~A66l
2

2R2
; C9 ¼

~A66l
2

4R4
;C10 ¼

~A22

R2
;

C11 ¼ �
~A55ks

R2
�

~A66l
2

4R4
; C11 ¼

~A66l
2

4R2
� ~A44ks þ

~B12

R
;

C12 ¼ �
~A66l

2

4
; C13 ¼ �

~A66l
2

4R2
; C14 ¼ �

~A66l
2

4R
�

~B66l
2

2R2
;

C15 ¼ �
~A66l

2

4R3
;C15 ¼ �

~A66l
2

4R3
þ

~B22

R2
�

~A55ks

R
;

ðA:3Þ

D1 ¼�~B11; D2 ¼�
~B33

R2
þ 5~A66l

2

4R3
; D3 ¼

~B66l
2

4R2
;

D4 ¼
~B66l

2

4R4
; D5 ¼�

~A66l
2

2R2
�

~B12

R
�

~B66l
2

4R3
�

~B33

R
;

D6 ¼�
~B66l

2

4R3
; D7 ¼�

~B66l
2

4R
;D8 ¼�

~B12

R
þ ~A44ks�

~A66l
2

4R2
;

D9 ¼
~A66l

2

4
; D10 ¼

~A66l
2

4R2
;D11 ¼�

~A66l
2

4
� ~D11;

D12 ¼�
~A66l

2

R2
þ

~B66l
2

2R3
�

~D33

R2
; D13 ¼

~D66l
2

4R2
; D14 ¼

~D66l
2

4R4
;

D15 ¼ ~A44ksþ
~A66l

2

4R2
; D16 ¼

~D66l
2

4R
; D17 ¼�

~D66l
2

4R3
;

D18 ¼�
~B66l

2

2R2
�

~D33

R
þ 3~A66l

2

4R
�

~D12

R
;

ðA:4Þ

E1 ¼ �
~A66l

2

4R2
�

~B33

R
�

~B12

R
þ

~B66l
2

2R3
; E2 ¼ �

~B66l
2

4R
;

E3 ¼ �
~B66l

2

4R3
;E4 ¼ �~B33 �

~B66l
2

4R2
� 3~A66l

2

4R
;

E5 ¼ �
~B22

R2
�

~A66l
2

4R3
; E6 ¼ �

~A66l
2

4R4
�

~A55ks

R
;

E7 ¼
~B66l

2

4
; E8 ¼

~B66l
2

4R2
; E9 ¼

~A66l
2

4R
þ

~B66l
2

2R2
; E10 ¼

~A66l
2

4R3
;

E11 ¼ �
~B22

R2
þ

~A55ks

R
þ

~A66l
2

4R3
;

E12 ¼ �
~B66l

2

2R2
�

~D33

R
þ 3~A66l

2

4R
�

~D12

R
;

E13 ¼ �
~D66l

2

4R
; E14 ¼ �

~D66l
2

4R3
; E15 ¼

~D66l
2

4
; E16 ¼

~D66l
2

4R2
;

E17 ¼ �
~B66l

2

2R
� ~A66l

2 � ~D33 �
~D66l

2

2R2
;

E18 ¼ �
~D22

R2
�

~A66l
2

4R2
; E19 ¼

~A66l
2

4R2
þ ~A55ks;

ðA:5Þ

In boundary conditions (30)–(37), the constant coeffi-

cients ai, bi, ci, di and ei are rewritten as follows:

a1 ¼ �~A11; a2 ¼ �
~A66l

2

4R2
; a3 ¼

~A12

R
þ

~A66l
2

4R3
; a4 ¼

~A66l
2

4R
;

a5 ¼ �
~A66l

2

4R3
; a6 ¼

~A12

R
; a7 ¼ ~B11; a8 ¼ �

~B66l
2

4R2
;

a9 ¼
~B66l

2

4R
; a10 ¼

~B12

R
�

~A66l
2

2R2

ðA:6Þ
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b1 ¼ �
~A66l

2

4R
; b2 ¼

~A66l
2

4R2
; b3 ¼

~A66l
2

4
; b4 ¼ �

~A66l
2

4R2
;

b5 ¼ �
~B66l

2

4R
; b6 ¼

~B66l
2

4
; b7 ¼ �

~A66l
2

4R
;

ðA:7Þ

c1 ¼ �
~A66l

2

2R2
; c2 ¼

~A66l
2

4
; c3 ¼

~A66l
2

4R2
; c4 ¼ �

~A66l
2

4
;

c5 ¼ �
~A66l

2

4R
;

ðA:8Þ

d1 ¼ ~B11; d2 ¼ �
~B66l

2

4R2
; d3 ¼

~B12

R
þ

~B66l
2

4R3
�

~A66l
2

2R2
;

d4 ¼
~B66l

2

4R
; d5 ¼ �

~A66l
2

4
; d6 ¼ �

~B66l
2

4R3
þ

~A66l
2

2R2
;

d7 ¼
~B12

R
; d8 ¼ �

~D66l
2

4R2
; d9 ¼ ~D11 þ

~A66l
2

4
; d10 ¼

~D66l
2

4R
;

d11 ¼
~D12

R
�

~B66l
2

4R2
�

~A66l
2

4R
;

ðA:9Þ

e1 ¼ �
~B66l

2

4R3
; e2 ¼

~B66l
2

4
; e3 ¼

~B66l
2

4R2
; e4 ¼ �

~B66l
2

4R2
;

e5 ¼
~D66l

2

4
; e6 ¼ �

~D66l
2

4R
; e7 ¼ �

~B66l
2

4R
:

ðA:10Þ

In equations (A.1)–(A.10), the constant coefficients ~Aij,
~Bij, and ~Dij are rewritten as follows:

~Aij ¼
Xn
k¼1

Z hkþ1

hk

Ck
ijdz; ~Bij ¼

Xn
k¼1

Z hkþ1

hk

Ck
ijzdz;

~Dij ¼
Xn
k¼1

Z hkþ1

hk

Ck
ijz

2dz; ~A66 ¼
Xn
k¼1

Z hkþ1

hk

Ck
33dz;

Ii ¼
Xn
k¼1

Z hkþ1

hk

qzidz:

ðA:12Þ
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