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Abstract In this present study, a numerical investigation
has been carried out to discuss the steady, two dimen-
sional flow and heat transfer on micropolar nanofluid over
a stretching/shrinking sheet with variable suction or injec-
tion in the presence of magnetic field and Newtonian heat-
ing. Copper (Cu), alumina (Al,0O3) and titanium (TiO») in
water-based micropolar nanofluid has been considered for
the present investigation. The solutions of the transformed
nonlinear equations have been obtained using Runge-
Kutta—Gill procedure together with the shooting method.
The results are presented graphically and discussed for var-
ious resulting parameters. Dual solutions are found to exist
in a certain range of the governing parameters. The thick-
ness of thermal boundary layer for Cu nanofluid is more
than that of other nanofluids in the cases of shrinking and
stretching sheets. Newtonian heating effect significantly
increases the thermal boundary layer thickness for both
sheets under investigation.
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List of symbols

By  Magnetic induction (T)

c Constant defined by Eq. (2.8)

Cr  Skin friction coefficient

C,  Wall couple stress

Specific heat at constant pressure (J/kg K)
Dimensionless stream function
Suction/injection parameter
Dimensionless micro rotation
Convective heat transfer coefficient
Microinertia density

Micropolar or material parameter
Thermal conductivity (W/mK)
Magnetic parameter

Constant defined by Eq. (2.5)
Microrotation component

u, Local Nusselt number

Pr  Prandtl number

gw  Surface heat flux (W/m?)

Re, Local Reynolds number

T Temperature of the fluid (°C)

u,,  Stretching velocity

u,v  Velocity components (m/s)

vy  Mass transfer velocity

x,y Dimensionless coordinates

ZZI AR IR D

Greek symbols

Thermal diffusivity (m?/s)

Conjugate parameter for Newtonian heating
Spin-gradient viscosity

Similarity variable

Dimensionless temperature

I >R Q
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Vortex viscosity
Stretching/shrinking parameter
Thermal viscosity (kg s/m)
Kinematic viscosity (m?/s)
Density (kg/m?)

Electrical conductivity (s/m)
Ty Wall shear stress

Q™ ST >~ =&

0] Nanoparticle volume fraction
v Stream function (m%/s)
Subscript

f Base fluid

nf  Nanofluid

s Solid

w Condition at the surface

oo  Condition at infinity

Superscript
! Differentiation with respect to

1 Introduction

Nanofluids are suspensions of nano-sized particles in com-
mon fluids that show significant enhancement of their
properties at modest nanoparticle concentrations. Most
generally used nanoparticles are aluminum, copper, iron
and titanium or their oxides. Consideration of nanofluids
in a variety of processes results in noteworthy applications
in engineering and sciences since materials with sizes of
nanometers possesses unique physical and chemical prop-
erties. Several investigations in literature reveals the fact
that nanofluids have been found to have enhanced thermo-
physical properties such as thermal conductivity, thermal
diffusivity, viscosity and convective heat transfer coef-
ficients compared to those of base fluids like oil or water.
Choi [8] is the first who introduced the term nanofluids to
refer to the fluid with suspended nanoparticles. Choi et al.
[9] reported that the addition of a small amount of nanopar-
ticles to conventional heat transfer liquids notably increases
the thermal conductivity of the fluid up to approximately
two times. Buongiorno [6] concluded that only Brownian
diffusion and thermophoresis are essential slip mecha-
nisms in nanofluids. Makinde and Aziz [24] examined the
flow of a nanofluid past a stretching sheet with a convec-
tive boundary condition and found that as the Prandtl num-
ber increases, the thickness of the thermal boundary layer
decreases as the curves become increasingly steeper. Mak-
inde and Mishra [25] studied the stagnation point flow of
variable viscosity nanofluids past a stretching surface with
radiative heat.

The study of fluids with micro-structures has acquired
a great attention due to its significant role playing in
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industrial and engineering applications. Micropolar fluids
are fluids with micro-structure. They belong to a class of
fluids with non-symmetric stress tensor that shall call polar
fluids and include as a special case, the well-constructed
Nevier—Stokes model of classical fluids that we shall call
ordinary fluids. Physically, micropolar fluids may represent
fluids consisting of rigid, randomly oriented (or spherical)
particles suspended in a viscous medium, where the defor-
mation of fluid particles is ignored. The theory of micropo-
lar fluids were introduced by Erignen [13, 14]. Arafa and
Gorla [2] carried out a work on the buoyancy and curvature
on convection of micropolar fluid along vertical cylinders
and needles. It is concluded that non-homogeneous bound-
ary conditions for microrotation significantly enhance the
microrotation. Nadeem et al. [29] investigated the stagna-
tion point flow of a micropolar nanofluid in a moving cyl-
inder with finite radius. It is confirmed that the velocity,
angular velocity and temperature at the surface increased
by increasing micropolar parameter value. Bourantas and
Loukopoulos [4] presented an analysis of natural convec-
tion of a micropolar nanofluid (Al,O/water) along inclined
rectangular enclosure. Noor et al. [32] discussed the mixed
convection flow of a micropolar nanofluid near a stagna-
tion point past a vertical stretching sheet. It is found that
the flow becomes cooler and the nanoparticle volume frac-
tion is reduced with an increase in Prandtl number. Rehman
and Nadeem [39] reported the applicability of boundary
layer theory for the mixed convection flow of micropolar
nanofluid on a vertical slender cylinder. It was illustrated
that the velocity and temperature of the fluid at the bound-
ary is decreased as the micropolar parameter increased.
Ram Reddy et al. [37] examined the similarity solution for
the steady free convection flow of a micropolar fluid past
a vertical plate with convective boundary condition. They
proved that microrotation, temperature, and concentration
distributions and skin friction coefficients are more in the
case of a micropolar fluid with strong concentration when
compared to the case of a micropolar fluid with weak
concentration.

Magnetohydrodynamic (MHD) boundary layers with
heat and mass transfer over flat surfaces are found in many
engineering and geophysical applications such as geother-
mal reservoirs, thermal insulation, enhanced oil recovery,
packed-bed catalytic reactors, and cooling of nuclear reac-
tors. Many chemical engineering processes like metal-
lurgical and polymer extrusion processes involve cooling
of a molten liquid being stretched into a cooling system.
The fluid mechanical properties of the penultimate product
depend mainly on the cooling liquid used and the rate of
stretching. Some polymer liquids like polyethylene oxide
and polyisobutylene solution in cetane, having better elec-
tromagnetic properties are normally used as cooling liquid
as their flow can be regulated by external magnetic fields
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to improve the quality of the final product. Jat and Jhankal
[19] concluded that the skin friction coefficient increases
with increasing the values of Reynolds number and mag-
netic parameter up to a certain value of Reynolds number
and afterwards it decreases with the increasing values of
these parameters and also the heat transfer rate increases
with increasing the values of these parameters. Hayat and
Nawaz [18] studied the effects of MHD on three dimen-
sional flow of a second grade fluid with heat transfer and
they concluded that dimensionless tangential velocity is
a decreasing function of magnetic field, whereas dimen-
sionless lateral velocity increases by increasing magnetic
parameter. Turkyilmazoglu [42] analyzed the three dimen-
sional MHD laminar stagnation point flow of an electri-
cally conducting fluid in the presence of a uniform vertical
magnetic field. It is observed that the stagnation velocities
and shear stresses are strongly dependent upon the mag-
netic field parameter. Hayat et al. [17] reported that the
three dimensional flow of MHD Eyring—Power fluid with
radiation effect and then concluded that magnetic field
causes a decrease in the magnitude of velocity compo-
nents. Kar et al. [21] investigated the effects of MHD, heat
source and chemical reaction in a vertical channel through
a porous medium and reported that the presence of heavier
species contributes to surface mass transfer significantly.
Rajagopal et al. [35] examined MHD flow due to impulsive
motion with heat and mass transfer past a stretching sheet
in a saturated porous medium. It is reported that the mag-
netic parameter affects significantly the surface shear stress
and surface mass transfer. El-Dabe et al. [12] proved that
the velocity distribution decreases with increasing the val-
ues of magnetic parameter while it increases the values of
Casson fluid parameter. Ramzan [38] discussed the influ-
ence of Newtonian heating, viscous dissipation and joule
heating on the magnetohydrodynamic (MHD) three dimen-
sional couple stress nanofluid past a stretching surface. It is
found that velocity components decrease with an increase
in couple stress parameter. Gireesha et al. [16] investigated
the MHD boundary layer three dimensional flow and heat
transfer towards a linearly stretching sheet in the presence
of nanoparticle. Das and Jana [11] considered the natu-
ral convective magneto-nanofluid flow and radiative heat
transfer past a moving vertical plate. It is concluded that
the rate of heat transfer at the plate is found to be higher for
Cu-water nanofluid. Baag and Mishra [3] investigated the
impact of heat and mass transfer analysis on MHD water-
based nanofluid and they found that boundary layer thick-
ness reduces in the presence of magnetic field.

The study of stretched flows with heat transfer is
given much importance. The heat transfer is through con-
stant wall temperature or constant wall heat flux. Also
there are another class of flow problems in which the
rate of heat transfer is proportional to the local surface

temperature from the boundary surface with finite heat
capacity known as Newtonian heating or conjugate con-
vective flow. The boundary layer natural convective flow
with Newtonian heating is reported by Merkin [27].
Chaudhary and Jain [7] obtained the similarity solution
for unsteady free convection flow past on impulsive ver-
tical surface in the presence of Newtonian heating. It
is reported that the increase in the Grashof number, the
contribution from the buoyancy near the plate becomes
significant. Mohamed et al. [28] concluded that when the
value of the conjugate parameter y decreases it is found
that the temperature also decreases. Khan et al. [22]
explicated the effects of Newtonian heating and mass dif-
fusion on MHD free convection flow over vertical plate
with shear stress at the wall.

The above cited articles in the literature explicates the
flow and the heat transfer characteristics of different work-
ing fluids in permeable stretching/shrinking sheet with
or without variable suction or injection in detail. Obvi-
ously, presence or absence of magnetic field and Newto-
nian heating becomes significant in many research works
as explained above. It can be noticed that consideration of
copper (Cu), alumina (Al,0O5) and ftitania (TiO,) in water-
based micropolar nanofluid as working fluid in the place of
base fluids is of greater interest in practical applications in
science and engineering. It is found that the solutions of the
transformed ordinary differential equations have dual solu-
tions in a certain range of the governing parameters. As a
trial attempt, the authors intend to provide the knowledge
of the effects of the steady, two dimensional flow of heat
transfer on micropolar nanofluid with variable suction or
injection in the presence of magnetic field and Newtonian
heating.

2 Mathematical formulation

Consider the steady two-dimensional boundary layer flow
over a permeable stretching/shrinking sheet in an electri-
cally conducting water-based micropolar nanofluid contain-
ing different types of nanoparticles: copper (Cu), alumina
(Alp03) and titanium dioxide (TiO»). The micropolar nano-
fluid is assumed as incompressible laminar flow. It is also
presumed that the base fluid (i.e., water) and the nanoparti-
cles are in thermal equilibrium and no slip occurs between
them in quiescent micropolar nanofluid. The thermo-physi-
cal properties of the nanofluid are specified in Table 1.

The sheet stretching velocity is u,,(x) = Ax, where 1 is a
constant with / > 0 corresponds to a stretching sheet. The
wall mass transfer velocity is v, (x) = vp, with vy < 0 for
suction. The x-axis is measured along the stretching surface
in the direction of the motion and the y-axis is perpendicu-
lar to it. A uniform transverse magnetic field of strength By
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Table 1 Thermo-physical properties of water and nanoparticles [33]

Physical prop- ~ Water/base fluid Cu AL O3 TiO,
erties

o (kg/m?) 997.1 8933 3970 4250

¢p (kg K) 4179 385 765 686.2

k (w/m K) 0.613 401 40 8.9538

¢ 0.0 0.05 0.15 0.2

o (S/m) 5.5 % 1076 59.6 x 10° 35 x 10° 2.6 x 10°

is applied parallel to the y-axis. It is assumed that induced
magnetic field produced by the fluid motion is negligible
in comparison with the applied one so that we consider the
magnetic field as B= (0,0, Bp). This assumption is justi-
fied, since the magnetic Reynolds number is very small
for metallic liquids and partially ionized fluids [10]. Also,
no external electric field is applied such that the effect
of polarization of fluid is negligible [10], so we assume
E= (0,0, 0). Schematic diagram of the physical model is
shown in Fig. 1.

Under the above assumptions, the governing equations
of continuity, momentum, angular momentum, and energy
are written as follows:

du 0v —0
ox | ay =0, 2.1
ou u Kk 0%u k ON  onB?
w2t oM Mnf ot ——— - Mu’ (2.2)
dx  dy Pnf Oy~ pnf Oy Pnf
_ 8N+ N 5 32N 2N+8u )3
U— +v— | =6pf—= — K« — |, .
or 9T _ 9°T a4
“ox TV Ay onf 9y2 24
y
A

-/

0
Nano fluid T BOT “«— u—> T B()T

—oT/oy=hT
(a) Stretching Case (4 > 0)

Fig. 1 Schematic diagram of the physical model
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The suitable boundary conditions are

y=0:u=u,x) = Aicx, v=ry,
ou oT
N=-n—, ——=nT
dx dy
y>o00:iu—0, N—>0 T— Te, 2.5)

where u and v are the velocity components along the x and y
axes, respectively, N is the microrotation component normal
to the xy-plane, k is the vortex viscosity, j is the microinertia
density, v,, is the mass transfer velocity, & is the convective
heat transfer coefficient, 7' is the temperature of the nano-
fluid, hg is the heat transfer coefficient, T, is the ambient
temperature and n is a constant which varies in the range
0 < n < 1. The strong concentration case (n = 0) represents
the concentrated particle flows in which the microelements
close to the wall surface are unable to rotate [20]. The weak
concentration case (n = 1/2) indicates the vanishing of the
anti-symmetrical part of the stress tensor and denotes weak
concentration [1]. The case n = 1, as suggested by Peddie-
son [34], is used for the modeling of turbulent boundary
layer flows. uyf is the viscosity of the nanofluid, oyf is the
thermal diffusivity of the nanofluid and pyy is the density of
the nanofluid, which are given by Oztop and Abu-Nada [33].

knf

(,OCp)nf’
Mf

HMnf = m,
= (nt/pf + K/2)j(pcp)nt
=(1- ¢)(,0Cp)f + ¢(pcp)s’

kot (ks + 2k) — 26k — k)

ke (ks + 2kp) + ¢ (ky — k)
3(c — )¢ 1o}

Onf =

pnf = (1 — @) pr + Pps,

Ynf = (//Lnf + K/Z)]

2.6)

U“fzaf[1+(a+2)—(a—1)¢ C 0T

v

v/

0
Nano fluid T B(;T —> u — TBOT
—0T /0y =hT

(b) Shrinking Case (4 < 0)



J Braz. Soc. Mech. Sci. Eng. (2017) 39:4379-4391

Here ¢ is the nanoparticle volume fraction, (ocp)nf is the
heat capacity of the nanofluid, §,¢ is the spin-gradient nano-
fluid viscosity, K = ML is the micropolar or material param-
eter, oy is the electrical conductivity of the base fluid, o is
the electrical conductivity of the nanoparticle, kyf is the ther-
mal conductivity of the nanofluid, k; and k; are the thermal
conductivities of the fluid and of the solid fractions, respec-
tively, and pr and ps are the densities of the fluid and of the
solid fractions, respectively. It should be mentioned that the
use of the above expression for kyr is restricted to spherical
nanoparticles where it does not account for other shapes of
nanoparticles [33]. Also, the viscosity of the nanofluid pn¢
has been approximated as viscosity of a base fluid uy con-
taining dilute suspension of fine spherical particles [5].

The continuity Eq. (2.1) is satisfied by the Cauchy—Rie-
mann equations

v=—vyand u = ¥,

where 1 (x, y) is the stream function.

To transform the Egs. (2.2)—(2.5) into a set of ordinary
differential equations, the following similarity transforma-
tions and dimensionless variables are introduced.

2.7)

vf

T-T
N(x,y) =cyfe/vpxgtn, 00 = — =,

where 7 is the similarity variable, vy is the kinematic vis-
cosity of the fluid fraction and c is a constant.

After the substitution of these transformations (2.8)
along with the Eq. (2.7) into the Eqs. (2.2)—(2.6), the result-
ing non-linear ordinary differential equations are written as

12
0= <C> v X=(c/vp P, wy) =X fn)

(2.8)

1+K(1 - ¢)*d
(=951 —p+o(2

>f”/(n) +raf" o) —f'm)?

3(c—1)
'+ Gr-w-18

g —M () =0,
=oo(5)

P S
=o+4(3)
(2.9)

1+ 501 —¢)?3
(=951 ¢ +¢(2

)g”(n) + &' (mf(m

Ps
Pf

K
—f'mgn) — ——————~ Qg —f" () =0,
1—¢+ ( )

(2.10)
1 knt/kr

Pr[1— ¢+ ¢(pCp)s/(pcp)y
+1 o' () — f (O ) = 0.

Together with the boundary conditions

] 6" (n)
@2.11)
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fO) =fu, f(O) =2 g0)=-nf"0),
0'(0) = —y (1 +6(0)),
fam)—0, g —0, 6 —0as n—o0 (212)

Here primes denote differentiation with respect to 1.

fw > 0 s the suction parameter and f,, < 0 corresponds
to injection, Pr is the Prandtl number, M is the magnetic
parameter and y is the conjugate parameter for Newtonian
heating and which are given by

A C )

fwz_

VU ks
B2 12
M=ﬁi,y=mGQ , 2.13)
ofc c

with A > 0 for stretching and 1 < O for shrinking.

The physical quantities of interest are the skin friction
coefficient Cy, the couple stress C, and the local Nusselt
number Nu,, which are defined as

Tw
cr=
T i
N
c, =2 () (2.14)
a\dy /,—o
xq‘/\/
ux = )
k(Two)

where the surface shear stress t,, and the surface heat flux
qy are given by

ou

nv=(u~+K)<ay> + k(N )y
y=0

oT
qw = _k<3> s
y y:O

with pns and kyr being the dynamic viscosity and thermal
conductivity of the nanofluids, respectively.
Using the similarity variables (2.8), we obtain

(2.15)

CrRey/? = (1 + (1 — mK)f" (0)
Re;'Cy=g'(0)

(2.16)
Nuy ,
r2 = 0O,
Rey
where Re, = “** is the local Reynolds number.

v

3 Solution of the problem

The governing equations for the present problem are
transformed into a set of coupled nonlinear differential
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equations by applying similarity transformation. The
Egs. (2.9)-(2.11) together with the boundary conditions
(2.12) are integrated numerically using Runge—Kutta—
Gill method along with the shooting technique. Runge—
Kutta—Gill method has the advantage of compensation
for accumulated round-off error and less storage require-
ments than the other Runge—Kutta formulae (Kumar and
Unny [23]). This method is concisely outlined as below:

vi=f, wn=f, »=f" nu=g ys=¢,
yve=0, y;=46

, ayap 2 K as
S P — V13— —ys + M=

V3 L T Kal] <}’2 yiy3 azys a2y2>

, ayar ( i K(2 )>
=|— 2y4a —y1ys + —(2ys — y3

Y5 1+ %al ny yiy @ Y- Yy

a
y; =Pr Lj (1y7 — Y2Y6)- G.D

The boundary conditions are transformed as follows:

y1(0) =fu, »200) =2, y4(0) = —ny3(0),
y7(0) = —y (1 + y6(0))
y(00) > 0, ys(c0) > 0, ye(o0) — 0. (3.2)

To carry out the step by step integration for the
Egs. (2.9)—(2.12), Gill’s procedures have been used
(Ralston and Wilf [36]). To start the integration it is nec-
essary to provide all the values of yi, y2, y3, ¥4, ¥5, Y6 at
n = 0 from which point, the forward integration has been
carried out but from the boundary conditions it is seen
that the values of ys, y4, y7 are not known. So, we are to
provide such values of y3, y4, y7 along with the known
values of the other function at n = 0 as would satisfy the
boundary conditions as n — 0o to a prescribed accuracy
after step by step integrations are performed. Since the
values of y3, y4, y; which are supplied merely as rough
values, some corrections have to be made in these val-
ues in order that the boundary conditions to n — oo are

satisfied. These corrections in the values of y3,ys,y7 are
taken care of by a self-iterative procedure which can for
convenience be called corrective procedure.

4 Results and discussion

A numerical approach has been made out to investigate
the effects of micropolar nanoparticles (Cu, Al,O3, TiO7)
in water-based fluid over a permeable stretching/shrink-
ing sheet with variable suction or injection in the pres-
ence of magnetic field and Newtonian heating. To gain
the physics of the problem, the velocity, angular velocity
and temperature distribution profiles have been illustrated
by varying controlling parameters, namely, nanoparticle
volume fraction parameter (¢), magnetic field parameter
(M), material parameter (K), stretching/shrinking param-
eter (4), suction or injection parameter (f,,), Newtonian
heating parameter (y), Prandtl number (Pr), and concen-
tration variation parameter (n). The numerical results are
tabulated and exhibited with the graphical illustrations.
The dual solutions (upper and lower branch solutions) are
obtained for the present problem. The graphical illustra-
tions of velocity, angular velocity and temperature dis-
tributions corresponding to dual solutions for some fixed
values of governing parameters are presented in detail.
From Figs. 3, 4,5, 6,7, 8,9, 10, 11 and 12, it is noted
that for a particular value of some parameter, there exists
two different profiles with various boundary layer thick-
nesses, which shows the existence of dual solutions. The
Prandtl number is fixed at 6.2 and the parameter n is set
as 0.5.

To get a clear view of the flow field, the stream line pat-
terns are plotted in Figs. 2 and 3 for stretching and shrink-
ing cases. Figures 4, 5 and 6 demonstrate the influence of
nanoparticles (Cu, AlpO3, TiO;) on dimensionless veloc-
ity, angular velocity and temperature profiles, respectively.
The other controlling parameters are set as ¢ = 0.1, M = 2,

Fig. 2 Stream lines for

stretching sheet when ¢ = 0.1,
Pr=62,M=2,K=0.3, 25¢
fw=05y=01andn=0.5

y=-03,-02-0.1,01,0203

0.5

3 T -
A=01 y=-03,-0.2,-0.1,0.1,02,0.3 A

25

0.5F
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Fig. 3 Stream lines for

shrinking case when ¢ = 0.1,
Pr=62,M=2,K=023, 25
fw=05y=01andn=0.5

y =-0.3,-0.2,-0.1,0.1,0.2, 0.3

0.5

y=-03,-02-0.1,01,0203 r=-1

Fig. 4 Velocity profiles for dif-

ferent nanofluids when ¢ = 0.1,
Pr=62,M=2,K=0.3,
fw=25,y=0.1,n=0.2 for

A = —1.5 (shrinking surface)
and A = 1.5 (stretching surface)

f'(m)

(b)

first solution
second solution

first solution
second solution

Fig. 5 Angular velocity profiles

() o3

for different nanofluids when
¢=0.1,Pr=62,M =2,

K=03, f,=25y=0.1,

n = 0.5 for A = —1.5 (shrinking
surface) and A = 1.5 (stretching
surface)

first solution
second solution

first solution
second solution

K =023, fi,, = 2.5 and y = 0.1. The velocity of Cu nano-
fluid accelerates more than that of other nanofluids for both
solutions. In the case of the second solution, it is noted
that the angular velocity profile exhibits an overshoot near
the shrinking sheet. Al,O3 nanofluid shows more angu-
lar velocity distribution than the other nanofluids under
consideration. It is observed that the thickness of thermal
boundary layer for Cu nanofluid is more predominant than
that of other two nanofluids in the case of shrinking and

stretching sheets. The physical reason behind this behavior
is that Cu has the highest thermal conductivity compared to
TiO3 and Al,O3.

From Figs. 7, 8,9, 10, 11, 12 and 13, the working fluid is
considered as Cu—water nanofluid. The influence of suction
(fiw > 0) parameter on velocity, angular velocity, and tem-
perature profiles are shown in Figs. 7, 8 and 9, respectively.
The other controlling parameters are fixed as ¢ = 0.1,
M =2, K = 0.3 and y = 0.1. For the first solution, when
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Fig. 6 Temperature profiles

b
for different nanofluids when (b) 0.05
¢=0.1,Pr=62,M =2, 1
K=03, f,=25,y=0.1, i 004l
n= 0.5 for A = —0.5 (shrinking '
surface) and A = 0.5 (stretching 1
surface) A=-05 2003 2=05
IS
first solution 0.02}" first solution
______ second solution second solution
0.01
0 .
4 5 6 3 35 4
n
Fig. 7 Velocity profiles for f,, @ o (b) 15 : : : ;
with Cu-water nanofluid when
¢=0.1,Pr=62,K =03, 021 1 ! ]
M=2,y=0.1,n=0.5 for 0.4} —
A = —1.5 (shrinking surface) 05l |
and A = 1.5 (stretching surface) -0.6r A=-15 1 B 1=15
£ .08 1 F gl
[ o i
1 i
-1.2 1
first solution first solution
45 second solution R ] et — second solution 1
16 2 4 6 8 0 12 14 6 8 10
n n
(@) —— (®) 4
0.2F 1
first solution
- second solution
o 3 |
02 A=-15 ] 2=2
z 2, |
o0 o0
-0.4 R
0.6 1 1t |
first solution \ fw=25273
P | second solution 7R
0 2 z 6 s 10 % 0.5 1 15 2
n n

Fig. 8 Angular velocity profiles for f,, with Cu-water nanofluid when ¢ = 0.1, Pr = 6.2, K =03, M =2,y =0.1,n =05 for A = —1.5

(shrinking surface) and A = 1.5 (stretching surface)

the suction increases, the velocity and angular velocity of
the fluid increases for shrinking and decrease for stretch-
ing sheets, respectively. But, the reverse results are found
in the case of second solution. The thermal boundary layer
thicknesses notably reduces in both solutions by increasing
suction for shrinking and stretching sheets, these variations
can be viewed in Fig. 9. It can be noticed that suction leads

@ Springer

to fast cooling of the sheet and this process results in nota-
ble applications in engineering and industries.

The effect for the variation of the magnetic param-
eter (M) on the dimensionless velocity profile is exem-
plified in Fig. 10. The other parameters are assumed as
¢=0.1,K=0.3, f,, = 2.5 and y = 0.1. It is confirmed
that for the first solution, the velocity distribution is
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significantly increased near the shrinking sheet while the
value of magnetic parameter is increased. An increase in
the magnetic parameter leads to a stronger Lorentz force.
Stronger Lorentz force creates resistance in the fluid
flows that appears in the reduction of velocities. As far as
the second solution is considered magnetic field remark-
able affects the velocity profile for both sheets.

The influence of material parameter (K) on dimen-
sionless velocity, angular velocity and temperature pro-
files is presented in Fig. 11. The discussion is carried out
for the constant values of the other parameters such as
¢=0.1,M =2, f,, =2.5and y = 0.1. As a result, it can
be observed that the angular velocity strictly increases
considerably when material parameter increases for

Fig. 9 Temperature profiles (a) 0.08
for f,, with Cu—water nano-
fluid when ¢ = 0.1, Pr = 6.2,
— — — first soluti first soluti
K=03,y=01,M=2, L 0.06 5161’0501513 :ollflilion slercsorsl(d) suoll?x?ion
n= 0.5 for A = —1.5 (shrinking
surface) and A = 2.0 (stretching -
c _ -
surface) g 0.04 A=-15 =2
0.02¢
4 6 3 4
Fig. 10 Velocity profiles for M (a) 2f — ] ® 2
with Cu—water nanofluid when AN
$=0.1,Pr=62K=03, i 15 A2
fw=2.5,y=0.1,n=0.5 for 0N = 1
A = —1.5 (shrinking surface) _ o154 first solution = first solution
and A = 2.0 (stretching surface) £ /2 —— second solution 01| R — second solution
s \ > M=134
S . S i
A=-15 oft
1
4l 1 ]
a‘ }' -0.5 ::\
ity ] af
0 2 4 6 8 0 2 4 6 8 10
n n
Fig. 11 Angular velocity (a) 0.05 M) 3 -
profiles for K with Cu—water 0
. A=15 |
nanofluid when ¢ = 0.1, first solution 25
Pr=62,M=2, f,=2.5, -0.051¢ /N meeee- second solution |
Y= 01, n=05forr=-1.5 —~ -0.1f¢ first solutioq
(shrinking surface) and A = 1.5 s v | &g T second solution
(stretching surface) -0.15 A=-15
0.2 |
-0.25 ]
0 2 4 6 8 10 6 3 10
n n
shrinking sheet. Furthermore, opposite results are

observed for stretching sheet.
The effects of solid volume fraction of nanoparticles

(¢) on the dimensionless temperature profile are exem-
plified in Fig. 12a, b. The effects of solid volume frac-
tion (¢) are described by assuming the values of other
parameters as M =2, K = 0.3, f, =2.5and y = 0.1. It
is noticed that for both solutions, as solid volume fraction
parameter increases, the thermal boundary layer thick-
ness increases for shrinking and stretching sheets.

The effects of Newtonian heating (y) parameter on
the dimensionless temperature profile are depicted
in Fig. 13. The other controlling parameters are set as
¢=0.1,M=2,K=0.3and f, =2.5. When conjugate
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Fig. 12 Temperature profiles

@ 0.12
for ¢ with Cu—water nano-
fluid when Pr=62, M =2, 0.1
fw=25n=05,y=0.1, ’
K =0.3for A = —1.5 (shrink-
ing surface) and A = 2.0
(stretching surface)

0.08
£0.06
@

0.04}

0.02¢

Fig. 13 Temperature profiles @ 3

for y with Cu—water nanofluid
when¢ =0.1,Pr=62, M =2,
K =023, fi,=2.5,n=0.5 for

® 0.12
, 1 0.1 A
first solution first solution
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1 0.08
csas 1 Egge 4=2
[«>]
1 0.04¢
1 0.02¢
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4 6 0 4 6
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first solution 1
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Table 2 Comparison of

K 1/2
Re,lc/sz for K and n when Rex "Gy

i=1,¢=0and f, =0 P

n=0.5

Present study Fauzi et al. [15]

Nazar et al. [30] Present study Fauzietal. [15] Nazar et al. [30]

0 —1.000008 —1.00000
I —1.367996 —1.3680
2 —1.621575 —1.6225
4 —2.005420 —2.0075

—1.0000 —1.000008 —1.0000 —1.0000
—1.3679 —1.224820 —1.2248 —1.2247
—-1.6213 —1.414479 —1.4159 —1.4142
—2.0042 —1.733292 —1.7381 —1.7321

parameter for Newtonian heating (y) increases, thick-
nesses of the thermal boundary layer considerably
increase for both surfaces. In fact, the conjugate
parameter for Newtonian heating effect not only has
the tendency to increase the fluid temperature but also
increases the thermal boundary layer thickness of sheets
sizeably.

Dual solutions are classified as first solution and second
solution. Weidman et al. [43], Rosca and Pop [40], Nazar
et al. [31], Merkin [26], and Sharma et al. [41] are exam-
ined stability analysis to determine which solution is sta-
ble and physically applicable. They are proved that the first
solution is the stable solution and second one is unstable.

@ Springer

Moreover, it is worth mentioning that both solutions sat-
isfied the far field boundary conditions asymptotically,
which are supporting the validity of the obtained numerical
results. To verify the accuracy of our present results, com-
parisons have been made with the available results of Fauzi
et al. [15] and Nazar et al. [30] in the literature, which are
shown in Tables 2, 3, 4, 5, 6, 7 and 8. In Table 2, com-
parison of the local skin friction (Re)lc/ 2Cf) for stretching
case and viscous fluid in the absence of suction or injec-
tion is presented. Tables 3, 4 and 5 illustrate the compari-
son results of skin friction coefficient for Cu, Al,O3 and
TiO, in water-based micropolar nanofluids, respectively.
Tables 6, 7 and 8 shows the comparison results of couple
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Table 3 Comparison
of Re}(/ 2 Cy for f,, when
A=1,K=2,n=0.5,
Pr=M =y =0 forCu

Table 4 Comparison

of Re;/ 2 Cy for f,, when
A=1,K=2,n=0.5,
Pr=M =y =0 for Al,03

Table 5 Comparison

of Rey/? Cy for f,, when
A=1,K=2,n=0.5,
Pr=M =y =0 for TiO,

Table 6 Comparison
of Re;l C, for f,, when
A=1,K=2,n=0.5,
Pr=M =y =0forCu
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fo Rl

¢ =0.05 $»=0.1 $»=0.2

Present study Fauzietal. [15] Presentstudy Fauzietal.[15] Presentstudy Fauzietal. [15]
0 —1.617787 —1.6258 —1.766825 —1.7726 —1.942730 —1.9466
1 —2.399188 —2.4026 —2.711805 —2.7136 —3.103236 —3.1041
2 —3.389040 —3.3896 —3.918142 —3.9183 —4.595383 —4.5954
2.5 —3.935964 —3.9362 —4.582944 —4.5830 —5.414644 —5.4147
3 —4.506066 —4.5061 —5.274059 —5.2741 —6.263688 —6.2637
fw Re)lc/ch

¢ = 0.05 ¢ =0.1 ¢$=02

Present study Fauzietal. [15] Presentstudy Fauzietal. [15] Presentstudy Fauzietal. [15]
0 —1.466842 —1.4779 —1.502291 —1.5125 —1.524793 —1.5344
1 —2.099890 —2.1059 —2.168640 —2.1738 —2.212781 —2.2175
2 —2.894216 —2.8959 —3.006760 —3.0081 —3.079371 —3.0805
2.5 —3.333942 —3.3347 —3.470558 —3.4711 —3.558798 —3.5592
3 —3.793529 —3.7938 —3.955007 —3.9552 —4.059377 —4.0595
fw Re)lc/ch

¢ = 0.05 ¢ =0.1 $=02

Present study Fauzietal. [15] Presentstudy Fauzietal.[15] Presentstudy Fauzietal. [15]
0 —1.475768 —1.4867 —1.518439 —1.5283 —1.551364 —1.5604
1 —2.117111 —2.1229 —2.200267 —2.2052 —2.265378 —2.2696
2 —2.922341 —2.9239 —3.058766 —3.0599 —3.166265 —3.1642
2.5 —3.368064 —3.3687 —3.533754 —3.5342 —3.664503 —3.6649
3 —3.833847 —3.8341 —4.029750 —4.0299 —4.184476 —4.1846
fv  Re'Cy

¢ = 0.05 ¢ =0.1 $=02

Present study Fauzietal. [15] Presentstudy Fauzietal. [15] Presentstudy Fauzietal. [15]
0 —0.327110 —0.3273 —0.390814 —0.3903 —0.471763 —0.4719
1 —0.719509 —0.7201 —0.919235 —0.9196 —1.203758 —1.2040
2 —1.435699 —1.4359 —1.918979 —1.9191 —2.639693 —2.6397
2.5 —1.936476 —1.9366 —2.625422 —2.6255 —3.664796 —3.6648
3 —2.538079 —2.5381 —3.476963 —3.4770 —4.904224 —4.9042

stress (Re;l C,) for various nanofluids under investigation.
It is established that the results obtained in the present work
demonstrate a good agreement with the previously pub-

lished results.

5 Conclusions

In the present paper, the steady, two dimensional flow of
micropolar nanofluids with heat transfer over permeable
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Table 7 Comparison .
fw

—1
of Re;l C, of f, when Re, " Ca

A=1,K=2,n=0.5,
Pr=M =y =0 for Al,0O3

#=0.05

¢=0.1 ¢=02

Present study

Fauzi et al. [15]

Present study Fauzietal. [15] Present study Fauzietal. [15]

0  —0268876  —0.2691 —0.282042  —0.2823 —0.290563  —0.2903
—0.551181  —0.5521 —0.587866  —1.0869 —0.612038  —0.6129
2 —1.047061  —1.0475 —1.130075  —1.1305 —1.185313  —1.1857
25 —1389396  —1.3897 —1.505597  —1.5058 —1.583130  —1.5833
3 —1.798858  —1.7989 —1.955260  —1.9554 —2.059818  —2.0599
of Re-16, Tor fwhen fo Re'Gy
4=1,K=2,n=0.5, ¢ =0.05 ¢=0.1 $=02

Pr=M =y =0 for TiO,
Present study

Fauzi et al. [15]

Present study Fauzietal. [15] Present study Fauzi et al. [15]

0 —0.272161 —0.2724 —0.288143 —0.2883 —0.300786 —0.3010
—0.560259 —0.5611 —0.605139 —0.6059 —0.641482 —0.6422
2 —1.067509 —1.0679 —1.169506 —1.1699 —1.253152 —1.2535
25 —1.417982 —1.4182 —1.560927 —1.5611 —1.678572 —1.6787
3 —1.837298 —1.8374 —2.029861 —2.0299 —2.188730 —2.1888
stretching/shrinking sheet with variable suction/injection = References

in the presence of magnetic field and Newtonian heating
is investigated. The governing equations are approxi-
mated to a system of non-linear ordinary differential
equations by similarity transformation. Numerical calcu-
lations are carried out for various values of the dimen-
sionless parameters of the problem. The results also
show the existence of dual solutions for both stretching
and shrinking cases. The drawn conclusions for the pre-
sent work after a thorough observation are summarized
as follows:

1. Dual solutions are found for some values of the gov-
erning parameters for both stretching and shrinking
sheets.

2. The thermal boundary layer thicknesses notably
reduce by increasing suction parameter for shrinking
sheet.

3. On increasing material parameter, the angular veloc-
ity of the fluid significantly increases near the shrink-
ing sheet.

4. For both solutions, when the solid volume frac-
tion parameter is increased, an increase in the ther-
mal boundary layer thickness is found for the sheets
under consideration.
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