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Abbreviations

Nomenclature
C  Fluid parameter, (time) −1

Cf  Skin friction coefficient
f  Non-dimensional steam function
g  Acceleration due to gravity, m/s2

Grx  Grashof (free convection) number
k  Thermal conductivity, kg m s−3 K−1

K  Thermal diffusivity, m2/s
Nu  Local Nusselt number
Pr  Prandtl number
T  Temperature of the fluid, K
u, v  Non-dimensional velocity components along the x - 

and y - directions, respectively
V  Velocity vector, m/s
x  Stream wise coordinate
y  Transverse coordinate

Greek symbols
α  Thermal diffusivity, m2/s
ε  Fluid parameter
β  Fluid parameter
β1  Coefficient of thermal expansion, ppm/ °F
δ  The local non-Newtonian parameter based on length 

scale x
γ  Biot number
η  Dimensionless radial coordinate
μ  Dynamic viscosity, Ns/m2

ν  Kinematic viscosity, Ns/m2

Abstract In this article, the nonlinear, steady-state bound-
ary layer flow and heat transfer of an incompressible 
Eyring–Powell non-Newtonian fluid from a vertical porous 
plate is investigated. The transformed conservation equa-
tions are solved numerically subject to physically appro-
priate boundary conditions using a second-order versatile, 
implicit finite-difference Keller Box technique. The numer-
ical code is validated with previous studies. The influence 
of a number of emerging non-dimensional parameters, 
namely Eyring–Powell rheological fluid parameters (ε), the 
local non-Newtonian parameter based on length scale x (δ), 
Prandtl number (Pr), Biot number (γ) and dimensionless 
tangential coordinate (ξ) on velocity and temperature evo-
lution in the boundary layer regime are examined in detail. 
Furthermore, the effects of these parameters on surface 
heat transfer rate and local skin friction are also investi-
gated. It is found that the velocity is reduced with increas-
ing ε but temperature is increased. Increasing δ enhances 
velocity but reduces temperature. The increasing γ is 
observed to enhance both velocity and temperature. And 
an increasing Prandtl number Pr is found to decrease both 
velocity and temperature.
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θ  Non-dimensional temperature
ρ  Density of the fluid, kg/m3

ξ  Dimensionless tangential coordinate
ψ  Dimensionless stream function

Subscripts
w  Surface conditions on plate (wall)
∞  Free stream conditions

1 Introduction

For a long time, there has been considerable interest in non-
Newtonian fluids. This is because non-Newtonian fluids are 
found to be of great commercial importance. Examples of 
such fluids include coal–oil slurries, shampoo, paints, clay 
coating and suspensions, grease, cosmetic products, cus-
tard, physiological liquids (blood, bile, synovial fluid), etc. 
The classical equations employed in simulating Newtonian 
viscous flows, i.e. the Navier–Stokes equations fail to simu-
late a number of critical characteristics of non-Newtonian 
fluids. Hence several constitutive equations of non-Newto-
nian fluids have been presented over the past decades. The 
relationship between the shear stress and rate of strain in 
such fluids are very complicated in comparison to viscous 
fluids. The viscoelastic features in non-Newtonian fluids 
add more complexities in the resulting equations when 
compared with Navier–Stokes equations. Significant atten-
tion has been directed at mathematical and numerical simu-
lation of non-Newtonian fluids. Recent investigations have 
implemented, respectively, the Casson model [1], second-
order Reiner-Rivlin differential fluid models [2], Eringen 
micro-morphic models [3], Maxwell fluid flow model [4], 
Carreau fluid model [5], Nanofluid model [6], Williamson 
Nanofluid model [7] and Jeffery’s viscoelastic fluid model 
[8].

Convective heat transfer has also mobilized substantial 
interest owing to its importance in industrial and environ-
mental technologies including energy storage, gas turbines, 
nuclear plants, rocket propulsion, geothermal reservoirs, 
photovoltaic panels, etc. The convective boundary con-
dition has also attracted some interest and this usually is 
simulated via a Biot number in the wall thermal boundary 
condition. Recently, Ishak [9] discussed the similarity solu-
tions for flow and heat transfer over a permeable surface 
with convective boundary condition. Aziz [10] provided a 
similarity solution for laminar thermal boundary layer over 
a flat surface with a convective surface boundary condition. 
Aziz [11] further studied hydrodynamic and thermal slip 
flow boundary layers with an iso-flux thermal boundary 
condition. The buoyancy effects on thermal boundary layer 
over a vertical plate subject a convective surface bound-
ary condition was studied by Makinde and Olanrewaju 

[12]. Further analyses include Makinde and Aziz [13]. 
Gupta et al. [14] used a variational finite element to simu-
late mixed convective-radiative micropolar shrinking sheet 
flow with a convective boundary condition. Swapna et al. 
[15] studied convective wall heating effects on hydro-
magnetic flow of a micropolar fluid. Makinde et al. [16] 
studied cross diffusion effects and Biot number influence 
on hydromagnetic Newtonian boundary layer flow with 
homogenous chemical reactions and MAPLE quadrature 
routines. Bég et al. [17] analysed Biot number and buoy-
ancy effects on magnetohydrodynamic thermal slip flows. 
Subhashini et al. [18] studied wall transpiration and cross-
diffusion effects on free convection boundary layers with a 
convective boundary condition. Hayat et al. [19] presented 
a simple isothermal Nanofluid flow model through a porous 
space of homogeneous–heterogeneous reactions under the 
physically acceptable convective type boundary conditions. 
Ahmad and Mustafa [20] addressed the rotating flow of 
Nanofluids induced by an exponentially stretching sheet. 
They implemented the convective boundary conditions to 
inspect the thermal boundary layer. Junaid et al. [21] con-
sidered the three-dimensional rotating flow of Nanofluid 
induced by a convectively heated deformable surface. They 
used the shooting approach combined with fifth-order 
Runge–Kutta method to determine the velocity and temper-
ature distributions above the sheet. Junaid et al. [22] theo-
retically studied the boundary layer flow of Nanofluid past 
an exponentially stretching sheet.

An interesting non-Newtonian model developed for 
chemical engineering systems is the Eyring–Powell fluid 
model. This rheological model has certain advantages 
over the other non-Newtonian formulations, including 
simplicity, ease of computation and physical robustness. 
Furthermore, it is deduced from kinetic theory of liquids 
rather than the empirical relation. Additionally, it correctly 
reduces to Newtonian behavior for low and high shear rates 
[23]. Several communications utilizing the Eyring–Powell 
fluid model have been presented in the scientific literature. 
Hayat et al. [24] numerically studied the chemical reac-
tion and double stratification effects in the flow induced 
by a nonlinear stretching surface with variable thickness of 
Eyring–Powell liquid. They examined the heat transfer by 
considering non-Fourier heat flux model. Najeeb et al. [25] 
presented the two-layer Eyring–Powell fluid flow in a verti-
cal channel along with nanoparticles using homotopy anal-
ysis method. Hayat et al. [26] reported the magnetohydro-
dynamic boundary layer flow of Powel-Eyring Nanofluid 
past a non-linear stretching sheet of variable thickness. 
Khalil-Ur-Rehman et al. [27] analyzed the magnetohydro-
dynamic boundary layer stagnation point flow of Eyring–
Powell fluid induced by an inclined stretching cylindrical 
surface in the presence of both mixed convection and Joule 
heating effects using fifth-order Runge–Kutta algorithm 
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with shooting scheme. Waqas et al. [28] investigated the 
heat and mass transfer in stagnation point flow of Pow-
ellEyring liquid due to stretched cylinder using homotopy 
analysis method. They considered the non-Fourier double-
diffusion characteristics that feature the thermal and con-
centration relaxation factors. Hina et al. [29] explored the 
peristaltic flow of Eyring–Powell fluid through curved pas-
sage with complaint walls in the presence of viscous dissi-
pation and thermophoresis effects using perturbation tech-
nique. Hayat et al. [30] investigated the influence of Hall 
currents on peristaltic transport of conducting Eyring–Pow-
ell fluid in an inclined symmetric channel in the presence 
of Joule heating effect and velocity and thermal slip effects 
using perturbation technique. Hayat et al. [31] also commu-
nicated the magnetohydrodynamic flow of Powell-Eyring 
nanomaterial bounded by a nonlinear stretching sheet for 
small magnetic Reynolds number using homotopy analy-
sis method. Other studies on Eyring–Powell fluid include 
Bhatti et al. [32], Abdul gaffar et al. [33–36].

The objective of the present study was to investigate the 
laminar boundary layer flow and heat transfer of an Eyring–
Powell non-Newtonian fluid from a vertical porous plate. 
The non-dimensional equations with associated dimension-
less boundary conditions constitute a highly nonlinear, cou-
pled two-point boundary value problem. An implicit finite 
difference “Keller box” scheme is implemented to solve 
the problem. The effects of the emerging thermophysical 
parameters, namely the rheological parameters (ε,δ), Biot 
number (γ), Prandtl number (Pr) on the velocity, tempera-
ture, local skin friction and heat transfer rate (local Nusselt 
number) characteristics are studied. The present problem 
has to the authors’ knowledge not appeared thus far in the 
scientific literature and is relevant to polymeric manufac-
turing processes.

2  Non‑Newtonian constituive Eyring–Powell fluid 
model

In the present study a subclass of non-Newtonian fluids 
known as the Eyring–Powell fluid is employed owing to 
its simplicity. Mathematically, the Eyring–Powell model is 
given as

where the extra stress tensor Γ is defined as

Here μ is dynamic viscosity, β and C are the rheological 
Eyring–Powell fluid model [37] parameters. Considering 
the second-order approximation of the sinh−1 function as

(1)A = −pI + Γ ,

(2)Γ = µA1 +
1

β
.
γ
sinh−1

(

1

C

.
γ

)

A1

Therefore, Eq. (2) takes the form

where 
.
γ =

√

1
2
trA2

1 and the kinematical tensor A1 is 

A1 = ∇V + (∇V)T .

The introduction of the appropriate terms into the flow 
model is considered next. The resulting boundary value 
problem is found to be well-posed and permits an excel-
lent mechanism for the assessment of rheological charac-
teristics on the flow behaviour.

3  Mathematical flow model

Steady, double-diffusive, laminar, incompressible, 
buoyancy-driven convection flow and heat transfer of 
an Eyring–Powell from a vertical porous plate are illus-
trated in Fig. 1. Both plate and Eyring–Powell fluid are 
initially maintained at the same temperature. Instanta-
neously it is raised to a temperature Tw(> T∞), where 
the latter (ambient) temperature of the fluid remains 
constant. The x-coordinate is measured from the lead-
ing edge of the plate and the y-coordinate is measured 
normal to the plate. The corresponding velocities in the 
x and y directions are u and v, respectively. The gravi-
tational acceleration g, acts vertically downwards. The 
Boussineq approximation holds, i.e. the density variation 
is only experienced in the buoyancy term in the momen-
tum equation. Introducing the boundary layer approxima-
tions, the equations of mass, momentum and energy can 
be written as follows:

(3)sinh−1

(

1

C

.
γ

)

∼=
1

C

.
γ −

1

6

(

1

C

.
γ

)3

,

∣

∣

∣

∣

1

C

.
γ

∣
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∣

∣

≪ 1

(4)Γ =
(

µ+
1

βC

)

A1 −
1

6βC3

(

.
γ
)2

A1,

  V0

g 
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y
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O

Boundary 
layers 

Fig. 1  Physical model



2750 J Braz. Soc. Mech. Sci. Eng. (2017) 39:2747–2765

1 3

The Eyring–Powell fluid model introduces a mixed 
derivative into the momentum boundary layer in Eq. (6). 
The non-Newtonian effects feature in the shear terms only 
of Eq. (6) and not the convective (acceleration) terms. The 
third term on the right-hand side of Eq. (6) represents the 
thermal buoyancy force and couples the velocity field with 
the temperature field Eq. (7). Viscous dissipation effects 
are neglected in the model. In Eqs. (5)–(7), u and v are 
the velocity components in the x and y directions, respec-
tively, and all the parameters are defined in nomenclature.

The appropriate boundary conditions are

where Vw denotes the uniform transpiration (blowing or 
suction) velocity at the surface of the vertical plate, k is the 
thermal conductivity, hw is the convective heat transfer coef-
ficient and Tw1 is the convective fluid temperature. To trans-
form the boundary value problem to a dimensionless one, 
we introduce a stream function ψ defined by the Cauchy–
Riemann equations, u = ∂ψ

∂y
 and v = − ∂ψ

∂x
, and therefore, 

the mass conservation Eq. (5) is automatically satisfied. In 
order to render the governing equations and the boundary 
conditions in dimensionless form, the following dimension-
less variables are introduced into Eqs. (6), (7) and (8):

The resulting momentum and energy boundary layer 
equations take the following form:

(5)
∂u

∂x
+

∂u

∂y
= 0

(6)
u
∂u

∂x
+ v

∂u

∂y
=

(

ν +
1

ρβC

)

∂2u

∂y2
−

1

2ρβC3

(

∂u

∂y

)2
∂2u

∂y2

+ gβ1(T − T∞)

(7)u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2

(8)

At y = 0, u = 0, v = −Vw, −k
∂T

∂y
= hw(Tw1 − T) ,

As y → ∞, u → 0, T → T∞

(9)

ξ =
V0x

ν
Gr−1/4

x , η =
y

x
Gr1/4x ,

ψ = 4νGr1/4x

(

f (ξ , η)+
1

4
ξ

)

, θ(ξ , η) =
T − T∞

Tw − T∞

Pr =
ν

α
, Grx =

gβ1(Tw − T∞)x3

4ν2
,

ε =
1

µβC
, δ =

8ν2

C2x4
Gr3/2x

(10)

(1+ ε)f ′′′ + (3f + ξ)f ′′ − 2
(

f ′
)2 + θ − εδ

(

f ′′
)2
f ′′′

= ξ

(

f ′
∂f ′

∂ξ
− f ′′

∂f

∂ξ

)

The corresponding non-dimensional boundary condi-
tions for the collectively fifth order, multi-degree partial 
differential equation system defined by Eqs. (10), (11) 
assume the following form:

Here primes denote the differentiation with respect to η. 

γ = xhw1
k

Gr
−1/4
x  is the Biot number. fw = −Vwx

3ν 4
√
Grx

 is the suc-

tion/injection parameter. The wall thermal boundary condi-
tion in (12) corresponds to convective cooling. The skin-fric-
tion coefficient (shear stress at the Plate surface) and Nusselt 
number (heat transfer rate) can be defined using the transfor-
mations described above with the following expressions:

The location, ξ ~ 0, corresponds to the vicinity of the 
lower stagnation point on the plate. For this scenario, the 
model defined by Eqs. (10), (11) contracts to an ordinary 
differential boundary value problem:

The general model is solved using a powerful and 
unconditionally stable finite difference technique intro-
duced by Keller [38]. The Keller-box method has a second-
order accuracy with arbitrary spacing and attractive extrap-
olation features.

4  Numerical solution with Keller box implict 
method

The Keller-Box implicit difference method is imple-
mented to solve the nonlinear boundary value problem 
defined by Eqs. (10), (11) with boundary conditions 
(12). This technique, despite recent developments in 
other numerical methods, remains a powerful and very 
accurate approach for parabolic boundary layer flows. It 
is unconditionally stable and achieves exceptional accu-
racy [38]. Recently this method has been deployed in 

(11)
θ ′′

Pr
+ (3f + ξ)θ ′ = ξ

(

f ′
∂θ

∂ξ
− θ ′

∂f

∂ξ

)

(12)
At η = 0, f = fw, f ′ = 0, θ = 1+

θ ′

γ

As η → ∞, f ′ → 0, θ → 0

(13)Gr−3/4
x Cf = (1+ ε)f ′′(ξ , 0)−

ε

3
δ
(

f ′′(ξ , 0)
)3

(14)Gr−1/4
x Nu = −θ ′(ξ , 0)

(15)(1+ ε)f ′′′ + 3ff ′′ − 2
(

f ′
)2 + θ − εδ

(

f ′′
)2
f ′′′ = 0

(16)
θ ′′

Pr
+ 3f θ ′ = 0
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resolving many challenging, multi-physical fluid dynam-
ics problems. These include magnetohydrodynamics 
applications of Keller’s method reviewed in Bég [39], 
micropolar Nanofluid transport from a horizontal cir-
cular cylinder [40], Nanofluid transport from a sphere 
[41],Walter’s B viscoelastic flows [42], hyperbolic-tan-
gent convection flows from curved bodies [43], Jeffrey’s 
elasto-viscous boundary layers [44] and magnetic Wil-
liamson fluids [45]. The Keller-Box discretization is fully 
coupled at each step which reflects the physics of para-
bolic systems—which are also fully coupled. Discrete 
calculus associated with the Keller-Box scheme has also 
been shown to be fundamentally different from all other 
mimetic (physics capturing) numerical methods, as elab-
orated by Keller [38]. The Keller Box Scheme comprises 
four stages.

1. Reduction of the Nth order partial differential equa-
tion system to N first-order Equations.

2. Finite Difference Discretization.
3. Quasilinearization of Non-Linear Keller Algebraic 

Equations.
4. Block-tridiagonal Elimination of Linear Keller Alge-

braic Equations.

Step 1: Reduction of the Nth order partial differential 
equation system to N first order equations

Equations (8)–(9) subject to the boundary conditions 
(10) are first cast as a multiple system of first order differ-
ential equations. New dependent variables are introduced:

These denote the variables for velocity, temperature 
and concentration, respectively. Now Eqs. (10), (11) are 
solved as a set of fifth-order simultaneous differential 
equations:

(17)u(x, y) = f ′, v(x, y) = f ′′, s(x, y) = θ , t(x, y) = θ ′

(18)f ′ = u

(19)u′ = v

where primes denote differentiation with respect to η. In 
terms of the dependent variables, the boundary condi-
tions become

Step 2: Finite difference discretization
A two-dimensional computational grid is imposed on 

the ξ-η plane as sketched in Fig. 2. The stepping process is 
defined by

where kn and hj denote the step distances in the ξ and η 
directions, respectively. If gnj  denotes the value of any 
variable at 

(

ηj, ξ
n
)

, then the variables and derivatives of 
Eqs. (18)–(22) at 

(

ηj−1/ 2, ξ
n−1/ 2

)

 are replaced by

(20)θ ′ = t

(21)

(1+ ε)v′ + (3f + ξ)v − 2u2 + s− εδv2v′

= ξ

(

u
∂u

∂ξ
− v

∂f

∂ξ

)

(22)
t′

Pr
+ (3f + ξ)t = ξ

(

u
∂s

∂ξ
− t

∂f

∂ξ

)

,

(23)
At η = 0, f = 0, f ′ = 0, θ = 1+

θ ′

γ

As η → ∞, f ′ → 0, θ → 0

(24)η0 = 0, ηj = ηj−1 + hj , j = 1, 2, . . . , J , ηJ ≡ η∞

(25)ξ0 = 0, ξn = ξn−1 + kn, n = 1, 2, . . . , N ,

(26)g
n−1/ 2
j−1/ 2

=
1

4

(

gnj + gnj−1 + gn−1
j + gn−1

j−1

)

(27)

(

∂g

∂η

)n−1/ 2

j−1/ 2
=

1

2hj

(

gnj − gnj−1 + gn−1
j − gn−1

j−1

)

(28)

(

∂g

∂ξ

)n−1/ 2

j−1/ 2
=

1

2kn

(

gnj − gnj−1 + gn−1
j − gn−1

j−1

)

Fig. 2  Grid meshing and a Kel-
ler box computational cell
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The resulting finite-difference approximation of 
Eqs. (18)–(22) for the mid-point 

(

ηj−1/ 2, ξ
n
)

, takes the 
following form:

where the following notation applies:

The boundary conditions are

Step 3: Quasilinearization of non-linear Keller algebraic 
equations

Assuming f n−1
j , un−1

j , vn−1
j , sn−1

j , tn−1
j  to be known 

for 0 ≤ j ≤ J, then Eqs. (29)–(33) constitute a system of 

(29)h−1
j

(

f nj − f nj−1

)

= unj−1/ 2

(30)h−1
j

(

unj − unj−1

)

= vnj−1/ 2

(31)h−1
j

(

θnj − θnj−1

)

= tnj−1/ 2

(32)

(1+ ε)
(

vj − vj−1

)

+ (3+ α)
hj

4

(

fj + fj−1

)(

vj + vj−1

)

+ ξ
hj

2

(

vj + vj−1

)

− (2+ α)
hj

4

(

uj + uj−1

)2

+
hj

2

(

sj + sj−1

)

−
εδ

4

(

vj + vj−1

)2(

vj − vj−1

)

+
αhj

2
vn−1

j−1

(

fj + fj−1

)

−
αhj

2
f n−1

j−1

(

vj + vj−1

)

= [R1]
n−1

j−/12

(33)

1

Pr

(

tj − tj−1

)

+
(3+ α)hj

4

(

fj + fj−1

)(

tj + tj−1

)

+ ξ
hj

2

(

tj + tj−1

)

−
αhj

4

(

uj + uj−1

)(

sj + sj−1

)

+
αhj

2
sn−1
j−1/2

(

uj + uj−1

)

−
αhj

2
un−1
j−1/2

(

sj + sj−1

)

−
αhj

2
f n−1
j−1/2

(

tj + tj−1

)

+
αhj

2
tn−1
j−1/2

(

fj + fj−1

)

= [R2]
n−1
j−1/2,

(34)α =
ξn−1/ 2

kn

(35)

[R1]
n−1

j−1/2 = −hj









(1+ ε)
�

v′
�n−1

j−1/2
+ (3− α)f n−1

j−1/2v
n−1

j−1/2

+ξvn−1

j−1/2 − (2− α)

�

un−1

j−1/2

�2

+sn−1

j−1/2 − εδ
�

v2
�n−1

j−1/2

�

v′
�n−1

j−1/2









(36)
[R2]

n−1
j−1/2 = −hj

[

1

Pr

(

t′
)n−1

j−1/2
+ (3− α)f n−1

j−1/2t
n−1
j−1/2

+ξ tn−1
j−1/2 + α un−1

j−1/2s
n−1
j−1/2

]

(37)f n
0
= un

0
= 0, sn

0
= 1, unJ = 0, vnJ = 0, snJ = 0

5 J + 5 equations for the solution of 5 J + 5 unknowns 
f nj , u

n
j , v

n
j , s

n
j , t

n
j , j = 0, 1, 2, . . . , J. This non-linear sys-

tem of algebraic equations is linearized by means of New-
ton’s method as explained in Keller [38] and Prasad [46].

Step 4: Block-tridiagonal elimination of linear Keller 
algebraic equations

The linearized system is solved by the block-elimination 
method owing to its block-tridiagonal structure. The block-
tridiagonal structure generated consists of block matrices. 
The complete linearized system is formulated as a block 
matrix system, where each element in the coefficient matrix 
is a matrix itself, and this system is solved using the effi-
cient Keller-box method. The numerical results are strongly 
influenced by the number of mesh points in both directions. 
After some trials in the η-direction (radial coordinate) a 
larger number of mesh points are selected, whereas in the 
ξ-direction (tangential coordinate) significantly less mesh 
points are necessary. ηmax has been set at 15 and this con-
stitutes an adequately large value at which the prescribed 
boundary conditions are satisfied. ξmax is set at 3.0 for the 
simulations. Mesh independence has been comfortably 
attained in the simulations. The numerical algorithm is 
executed in MATLAB on a PC. The method demonstrates 
excellent stability, convergence and consistency, as elabo-
rated by Keller [38].

5  Numerical results and interpretation

Comprehensive solutions have been obtained and are pre-
sented in Tables 1, 2, 3, 4, 5 and Figs. 3, 4, 5, 6, 7, 8. The 
numerical problem comprises two independent variables 
(ξ,η), two dependent fluid dynamic variables (f,θ) and five 
thermo-physical and body force control parameters, namely 
ε, δ, γ , Pr, ξ. The following default parameter values, i.e. 
ε = 0.1, δ = 0.1, γ = 0.3, Pr = 0.71, ξ = 1.0 are prescribed 
(unless otherwise stated). Furthermore, the influence of 
stream-wise (transverse) coordinate on heat transfer char-
acteristics is also investigated.

In Tables 1, 2, we present the influence of the Eyring–
Powell fluid parameter, ε, on the skin friction and heat 
transfer rate, along with a variation in Prandtl number (Pr). 
With increasing ε, the skin friction is enhanced. The param-
eter ε is inversely proportional to the dynamic viscosity of 
the non-Newtonian fluid. There as ε is elevated, viscosity 
will be reduced and this will induce lower resistance to the 
flow at the surface of the plate, i.e. accelerate the flow lead-
ing to an escalation of shear stress. Furthermore, this trend 
is sustained at any Prandtl number. However, an increase 
in Prandtl number markedly reduces the shear stress mag-
nitudes. Similarly increasing ε is observed to reduce heat 
transfer rates, again at all Prandtl numbers, whereas it 
strongly accentuates heat transfer rates. Magnitudes of 
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Table 1  Values of f ′′(ξ , 0) and 
−θ ′(ξ , 0) for different ε and Pr 
(δ = 0.1, γ= 0.3, ξ= 1.0)

Pr ε = 0.0 ε = 0.3 ε = 0.5 ε = 0.7

f ′′(ξ , 0) −θ ′(ξ , 0) f ′′(ξ , 0) −θ ′(ξ , 0) f ′′(ξ , 0) −θ ′(ξ , 0) f ′′(ξ , 0) −θ ′(ξ , 0)

0.5 2.0500 0.3784 2.1366 0.3723 2.1872 0.3689 2.2334 0.3659

0.7 1.8007 0.4866 1.8678 0.4796 1.9068 0.4758 1.9422 0.4724

1.0 1.5449 0.6336 1.5935 0.6264 1.6214 0.6225 1.6465 0.6230

2.0 1.0104 1.1533 1.0262 1.1493 1.0344 1.1475 1.0409 1.1451

3.0 0.7197 1.6973 0.7212 1.6971 0.7218 1.6963 0.7242 1.6972

5.0 0.4314 2.8157 0.4328 2.8210 0.4323 2.8224 0.4315 2.8251

7.0 0.3045 3.9433 0.3044 3.9486 0.3044 3.9538 0.3051 3.9585

10.0 0.2075 5.6483 0.2079 5.6515 0.2085 5.6542 0.2091 5.6569

Table 2  Values of f ′′(ξ , 0) and 
−θ ′(ξ , 0) for different ε and Pr 
(δ = 0.1, γ= 0.3, ξ= 1.0)

Pr ε = 1.0 ε = 2.0 ε = 5.0

f ′′(ξ , 0) −θ ′(ξ , 0) f ′′(ξ , 0) −θ ′(ξ , 0) f ′′(ξ , 0) −θ ′(ξ , 0)

0.5 2.2961 0.3619 2.4648 0.3517 2.7865 0.3359

0.7 1.9899 0.4680 2.1163 0.4595 2.3431 0.4496

1.0 1.6751 0.6295 1.7648 0.5955 1.9066 0.5899

2.0 1.0492 1.1435 1.0677 1.1400 1.0821 1.1371

3.0 0.7260 1.6965 0.7271 1.6998 0.7261 1.7018

5.0 0.4306 2.8266 0.4338 2.8332 0.4323 2.8395

7.0 0.3057 3.9631 0.3045 3.9639 0.3087 3.9742

10.0 0.2091 5.6569 0.2116 5.6704 0.2126 5.6746

Table 3  Values of f ′′(ξ , 0) and 
−θ ′(ξ , 0) for different δ and Pr 
(δ = 0.1, γ= 0.3, ξ= 1.0)

Pr δ = 0.0 δ = 5 δ = 10

f ′′(ξ , 0) −θ ′(ξ , 0) f ′′(ξ , 0) −θ ′(ξ , 0) f ′′(ξ , 0) −θ ′(ξ , 0)

0.5 1.9715 0.2356 1.9609 0.2361 1.9492 0.2367

0.7 1.8527 0.2753 1.8442 0.2759 1.8350 0.2765

1.0 1.7337 0.3213 1.7271 0.3219 1.7199 0.3225

2.0 1.4870 0.4462 1.4833 0.4468 1.4793 0.4474

3.0 1.3399 0.5500 1.3374 0.5504 1.3347 0.5511

5.0 1.1515 0.7364 1.1501 0.7368 1.1486 0.7373

7.0 1.0253 0.9133 1.0244 0.9136 1.0235 0.9139

10.0 0.8900 1.1759 0.8895 1.1761 0.8890 1.1763

Table 4  Values of f ′′(ξ , 0) and 
−θ ′(ξ , 0) for different δ and Pr 
(δ = 0.1, γ= 0.3, ξ= 1.0)

Pr δ = 15 δ = 20 δ = 25

f ′′(ξ , 0) −θ ′(ξ , 0) f ′′(ξ , 0) −θ ′(ξ , 0) f ′′(ξ , 0) −θ ′(ξ , 0)

0.5 1.9362 0.2373 1.9210 0.2380 1.9016 0.2390

0.7 1.8249 0.2771 1.8135 0.2779 1.8001 0.2788

1.0 1.7122 0.3232 1.7037 0.3239 1.3940 0.3248

2.0 1.4751 0.4480 1.4706 0.4487 1.4658 0.4495

3.0 1.3319 0.5516 1.3290 0.5523 1.3259 0.5529

5.0 1.1471 0.7378 1.1456 0.7382 1.1440 0.7387

7.0 1.0226 0.9143 1.0217 0.9147 1.0207 0.9150

10.0 0.8885 1.1765 0.8881 1.1767 0.8876 1.1769
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shear stress are always positive indicating that flow reversal 
(backflow) never arises.

Tables 3, 4 document results for the influence of the 
local non-Newtonian parameter (based on length scale x), 
i.e. δ and also the Prandtl number (Pr) on skin friction and 
heat transfer rate. Skin friction is generally decreased with 
increasing δ. However, heat transfer rate (i.e. local Nusselt 
number function) is found to be enhanced with increasing 
δ. δ = 8ν2

C2x4
Gr

3/2
x  and inspection of this definition shows 

that the direct proportionality of δ to kinematic viscosity (ν) 
(with all other parameters being maintained constant) will 
generate a strong resistance to the flow leading to a decel-
eration. i.e. drop in shear stresses. Conversely, the direct 
proportionality of δ to Grashof number (Gr) will imply that 
thermal buoyancy forces are enhanced as δ increases, and 
this will cause a boost in heat transfer by convection from 
the plate surface manifesting with the greater heat transfer 
rates observed in Tables 3 and 4. These tables also show 
that with an increase in the Prandtl number, Pr, the skin 
friction is also depressed, whereas the heat transfer rate is 
elevated.

Table 5 presents the Keller box numerical values of the 
missing condition f ′′(ξ , 0) (in brackets) and skin friction Cf 
for various values of δ and ε. It is found that skin friction 
is reduced with increasing values of δ. Furthermore, the 
skin friction Cf is observed to be increased with a rise in 
the Eyring–Powell fluid parameter (ε) for all values of the 
local non-Newtonian parameter (δ).

Table 6 shows the comparison values of the present 
study with those obtained by Hossain et al. [47] for natural 
convection heat transfer along a vertical porous plate and 
are found to be in excellent agreement.

Figure 3a, b depicts the evolution of velocity 
(

f ′
)

 and 
temperature (θ) functions with a variation in Biot number, 
γ. Dimensionless velocity component (Fig. 3a) is consider-
ably enhanced with increasing γ. In Fig. 3b, an increase in 
Biot number is also seen to considerably enhance tempera-
ture throughout the boundary layer regime. For γ < 1, i.e. 
small Biot numbers, the regime is frequently designated as 
being “thermally simple” and there is a presence of more 
uniform temperature fields inside the boundary layer and 
the plate surface. For γ > 1 thermal fields are anticipated 
to be non-uniform within the solid body. The Biot number 
effectively furnishes a mechanism for comparing the con-
duction resistance within a solid body to the convection 
resistance external to that body (offered by the surround-
ing fluid) for heat transfer. We also note that a Biot number 
in excess of 0.1, as studied in Fig. 3a, b, corresponds to a 
“thermally thick” substance, whereas Biot number less than 
0.1 implies a “thermally thin” material. Since γ is inversely 
proportional to thermal conductivity (k), as γ increases, 
thermal conductivity will be reduced at the plate surface 
and this will lead to a decrease in the rate of heat transfer 
from the boundary layer to within the plate, manifesting in 
a rise in temperature at the plate surface and in the body 
of the fluid the maximum effect will be sustained at the 
surface, as witnessed in Fig. 3b. However for a fixed wall 

Table 5  Numerical Values 
of f ′′(ξ , 0) (in brackets) and 
skin friction coefficient Cf  for 
different values of δ and ε

δ\ε 0.0 0.2 0.4 0.6 0.8 1.0

0.0 1.8001 1.9019 
(1.5849)

1.9918 
(1.4227)

2.0728 
(1.2955)

2.1466 
(1.1926)

2.2146 
(1.1073)

0.1 1.8001 1.9016 
(1.5860)

1.9915 
(1.4242)

2.0724 
(1.2969)

2.1462 
(1.1939)

2.2141 
(1.1085)

0.2 1.8001 1.9013 
(1.5872)

1.9911 
(1.4256)

2.0719 
(1.2984)

2.1457 
(1.1952)

2.2137 
(1.1097)

0.3 1.8001 1.9010 
(1.5884)

1.9907 
(1.4271)

2.0715 
(1.2998)

2.1452 
(1.1966)

2.2132 
(1.1109)

0.4 1.8001 1.9008 
(1.5896)

1.9903 
(1.4286)

2.0710 
(1.3013)

2.1448 
(1.1979)

2.2128 
(1.1121)

0.5 1.8001 1.9005 
(1.5907)

1.9899 
(1.4300)

2.0706 
(1.3028)

2.1443 
(1.1993)

2.2123 
(1.1133)

0.6 1.8001 1.9002 
(1.5919)

1.9895 
(1.4315)

2.0702 
(1.3042)

2.1439 
(1.2007)

2.2118 
(1.1146)

0.7 1.8001 1.8999 
(1.5931)

1.9891 
(1.4330)

2.0697 
(1.3057)

2.1434 
(1.2020)

2.2114 
(1.1158)

0.8 1.8001 1.8997 
(1.5943)

1.9887 
(1.4346)

2.0693 
(1.3072)

2.1429 
(1.2034)

2.2109 
(1.1171)

0.9 1.8001 1.8994 
(1.5955)

1.9883 
(1.4361)

2.0688 
(1.3088)

2.1425 
(1.2048)

2.2104 
(1.1183)

1.0 1.8001 1.8991 
(1.5967)

1.9879 
(1.4376)

2.0684 
(1.3103)

2.1420 
(1.2063)

2.2100 
(1.1196)
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convection coefficient and thermal conductivity, Biot num-
ber as defined in γ = xhw

k
Gr

−1/4
x  is also directly inversely 

proportional to the local Grashof (free convection) number. 
As local Grashof number increases generally the enhance-
ment in buoyancy causes a deceleration in boundary layer 
flows; however, as Biot number increases, the local Gra-
shof number must decrease and this will induce the oppo-
site effect, i.e. accelerate the boundary layer flow, as shown 
in Fig. 3a.

Figure 4a, b illustrates the effect of Eyring–Powell 
fluid parameterε, on the velocity 

(

f ′
)

 and temperature (θ) 
distributions through the boundary layer regime. Veloc-
ity is significantly decreased with increasing ε at larger 
distance from the plate surface owing to the simultaneous 

drop in dynamic viscosity. Conversely, temperature is 
consistently enhanced with increasing values of ε. The 
mathematical model reduces to the Newtonian viscous 
flow model as ε → 0 and δ → 0. The momentum bound-
ary layer equation in this case contracts to the familiar 
equation for Newtonian mixed convection from a plate, 
viz

The thermal boundary layer Eq. (9) remains unchanged. 
In Fig. 4b, temperatures are clearly minimized for the New-
tonian case (ε = 0) and maximized for the strongest non-
Newtonian case (ε = 1.0). The non-Newtonian parameter 

(38)f ′′′ + (3f + ξ)f ′′ − 2
(

f ′
)2 + θ = ξ

(

f ′
∂f ′

∂ξ
− f ′′

∂f

∂ξ

)

.

Fig. 3  a Influence of γ on 
velocity profiles, b influence of 
γ on temperature profiles

(a)

(b)
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ε (=1/[μβC]) is evidently inversely proportional to the 
viscosity and also to β and C (Eyring–Powell rheological 
fluid parameters). As ε is increased, the material viscos-
ity, therefore, will decrease which would aid momentum 
development. Similarly the parameters β and C are simul-
taneously reduced (they are strongly linked to viscosity) 
and the overall effect is a boost in material viscosity. This 
results in reduction in the ε magnitude which manifests in 
marked deceleration in the flow as shown in Fig. 4a. With 
decreased momentum diffusion rates the velocity bound-
ary layer thickness is decreased. Thermal diffusion is con-
versely enhanced and the fluid heated (Fig. 4b), resulting in 
a thickening in the thermal boundary layer.

Figure 5a, b depicts the velocity 
(

f ′
)

 and temperature 
(θ) distributions with increasing local non-Newtonian 
fluid parameter δ. Very little tangible effect is observed in 
Fig. 5a, although there is a very slight increase in veloc-
ity with increase in δ. Similarly, there is only a very slight 
depression in temperature magnitudes in Fig. 5b with a 
rise in δ.This parameter is defined as ν2Rex

3/(2C2x4), fea-
tures in a single negative term in Eq. (8), viz, -εδ(f//)2f///, 
unlike ε, rheological parameter which also appears in the 
shear term, −(1 + ε)2f///. This parameter also features vis-
cosity which effectively is decreased weakly and induces 
a slight acceleration in the flow. Therefore, the momen-
tum boundary layer thickness is decreased slightly, 

Fig. 4  a Influence of ε on 
velocity profiles, b influence of 
ε on temperature profiles

(a)

(b)
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whereas the thermal boundary layer thickness is margin-
ally reduced.

Figure 6a, b depicts the profiles for velocity 
(

f ′
)

 and 
temperature (θ) for various values of Prandtl number, 
Pr. It is observed that an increase in the Prandtl number 
significantly decelerates the flow, i.e. velocity decreases. 
Also increasing Prandtl number is found to deceler-
ate the temperature. The solutions to denser fluids, i.e. 
water-based solvents, very low-density spray paints 
[48], etc. Prandtl number must be varied, as this is the 
only non-dimensional parameter which categorizes ther-
mofluid properties. For example, Pr = 5 corresponds 
closely to actual characteristics for chlorofluorocarbon 

halomethance (CFC) which is used in aerosol spray pro-
pellants. Pr = 7 represents certain paint-thinners as well 
as water at room temperature. Prandtl number defines 
the ratio of viscous diffusion to thermal diffusion in 
the boundary layer regime. For Pr > 1, momentum dif-
fusivity will exceed thermal diffusivity, but for Pr < 1, 
thermal diffusivity will exceed momentum diffusivity. 
Increasing Pr is known to significantly depress temper-
atures in the boundary layer, as elaborated in Incropera 
and DeWitt [49] and Schlichting [50]. Pr signifies the 
ratio of momentum diffusivity to thermal diffusivity. Pr 
is the most important parameter in heat transfer analysis 
as it corresponds to actual physical properties of fluids 

Fig. 5  a Influence of δ on 
velocity profiles, b influence of 
δ on temperature profiles

(a)

(b)
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unlike the vast majority of other dimensionless thermo-
fluid numbers. Higher Pr values imply a thinner thermal 
boundary layer thickness and more uniform temperature 
distributions across the boundary layer. Hence the ther-
mal boundary layer will be much reduced in thickness 
compared with the hydrodynamic (momentum) bound-
ary layer. Pr < 1 corresponds to greater thermal diffusion 
rate compared with momentum diffusion rate. A lower Pr 
(Pr = 0.71, i.e. gas) implies that the fluid possess higher 
thermal conductivity (and an associated thicker thermal 
boundary layer structure) so that heat can diffuse away 
from the fluid to the plate surface faster than for higher Pr 

fluid (Pr = 7.0, i.e. liquids associated with thinner bound-
ary layers).

Figure 7a, b depicts the velocity 
(

f ′
)

 and temperature (θ) 
distributions with radial coordinate, for various transverse 
(stream wise) coordinate values, ξ along with the variation 
in the fluid parameter ε. Clearly, from these figures it can 
be seen that as suction parameter ξ increases, the maxi-
mum fluid velocity decreases. This is due to the fact that 
the effect of the suction is to take away the warm fluid on 
the vertical plate and thereby decrease the maximum veloc-
ity with a decrease in the intensity of the natural convec-
tion rate. Figure 7b shows the effect of the local suction 

Fig. 6  a Influence of Pr on 
velocity profiles, b influence of 
Pr on temperature profiles

(a)

(b)
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parameter on the temperature profiles. It is noticed that the 
temperature profiles decrease with an increase in the suc-
tion parameter and as the suction is increased, more warm 
fluid is taken away and this the thermal boundary layer 
thickness decreases. It is also seen that with an increase 
in ε , the impedance offered by the fibers of the porous 
medium will increase and this will effectively deceler-
ate the flow in the regime, as testified to by the evident 
decrease in velocities shown in Fig. 7a.

Figure 8a, b depicts the velocity 
(

f ′
)

 and temperature (θ) 
distributions with radial coordinate, for various transverse 
(stream wise) coordinate values, ξ, along with the varia-
tion in the fluid parameter δ. Clearly, from these figures it 

can be seen that as suction parameter ξ increases, the maxi-
mum fluid velocity decreases. This is due to the fact that 
the effect of the suction is to take away the warm fluid on 
the vertical plate and thereby decrease the maximum veloc-
ity with a decrease in the intensity of the natural convection 
rate. Figure 8b shows the effect of the local suction param-
eter on the temperature profiles. It is noticed that the tem-
perature profiles decrease with an increase in the suction 
parameter and as the suction is increased, more warm fluid 
is taken away and this the thermal boundary layer thickness 
decreases.

Figure 9a, b depicts the influence of the Biot number, 
γ, on the dimensionless skin friction coefficient and heat 

Fig. 7  a Influence of ξ on 
velocity profiles, b influence of 
ξ on temperature profiles

(a)

(b)
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transfer rate at the plate surface. The skin friction at the 
plate surface is seen to enhance greatly with rising γ val-
ues. This is principally attributable to the decrease in Gra-
shof (free convection) number which results in an accelera-
tion in the boundary layer flow, as elaborated by Chen and 
Chen [51]. Heat transfer rate (local Nusselt number) is also 
enhanced with increasing γ, as computed in Fig. 9b.

Figure 10a, b presents the influence of Eyring–Powell 
fluid parameter, ε, on dimensionless skin friction coefficient 
and heat transfer rate at the plate surface. It is observed that 
the dimensionless skin friction is elevated with the increase 
in ε, i.e. the boundary layer flow is accelerated with 
decreasing viscosity effects in the non-Newtonian regime. 

Fig. 8  a Influence of ξ and on 
velocity profiles, b influence of 
ξ and on temperature profiles

(a)

(b)

Table 6  Comparison values of f ′′(ξ , 0) and −θ ′(ξ , 0) for different 
values of ξ with ε = δ = 0.0, γ = 0.3, Pr = 1.0

ξ Hossain et al. [41] Present

f ′′(ξ , 0) −θ ′(ξ , 0) f ′′(ξ , 0) −θ ′(ξ , 0)

0.1 0.0655 6.4627 0.0653 6.4626

0.2 0.1316 3.4928 0.1313 3.4924

0.4 0.2647 2.0229 0.2644 2.0225

0.6 0.3963 1.5439 0.3960 1.5436

0.8 0.5235 1.3247 0.5232 1.3243

1.0 0.6429 1.1995 0.6427 1.1992

1.5 0.8874 1.0574 0.8872 1.0571
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Conversely, the surface heat transfer rate is substantially 
decreased with increasing ε values. Decreasing viscosity of 
the fluid (induced by increasing the ε value) reduces ther-
mal diffusion as compared with momentum diffusion. A 
decrease in heat transfer rate at the wall implies less heat is 
convected from the fluid regime to the plate, thereby heat-
ing the boundary layer and enhancing temperatures.

Figure 11a, b illustrates the influence of the local non-
Newtonian parameter, δ, on the dimensionless skin fric-
tion coefficient and heat transfer rate. The skin friction 
(Fig. 11a) at the plate surface is reduced with increasing 
δ, however, only for very large values of the transverse 

coordinate, ξ. The flow is, therefore, strongly accelerated 
along the curved plate surface far from the lower stagnation 
point. Heat transfer rate (local Nusselt number) is increased 
with increasing δ, again at large values of ξ, as computed 
in Fig. 11b.

6  Conclusions

Numerical solutions have been presented for the bound-
ary-driven flow and heat transfer of non-Newtonian 
Eyring–Powell fluid from a vertical porous plate. The 

Fig. 9  a Influence of γ on 
velocity profiles, b influence of 
γ on temperature profiles

(a)

(b)
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Keller-box implicit second-order accurate finite differ-
ence numerical scheme has been utilized to efficiently 
solve the transformed, dimensionless velocity and ther-
mal boundary layer equations, subject to realistic bound-
ary conditions. A comprehensive assessment of the 
effects of Eyring–Powell fluid parameter (ε), local non-
Newtonian parameter (δ), Biot number (γ), Prandtl num-
ber (Pr) and dimensionless tangential coordinate (ξ) on 
thermo-fluid characteristics has been conducted. Excel-
lent correlation with previous studies has been demon-
strated testifying to the validity of the present code. Gen-
erally, very stable and accurate solutions are obtained 

with the present finite difference code. The numerical 
code is able to solve nonlinear boundary layer equations 
very efficiently and, therefore, shows excellent promise 
in simulating transport phenomena in other non-Newto-
nian fluids. It is, therefore, presently being employed to 
study micropolar fluids and viscoplastic fluids which also 
simulate accurately many chemical engineering working 
fluids in curved geometrical systems. The present study 
has also neglected time effects. Future simulations will 
also address transient polymeric boundary layer flows 
and will be presented soon.

Fig. 10  a Influence of ε on 
velocity profiles, b influence of 
ε on temperature profiles

(a)

(b)
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