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List of symbols
B0  Magnetic induction (T)
c  Constant defined by Eq. (2.8)
Cf   Skin friction coefficient
Cn  Wall couple stress
cp  Specific heat at constant pressure (J/kg K)
f   Dimensionless stream function
fw  Suction/injection parameter
g  Dimensionless micro rotation
h  Convective heat transfer coefficient
j  Microinertia density
K  Micropolar or material parameter
k  Thermal conductivity (W/mK)
M  Magnetic parameter
n  Constant defined by Eq. (2.5)
N  Microrotation component
Nux  Local Nusselt number
Pr  Prandtl number
qw  Surface heat flux (W/m2)
Rex  Local Reynolds number
T   Temperature of the fluid (°C)
uw  Stretching velocity
u, v  Velocity components (m/s)
vw  Mass transfer velocity
x, y  Dimensionless coordinates

Greek symbols
α  Thermal diffusivity (m2/s)
γ  Conjugate parameter for Newtonian heating
δ  Spin-gradient viscosity
η  Similarity variable
θ  Dimensionless temperature

Abstract In this present study, a numerical investigation 
has been carried out to discuss the steady, two dimen-
sional flow and heat transfer on micropolar nanofluid over 
a stretching/shrinking sheet with variable suction or injec-
tion in the presence of magnetic field and Newtonian heat-
ing. Copper (Cu), alumina (Al2O3) and titanium (TiO2) in 
water-based micropolar nanofluid has been considered for 
the present investigation. The solutions of the transformed 
nonlinear equations have been obtained using Runge–
Kutta–Gill procedure together with the shooting method. 
The results are presented graphically and discussed for var-
ious resulting parameters. Dual solutions are found to exist 
in a certain range of the governing parameters. The thick-
ness of thermal boundary layer for Cu nanofluid is more 
than that of other nanofluids in the cases of shrinking and 
stretching sheets. Newtonian heating effect significantly 
increases the thermal boundary layer thickness for both 
sheets under investigation.
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κ  Vortex viscosity
�  Stretching/shrinking parameter
µ  Thermal viscosity (kg s/m)
υ  Kinematic viscosity (m2/s)
ρ  Density (kg/m3)
σ  Electrical conductivity (s/m)
τw  Wall shear stress
φ  Nanoparticle volume fraction
ψ  Stream function (m2/s)

Subscript
f   Base fluid
nf  Nanofluid
s  Solid
w  Condition at the surface
∞  Condition at infinity

Superscript
′  Differentiation with respect to η

1 Introduction

Nanofluids are suspensions of nano-sized particles in com-
mon fluids that show significant enhancement of their 
properties at modest nanoparticle concentrations. Most 
generally used nanoparticles are aluminum, copper, iron 
and titanium or their oxides. Consideration of nanofluids 
in a variety of processes results in noteworthy applications 
in engineering and sciences since materials with sizes of 
nanometers possesses unique physical and chemical prop-
erties. Several investigations in literature reveals the fact 
that nanofluids have been found to have enhanced thermo-
physical properties such as thermal conductivity, thermal 
diffusivity, viscosity and convective heat transfer coef-
ficients compared to those of base fluids like oil or water. 
Choi [8] is the first who introduced the term nanofluids to 
refer to the fluid with suspended nanoparticles. Choi et al. 
[9] reported that the addition of a small amount of nanopar-
ticles to conventional heat transfer liquids notably increases 
the thermal conductivity of the fluid up to approximately 
two times. Buongiorno [6] concluded that only Brownian 
diffusion and thermophoresis are essential slip mecha-
nisms in nanofluids. Makinde and Aziz [24] examined the 
flow of a nanofluid past a stretching sheet with a convec-
tive boundary condition and found that as the Prandtl num-
ber increases, the thickness of the thermal boundary layer 
decreases as the curves become increasingly steeper. Mak-
inde and Mishra [25] studied the stagnation point flow of 
variable viscosity nanofluids past a stretching surface with 
radiative heat.

The study of fluids with micro-structures has acquired 
a great attention due to its significant role playing in 

industrial and engineering applications. Micropolar fluids 
are fluids with micro-structure. They belong to a class of 
fluids with non-symmetric stress tensor that shall call polar 
fluids and include as a special case, the well-constructed 
Nevier–Stokes model of classical fluids that we shall call 
ordinary fluids. Physically, micropolar fluids may represent 
fluids consisting of rigid, randomly oriented (or spherical) 
particles suspended in a viscous medium, where the defor-
mation of fluid particles is ignored. The theory of micropo-
lar fluids were introduced by Erignen [13, 14]. Arafa and 
Gorla [2] carried out a work on the buoyancy and curvature 
on convection of micropolar fluid along vertical cylinders 
and needles. It is concluded that non-homogeneous bound-
ary conditions for microrotation significantly enhance the 
microrotation. Nadeem et al. [29] investigated the stagna-
tion point flow of a micropolar nanofluid in a moving cyl-
inder with finite radius. It is confirmed that the velocity, 
angular velocity and temperature at the surface increased 
by increasing micropolar parameter value. Bourantas and 
Loukopoulos [4] presented an analysis of natural convec-
tion of a micropolar nanofluid (Al2O3/water) along inclined 
rectangular enclosure. Noor et al. [32] discussed the mixed 
convection flow of a micropolar nanofluid near a stagna-
tion point past a vertical stretching sheet. It is found that 
the flow becomes cooler and the nanoparticle volume frac-
tion is reduced with an increase in Prandtl number. Rehman 
and Nadeem [39] reported the applicability of boundary 
layer theory for the mixed convection flow of micropolar 
nanofluid on a vertical slender cylinder. It was illustrated 
that the velocity and temperature of the fluid at the bound-
ary is decreased as the micropolar parameter increased. 
Ram Reddy et al. [37] examined the similarity solution for 
the steady free convection flow of a micropolar fluid past 
a vertical plate with convective boundary condition. They 
proved that microrotation, temperature, and concentration 
distributions and skin friction coefficients are more in the 
case of a micropolar fluid with strong concentration when 
compared to the case of a micropolar fluid with weak 
concentration.

Magnetohydrodynamic (MHD) boundary layers with 
heat and mass transfer over flat surfaces are found in many 
engineering and geophysical applications such as geother-
mal reservoirs, thermal insulation, enhanced oil recovery, 
packed-bed catalytic reactors, and cooling of nuclear reac-
tors. Many chemical engineering processes like metal-
lurgical and polymer extrusion processes involve cooling 
of a molten liquid being stretched into a cooling system. 
The fluid mechanical properties of the penultimate product 
depend mainly on the cooling liquid used and the rate of 
stretching. Some polymer liquids like polyethylene oxide 
and polyisobutylene solution in cetane, having better elec-
tromagnetic properties are normally used as cooling liquid 
as their flow can be regulated by external magnetic fields 
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to improve the quality of the final product. Jat and Jhankal 
[19] concluded that the skin friction coefficient increases 
with increasing the values of Reynolds number and mag-
netic parameter up to a certain value of Reynolds number 
and afterwards it decreases with the increasing values of 
these parameters and also the heat transfer rate increases 
with increasing the values of these parameters. Hayat and 
Nawaz [18] studied the effects of MHD on three dimen-
sional flow of a second grade fluid with heat transfer and 
they concluded that dimensionless tangential velocity is 
a decreasing function of magnetic field, whereas dimen-
sionless lateral velocity increases by increasing magnetic 
parameter. Turkyilmazoglu [42] analyzed the three dimen-
sional MHD laminar stagnation point flow of an electri-
cally conducting fluid in the presence of a uniform vertical 
magnetic field. It is observed that the stagnation velocities 
and shear stresses are strongly dependent upon the mag-
netic field parameter. Hayat et al. [17] reported that the 
three dimensional flow of MHD Eyring–Power fluid with 
radiation effect and then concluded that magnetic field 
causes a decrease in the magnitude of velocity compo-
nents. Kar et al. [21] investigated the effects of MHD, heat 
source and chemical reaction in a vertical channel through 
a porous medium and reported that the presence of heavier 
species contributes to surface mass transfer significantly. 
Rajagopal et al. [35] examined MHD flow due to impulsive 
motion with heat and mass transfer past a stretching sheet 
in a saturated porous medium. It is reported that the mag-
netic parameter affects significantly the surface shear stress 
and surface mass transfer. El-Dabe et al. [12] proved that 
the velocity distribution decreases with increasing the val-
ues of magnetic parameter while it increases the values of 
Casson fluid parameter. Ramzan [38] discussed the influ-
ence of Newtonian heating, viscous dissipation and joule 
heating on the magnetohydrodynamic (MHD) three dimen-
sional couple stress nanofluid past a stretching surface. It is 
found that velocity components decrease with an increase 
in couple stress parameter. Gireesha et al. [16] investigated 
the MHD boundary layer three dimensional flow and heat 
transfer towards a linearly stretching sheet in the presence 
of nanoparticle. Das and Jana [11] considered the natu-
ral convective magneto-nanofluid flow and radiative heat 
transfer past a moving vertical plate. It is concluded that 
the rate of heat transfer at the plate is found to be higher for 
Cu–water nanofluid. Baag and Mishra [3] investigated the 
impact of heat and mass transfer analysis on MHD water-
based nanofluid and they found that boundary layer thick-
ness reduces in the presence of magnetic field.

The study of stretched flows with heat transfer is 
given much importance. The heat transfer is through con-
stant wall temperature or constant wall heat flux. Also 
there are another class of flow problems in which the 
rate of heat transfer is proportional to the local surface 

temperature from the boundary surface with finite heat 
capacity known as Newtonian heating or conjugate con-
vective flow. The boundary layer natural convective flow 
with Newtonian heating is reported by Merkin [27]. 
Chaudhary and Jain [7] obtained the similarity solution 
for unsteady free convection flow past on impulsive ver-
tical surface in the presence of Newtonian heating. It 
is reported that the increase in the Grashof number, the 
contribution from the buoyancy near the plate becomes 
significant. Mohamed et al. [28] concluded that when the 
value of the conjugate parameter γ decreases it is found 
that the temperature also decreases. Khan et al. [22] 
explicated the effects of Newtonian heating and mass dif-
fusion on MHD free convection flow over vertical plate 
with shear stress at the wall.

The above cited articles in the literature explicates the 
flow and the heat transfer characteristics of different work-
ing fluids in permeable stretching/shrinking sheet with 
or without variable suction or injection in detail. Obvi-
ously, presence or absence of magnetic field and Newto-
nian heating becomes significant in many research works 
as explained above. It can be noticed that consideration of 
copper (Cu), alumina (Al2O3) and titania (TiO2) in water-
based micropolar nanofluid as working fluid in the place of 
base fluids is of greater interest in practical applications in 
science and engineering. It is found that the solutions of the 
transformed ordinary differential equations have dual solu-
tions in a certain range of the governing parameters. As a 
trial attempt, the authors intend to provide the knowledge 
of the effects of the steady, two dimensional flow of heat 
transfer on micropolar nanofluid with variable suction or 
injection in the presence of magnetic field and Newtonian 
heating.

2  Mathematical formulation

Consider the steady two-dimensional boundary layer flow 
over a permeable stretching/shrinking sheet in an electri-
cally conducting water-based micropolar nanofluid contain-
ing different types of nanoparticles: copper (Cu), alumina 
(Al2O3) and titanium dioxide (TiO2). The micropolar nano-
fluid is assumed as incompressible laminar flow. It is also 
presumed that the base fluid (i.e., water) and the nanoparti-
cles are in thermal equilibrium and no slip occurs between 
them in quiescent micropolar nanofluid. The thermo-physi-
cal properties of the nanofluid are specified in Table 1.

The sheet stretching velocity is uw(x) = �x, where � is a 
constant with � > 0 corresponds to a stretching sheet. The 
wall mass transfer velocity is vw(x) = v0, with v0 < 0 for 
suction. The x-axis is measured along the stretching surface 
in the direction of the motion and the y-axis is perpendicu-
lar to it. A uniform transverse magnetic field of strength B0 
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is applied parallel to the y-axis. It is assumed that induced 
magnetic field produced by the fluid motion is negligible 
in comparison with the applied one so that we consider the 
magnetic field as �B = (0, 0,B0). This assumption is justi-
fied, since the magnetic Reynolds number is very small 
for metallic liquids and partially ionized fluids [10]. Also, 
no external electric field is applied such that the effect 
of polarization of fluid is negligible [10], so we assume 
�E = (0, 0, 0). Schematic diagram of the physical model is 
shown in Fig. 1.

 Under the above assumptions, the governing equations 
of continuity, momentum, angular momentum, and energy 
are written as follows:

(2.1)
∂u

∂x
+ ∂v

∂y
= 0,

(2.2)u
∂u

∂x
+ v

∂u

∂y
= µnf + κ

ρnf

∂2u

∂y2
+ κ

ρnf

∂N

∂y
− σnfB

2
0

ρnf
u,

(2.3)ρnfj

(

u
∂N

∂x
+ v

∂N

∂y

)

= δnf
∂2N

∂y2
− κ

(

2N + ∂u

∂y

)

,

(2.4)u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
.

The suitable boundary conditions are

where u and v are the velocity components along the x and y 
axes, respectively, N is the microrotation component normal 
to the xy-plane, κ is the vortex viscosity, j is the microinertia 
density, vw is the mass transfer velocity, h is the convective 
heat transfer coefficient, T is the temperature of the nano-
fluid, hs is the heat transfer coefficient, T∞ is the ambient 
temperature and n is a constant which varies in the range 
0 ≤ n ≤ 1. The strong concentration case (n = 0 ) represents 
the concentrated particle flows in which the microelements 
close to the wall surface are unable to rotate [20]. The weak 
concentration case (n = 1/2) indicates the vanishing of the 
anti-symmetrical part of the stress tensor and denotes weak 
concentration [1]. The case n = 1, as suggested by Peddie-
son [34], is used for the modeling of turbulent boundary 
layer flows. µnf is the viscosity of the nanofluid, αnf is the 
thermal diffusivity of the nanofluid and ρnf is the density of 
the nanofluid, which are given by Oztop and Abu-Nada [33].

(2.5)

y = 0 : u = uw(x) = �cx, v = v0,

N = −n
∂u

∂x
, −∂T

∂y
= hsT

y → ∞ : u → 0, N → 0, T → T∞,

(2.6)

αnf =
knf

(ρCp)nf
, ρnf = (1− φ)ρf + φρs,

µnf =
µf

(1− φ)2.5
, γnf = (µnf + κ/2)j

= µf (µnf/µf + K/2)j(ρcp)nf

= (1− φ)(ρcp)f + φ(ρcp)s,

knf

kf
= (ks + 2kf )− 2φ(kf − ks)

(ks + 2kf )+ φ(kf − ks)

σnf = σf

[

1+ 3(σ − 1)φ

(σ + 2)− (σ − 1)φ

]

, σ = σs

σf
.

Table 1  Thermo-physical properties of water and nanoparticles [33]

Physical prop-
erties

Water/base fluid Cu Al2O3 TiO2

ρ (kg/m3) 997.1 8933 3970 4250

cp (J/kg K) 4179 385 765 686.2

k (w/m K) 0.613 401 40 8.9538

φ 0.0 0.05 0.15 0.2

σ (S/m) 5.5 × 10−6 59.6 × 106 35 × 106 2.6 × 106

(a) (b)

Fig. 1  Schematic diagram of the physical model
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Here φ is the nanoparticle volume fraction, (ρcp)nf is the 
heat capacity of the nanofluid, δnf is the spin-gradient nano-
fluid viscosity, K = κ

µf
 is the micropolar or material param-

eter, σf  is the electrical conductivity of the base fluid, σs is 
the electrical conductivity of the nanoparticle, knf is the ther-
mal conductivity of the nanofluid, kf  and ks are the thermal 
conductivities of the fluid and of the solid fractions, respec-
tively, and ρf  and ρs are the densities of the fluid and of the 
solid fractions, respectively. It should be mentioned that the 
use of the above expression for knf is restricted to spherical 
nanoparticles where it does not account for other shapes of 
nanoparticles [33]. Also, the viscosity of the nanofluid µnf 
has been approximated as viscosity of a base fluid µf  con-
taining dilute suspension of fine spherical particles [5].

The continuity Eq. (2.1) is satisfied by the Cauchy–Rie-
mann equations

where ψ(x, y) is the stream function.
To transform the Eqs. (2.2)–(2.5) into a set of ordinary 

differential equations, the following similarity transforma-
tions and dimensionless variables are introduced.

where η is the similarity variable, υf  is the kinematic vis-
cosity of the fluid fraction and c is a constant.

After the substitution of these transformations (2.8) 
along with the Eq. (2.7) into the Eqs. (2.2)–(2.6), the result-
ing non-linear ordinary differential equations are written as 

Together with the boundary conditions

(2.7)v = −ψx and u = ψy,

(2.8)

η =
(

c

υf

)1/2

y, X = (c/υf )
1/2x, ψ(x, y) = υf X f (η)

N(x, y) = c
√

c/υf xg(η), θ(η) = T − T∞
Tw

,

(2.9)

1+ K(1− φ)2.5

(1− φ)2.51− φ + φ

(

ρs
ρf

) f ′′′(η)+ f (η)f ′′(η)− f ′(η)2

+ K

1− φ + φ

(

ρs
ρf

)g′(η)−M
1+ 3(σ−1)

(σ+2)−(σ−1)φ

1− φ + φ

(

ρs
ρf

) f ′(η) = 0,

(2.10)

1+ K
2
(1− φ)2.5

(1− φ)2.51− φ + φ

(

ρs
ρf

)g′′(η)+ g′(η)f (η)

− f ′(η)g(η)− K

1− φ + φ

(

ρs
ρf

) (2g(η)− f ′′(η)) = 0,

(2.11)

1

Pr

knf/kf
[

1− φ + φ(ρCp)s/(ρcp)f
]θ ′′(η)

+ f (η)θ ′(η)− f ′(η)θ(η) = 0.

Here primes denote differentiation with respect to η.
fw > 0 is the suction parameter and fw < 0 corresponds 

to injection, Pr is the Prandtl number, M is the magnetic 
parameter and γ is the conjugate parameter for Newtonian 
heating and which are given by

with � > 0 for stretching and � < 0 for shrinking.
The physical quantities of interest are the skin friction 

coefficient Cf , the couple stress Cn and the local Nusselt 
number Nux, which are defined as

where the surface shear stress τw and the surface heat flux 
qw are given by

with µnf and knf being the dynamic viscosity and thermal 
conductivity of the nanofluids, respectively.

Using the similarity variables (2.8), we obtain

where Rex = uwx
υ

 is the local Reynolds number.

3  Solution of the problem

The governing equations for the present problem are 
transformed into a set of coupled nonlinear differential 

f (0) = fw, f ′(0) = �, g(0) = −n f ′′(0),
θ ′(0) = −γ (1+ θ(0)),

(2.12)f ′(η) → 0, g(η) → 0, θ(η) → 0 as η → ∞.

(2.13)

fw = − v0√
cυf

, Pr = µf (cp)f

kf

M = σf B
2
0

ρf c
, γ = hs

(υf

c

)1/2
,

(2.14)

Cf =
τw

ρu2w

Cn =
x

a

(

∂N

∂y

)

y=0

Nux =
xqw

k(T∞)
,

(2.15)

τw = (µ+ κ)

(

∂u

∂y

)

y=0

+ κ(N)y=0

qw = −k

(

∂T

∂y

)

y=0

,

(2.16)

Cf Re
1/2
x = (1+ (1− n)K)f ′′(0)

Re−1
x Cn = g′(0)
Nux

Re
1/2
x

= −θ ′(0),
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equations by applying similarity transformation. The 
Eqs. (2.9)–(2.11) together with the boundary conditions 
(2.12) are integrated numerically using Runge–Kutta–
Gill method along with the shooting technique. Runge–
Kutta–Gill method has the advantage of compensation 
for accumulated round-off error and less storage require-
ments than the other Runge–Kutta formulae (Kumar and 
Unny [23]). This method is concisely outlined as below:

The boundary conditions are transformed as follows:

To carry out the step by step integration for the 
Eqs. (2.9)–(2.12), Gill’s procedures have been used 
(Ralston and Wilf [36]). To start the integration it is nec-
essary to provide all the values of y1, y2, y3, y4, y5, y6 at 
η = 0 from which point, the forward integration has been 
carried out but from the boundary conditions it is seen 
that the values of y3, y4, y7 are not known. So, we are to 
provide such values of y3, y4, y7 along with the known 
values of the other function at η = 0 as would satisfy the 
boundary conditions as η → ∞ to a prescribed accuracy 
after step by step integrations are performed. Since the 
values of y3, y4, y7 which are supplied merely as rough 
values, some corrections have to be made in these val-
ues in order that the boundary conditions to η → ∞ are 

(3.1)

y1 = f , y2 = f ′, y3 = f ′′, y4 = g, y5 = g′,
y6 = θ , y7 = θ ′

y′3 =
[

a1a2

1+ Ka1

](

y22 − y1y3 −
K

a2
y5 +M

a3

a2
y2

)

y′5 =
[

a1a2

1+ K
2
a1

]

(

y2y4 − y1y5 +
K

a2
(2y4 − y3)

)

y′7 = Pr

[

a5

a4

]

(y1y7 − y2y6).

(3.2)

y1(0) = fw, y2(0) = �, y4(0) = −ny3(0),

y7(0) = −γ (1+ y6(0))

y2(∞) → 0, y4(∞) → 0, y6(∞) → 0.

satisfied. These corrections in the values of y3, y4, y7 are 
taken care of by a self-iterative procedure which can for 
convenience be called corrective procedure.

4  Results and discussion

A numerical approach has been made out to investigate 
the effects of micropolar nanoparticles (Cu, Al2O3, TiO2 ) 
in water-based fluid over a permeable stretching/shrink-
ing sheet with variable suction or injection in the pres-
ence of magnetic field and Newtonian heating. To gain 
the physics of the problem, the velocity, angular velocity 
and temperature distribution profiles have been illustrated 
by varying controlling parameters, namely, nanoparticle 
volume fraction parameter (φ), magnetic field parameter 
(M ), material parameter (K), stretching/shrinking param-
eter (�), suction or injection parameter ( fw), Newtonian 
heating parameter (γ), Prandtl number (Pr), and concen-
tration variation parameter (n). The numerical results are 
tabulated and exhibited with the graphical illustrations. 
The dual solutions (upper and lower branch solutions) are 
obtained for the present problem. The graphical illustra-
tions of velocity, angular velocity and temperature dis-
tributions corresponding to dual solutions for some fixed 
values of governing parameters are presented in detail. 
From Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, it is noted 
that for a particular value of some parameter, there exists 
two different profiles with various boundary layer thick-
nesses, which shows the existence of dual solutions. The 
Prandtl number is fixed at 6.2 and the parameter n is set 
as 0.5.

To get a clear view of the flow field, the stream line pat-
terns are plotted in Figs. 2 and 3 for stretching and shrink-
ing cases. Figures 4, 5 and 6 demonstrate the influence of 
nanoparticles (Cu, Al2O3, TiO2) on dimensionless veloc-
ity, angular velocity and temperature profiles, respectively. 
The other controlling parameters are set as φ = 0.1, M = 2, 

Fig. 2  Stream lines for 
stretching sheet when φ = 0.1, 
Pr = 6.2, M = 2, K = 0.3, 
fw = 0.5, γ = 0.1 and n = 0.5
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K = 0.3, fw = 2.5 and γ = 0.1. The velocity of Cu nano-
fluid accelerates more than that of other nanofluids for both 
solutions. In the case of the second solution, it is noted 
that the angular velocity profile exhibits an overshoot near 
the shrinking sheet. Al2O3 nanofluid shows more angu-
lar velocity distribution than the other nanofluids under 
consideration. It is observed that the thickness of thermal 
boundary layer for Cu nanofluid is more predominant than 
that of other two nanofluids in the case of shrinking and 

stretching sheets. The physical reason behind this behavior 
is that Cu has the highest thermal conductivity compared to 
TiO2 and Al2O3.

From Figs. 7, 8, 9, 10, 11, 12 and 13, the working fluid is 
considered as Cu–water nanofluid. The influence of suction 
( fw > 0) parameter on velocity, angular velocity, and tem-
perature profiles are shown in Figs. 7, 8 and 9, respectively. 
The other controlling parameters are fixed as φ = 0.1, 
M = 2, K = 0.3 and γ = 0.1. For the first solution, when 

Fig. 3  Stream lines for 
shrinking case when φ = 0.1, 
Pr = 6.2, M = 2, K = 0.3, 
fw = 0.5, γ = 0.1 and n = 0.5

Fig. 4  Velocity profiles for dif-
ferent nanofluids when φ = 0.1, 
Pr = 6.2, M = 2, K = 0.3, 
fw = 2.5, γ = 0.1, n = 0.2 for 
λ = −1.5 (shrinking surface) 
and λ = 1.5 (stretching surface)

Fig. 5  Angular velocity profiles 
for different nanofluids when 
φ = 0.1, Pr = 6.2, M = 2, 
K = 0.3, fw = 2.5, γ = 0.1, 
n = 0.5 for λ = −1.5 (shrinking 
surface) and λ = 1.5 (stretching 
surface)
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the suction increases, the velocity and angular velocity of 
the fluid increases for shrinking and decrease for stretch-
ing sheets, respectively. But, the reverse results are found 
in the case of second solution. The thermal boundary layer 
thicknesses notably reduces in both solutions by increasing 
suction for shrinking and stretching sheets, these variations 
can be viewed in Fig. 9. It can be noticed that suction leads 

to fast cooling of the sheet and this process results in nota-
ble applications in engineering and industries.

The effect for the variation of the magnetic param-
eter (M) on the dimensionless velocity profile is exem-
plified in Fig. 10. The other parameters are assumed as 
φ = 0.1, K = 0.3, fw = 2.5 and γ = 0.1. It is confirmed 
that for the first solution, the velocity distribution is 

Fig. 6  Temperature profiles 
for different nanofluids when 
φ = 0.1, Pr = 6.2, M = 2, 
K = 0.3, fw = 2.5, γ = 0.1, 
n = 0.5 for λ = −0.5 (shrinking 
surface) and λ = 0.5 (stretching 
surface)

Fig. 7  Velocity profiles for fw 
with Cu–water nanofluid when 
φ = 0.1, Pr = 6.2, K = 0.3, 
M = 2, γ = 0.1, n = 0.5 for 
λ = −1.5 (shrinking surface) 
and λ = 1.5 (stretching surface)

Fig. 8  Angular velocity profiles for fw with Cu–water nanofluid when φ = 0.1, Pr = 6.2, K = 0.3, M = 2, γ = 0.1, n = 0.5 for λ = −1.5 
(shrinking surface) and λ = 1.5 (stretching surface)
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significantly increased near the shrinking sheet while the 
value of magnetic parameter is increased. An increase in 
the magnetic parameter leads to a stronger Lorentz force. 
Stronger Lorentz force creates resistance in the fluid 
flows that appears in the reduction of velocities. As far as 
the second solution is considered magnetic field remark-
able affects the velocity profile for both sheets.

The influence of material parameter (K) on dimen-
sionless velocity, angular velocity and temperature pro-
files is presented in Fig. 11. The discussion is carried out 
for the constant values of the other parameters such as 
φ = 0.1, M = 2, fw = 2.5 and γ = 0.1. As a result, it can 
be observed that the angular velocity strictly increases 
considerably when material parameter increases for 

shrinking sheet. Furthermore, opposite results are 
observed for stretching sheet.

The effects of solid volume fraction of nanoparticles 
(φ) on the dimensionless temperature profile are exem-
plified in Fig. 12a, b. The effects of solid volume frac-
tion (φ) are described by assuming the values of other 
parameters as M = 2, K = 0.3, fw = 2.5 and γ = 0.1. It 
is noticed that for both solutions, as solid volume fraction 
parameter increases, the thermal boundary layer thick-
ness increases for shrinking and stretching sheets.

The effects of Newtonian heating (γ) parameter on 
the dimensionless temperature profile are depicted 
in Fig. 13. The other controlling parameters are set as 
φ = 0.1, M = 2, K  = 0.3 and fw = 2.5. When conjugate 

Fig. 9  Temperature profiles 
for fw with Cu–water nano-
fluid when φ = 0.1, Pr = 6.2, 
K = 0.3, γ = 0.1, M = 2, 
n = 0.5 for λ = −1.5 (shrinking 
surface) and λ = 2.0 (stretching 
surface)

Fig. 10  Velocity profiles for M 
with Cu–water nanofluid when 
φ = 0.1, Pr = 6.2, K = 0.3, 
fw = 2.5, γ = 0.1, n = 0.5 for 
λ = −1.5 (shrinking surface) 
and λ = 2.0 (stretching surface)

Fig. 11  Angular velocity 
profiles for K with Cu–water 
nanofluid when φ = 0.1, 
Pr = 6.2, M = 2, fw = 2.5, 
γ = 0.1, n = 0.5 for λ = −1.5 
(shrinking surface) and λ = 1.5 
(stretching surface)
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parameter for Newtonian heating (γ) increases, thick-
nesses of the thermal boundary layer considerably 
increase for both surfaces. In fact, the conjugate 
parameter for Newtonian heating effect not only has 
the tendency to increase the fluid temperature but also 
increases the thermal boundary layer thickness of sheets 
sizeably.

Dual solutions are classified as first solution and second 
solution. Weidman et al. [43], Rosca and Pop [40], Nazar 
et al. [31], Merkin [26], and Sharma et al. [41] are exam-
ined stability analysis to determine which solution is sta-
ble and physically applicable. They are proved that the first 
solution is the stable solution and second one is unstable. 

Moreover, it is worth mentioning that both solutions sat-
isfied the far field boundary conditions asymptotically, 
which are supporting the validity of the obtained numerical 
results. To verify the accuracy of our present results, com-
parisons have been made with the available results of Fauzi 
et al. [15] and Nazar et al. [30] in the literature, which are 
shown in Tables 2, 3, 4, 5, 6, 7 and 8. In Table 2, com-
parison of the local skin friction (Re1/2x Cf  ) for stretching 
case and viscous fluid in the absence of suction or injec-
tion is presented. Tables 3, 4 and 5 illustrate the compari-
son results of skin friction coefficient for Cu, Al2O3 and 
TiO2 in water-based micropolar nanofluids, respectively. 
Tables 6, 7 and 8 shows the comparison results of couple 

Fig. 12  Temperature profiles 
for φ with Cu–water nano-
fluid when Pr = 6.2, M = 2, 
fw = 2.5, n = 0.5, γ = 0.1, 
K = 0.3 for λ = −1.5 (shrink-
ing surface) and λ = 2.0 
(stretching surface)

Fig. 13  Temperature profiles 
for γ with Cu–water nanofluid 
when φ = 0.1, Pr = 6.2, M = 2, 
K = 0.3, fw = 2.5, n = 0.5 for 
λ = −1.5 (shrinking surface) 
and λ = 2.0 (stretching surface)

Table 2  Comparison of 
Re

1/2
x Cf  for K and n when 

� = 1, φ = 0 and fw = 0

K Re
1/2
x Cf

n = 0 n = 0.5

Present study Fauzi et al. [15] Nazar et al. [30] Present study Fauzi et al. [15] Nazar et al. [30]

0 −1.000008 −1.00000 −1.0000 −1.000008 −1.0000 −1.0000

1 −1.367996 −1.3680 −1.3679 −1.224820 −1.2248 −1.2247

2 −1.621575 −1.6225 −1.6213 −1.414479 −1.4159 −1.4142

4 −2.005420 −2.0075 −2.0042 −1.733292 −1.7381 −1.7321
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stress (Re−1
x Cn) for various nanofluids under investigation. 

It is established that the results obtained in the present work 
demonstrate a good agreement with the previously pub-
lished results.

5  Conclusions

In the present paper, the steady, two dimensional flow of 
micropolar nanofluids with heat transfer over permeable 

Table 3  Comparison 
of Re1/2x Cf  for fw when 
� = 1, K = 2, n = 0.5, 
Pr = M = γ = 0 for Cu

fw Re
1/2
x Cf

φ = 0.05 φ = 0.1 φ = 0.2

Present study Fauzi et al. [15] Present study Fauzi et al. [15] Present study Fauzi et al. [15]

0 −1.617787 −1.6258 −1.766825 −1.7726 −1.942730 −1.9466

1 −2.399188 −2.4026 −2.711805 −2.7136 −3.103236 −3.1041

2 −3.389040 −3.3896 −3.918142 −3.9183 −4.595383 −4.5954

2.5 −3.935964 −3.9362 −4.582944 −4.5830 −5.414644 −5.4147

3 −4.506066 −4.5061 −5.274059 −5.2741 −6.263688 −6.2637

Table 4  Comparison 
of Re1/2x Cf  for fw when 
� = 1, K = 2, n = 0.5, 
Pr = M = γ = 0 for Al2O3

fw Re
1/2
x Cf

φ = 0.05 φ = 0.1 φ = 0.2

Present study Fauzi et al. [15] Present study Fauzi et al. [15] Present study Fauzi et al. [15]

0 −1.466842 −1.4779 −1.502291 −1.5125 −1.524793 −1.5344

1 −2.099890 −2.1059 −2.168640 −2.1738 −2.212781 −2.2175

2 −2.894216 −2.8959 −3.006760 −3.0081 −3.079371 −3.0805

2.5 −3.333942 −3.3347 −3.470558 −3.4711 −3.558798 −3.5592

3 −3.793529 −3.7938 −3.955007 −3.9552 −4.059377 −4.0595

Table 5  Comparison 
of Re1/2x Cf  for fw when 
� = 1, K = 2, n = 0.5, 
Pr = M = γ = 0 for TiO2

fw Re
1/2
x Cf

φ = 0.05 φ = 0.1 φ = 0.2

Present study Fauzi et al. [15] Present study Fauzi et al. [15] Present study Fauzi et al. [15]

0 −1.475768 −1.4867 −1.518439 −1.5283 −1.551364 −1.5604

1 −2.117111 −2.1229 −2.200267 −2.2052 −2.265378 −2.2696

2 −2.922341 −2.9239 −3.058766 −3.0599 −3.166265 −3.1642

2.5 −3.368064 −3.3687 −3.533754 −3.5342 −3.664503 −3.6649

3 −3.833847 −3.8341 −4.029750 −4.0299 −4.184476 −4.1846

Table 6  Comparison 
of Re−1

x Cn for fw when 
� = 1, K = 2, n = 0.5, 
Pr = M = γ = 0 for Cu

fw Re−1
x Cn

φ = 0.05 φ = 0.1 φ = 0.2

Present study Fauzi et al. [15] Present study Fauzi et al. [15] Present study Fauzi et al. [15]

0 −0.327110 −0.3273 −0.390814 −0.3903 −0.471763 −0.4719

1 −0.719509 −0.7201 −0.919235 −0.9196 −1.203758 −1.2040

2 −1.435699 −1.4359 −1.918979 −1.9191 −2.639693 −2.6397

2.5 −1.936476 −1.9366 −2.625422 −2.6255 −3.664796 −3.6648

3 −2.538079 −2.5381 −3.476963 −3.4770 −4.904224 −4.9042
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stretching/shrinking sheet with variable suction/injection 
in the presence of magnetic field and Newtonian heating 
is investigated. The governing equations are approxi-
mated to a system of non-linear ordinary differential 
equations by similarity transformation. Numerical calcu-
lations are carried out for various values of the dimen-
sionless parameters of the problem. The results also 
show the existence of dual solutions for both stretching 
and shrinking cases. The drawn conclusions for the pre-
sent work after a thorough observation are summarized 
as follows:

1. Dual solutions are found for some values of the gov-
erning parameters for both stretching and shrinking 
sheets.

2. The thermal boundary layer thicknesses notably 
reduce by increasing suction parameter for shrinking 
sheet.

3. On increasing material parameter, the angular veloc-
ity of the fluid significantly increases near the shrink-
ing sheet.

4. For both solutions, when the solid volume frac-
tion parameter is increased, an increase in the ther-
mal boundary layer thickness is found for the sheets 
under consideration.

Acknowledgements The authors gratefully acknowledge the review-
ers for their constructive comments and valuable suggestions.
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