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1 Introduction

Nowadays, the dynamics of non-Newtonian liquids is a 
subject of abundant researches for the scientists and engi-
neers due to its practical implementation. The techno-
logical and industrial applications of such liquids include 
molten polymers, drilling muds, volcanic lava, oils, cer-
tain paints, liquid suspensions, cosmetic products, poly 
crystal melts, food stuffs and many more. The flow phe-
nomenon of such materials can be elaborated by the non-
linear relationships of shear rate and shear stresses. The 
viscosity of such liquids is shear dependent. The Carreau 
liquid model is one of the non-Newtonian liquid models 
which have the constitutive relationship for both high and 
low shear rates. This fact enhanced the utilization of Car-
reau model in technological and industrial processes. Hsu 
et al. [1] developed a model to describe the importance 
of electrophoresis on Carreau liquid in a spherical cav-
ity. Peristaltic motion in an asymmetric channel filled 
with Carreau fluid has been addressed by Ali and Hayat 
[2]. Shamekhi and Sadeghy [3] explored characteristics 
of Carreau-Yasuda liquid in a cavity by employing PIM 
mesh-free method. The flow phenomenon of Carreau fluid 
over an inclined free surface has been reported by Tshe-
hla [4]. Olajuwon [5] described the analysis convective 
heat and mass transport in magnetohydrodynamic flow of 
Carreau liquid induced by a porous plat. He also exam-
ined the thermal diffusion and radiation effects in this 
study. The boundary layer flow analysis of Carreau liq-
uid due to a convectively heated sheet has been made by 
Hayat et al. [6]. Magnetohydrodynamic (MHD) Falkner-
Skan wedge flow of Carreau liquid with cross-diffusion 
effects is presented by Raju and Sandeep [7]. Machireddy 
and Naramgari [8] examined the characteristics of cross-
diffusion in MHD flow of Carreau liquid over a stretched 
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surface with Robin boundary condition. Stagnation point 
flow of Carreau nanofluid with transpiration is explored 
by Sulochana et al. [9]. Raju and Sandeep [10] studied 
the three-dimensional (3D) flow of Casson-Carreau fluids 
over a stretched surface subject to homogeneous/hetero-
geneous reactions and nonlinear thermal radiation. Hayat 
et al. [11] explored the stretching flow phenomenon of 
Carreau nanoliquid.

The stagnation point flow arises whenever a flow imposes 
on a solid object. The motion of liquid near stagnation region 
is described by stagnation point flow which exists for both 
cases of moving or fixed body in a liquid. Hiemenz [12] 
firstly explored the phenomenon of stagnation point flow 
over a stationary semi-infinite wall. He demonstrated that the 
Navier–Stokes expressions which govern the flow can be con-
verted into ordinary differential equations by the utilization 
of similarity transformation. Mahaputra and Gupta [13] stud-
ied the heat transport analysis of stagnation point flow over a 
moving sheet. Nazar et al. [14] studied the flow of micropo-
lar fluid over a stretched sheet. Mustafa et al. [15] studied the 
stagnation point flow of a nanofluid towards a stretching sur-
face. Alsaedi et al. [16] achieved the results for the effects of 
heat sink/source of nanofluid near a stagnation point over a 
surface with convective conditions. Turkyilmazoglu and Pop 
[17] investigated the boundary layer flow of Jeffrey fluid near 
a stagnation point over a shrinking/stretching sheet. Hayat 
et al. [18] addressed the stagnation point flow of second grade 
liquid. Shehzad et al. [19] reported the effect of chemical 
reaction in steady stagnation point flow of thixotropic liquid.

The aim of this investigation is to make an analysis of 
mixed convective stagnation point flow of Carreau liquid 
over a stretched sheet. The governing mathematical expres-
sions are coupled due to occurrence of mixed convection. 
Analytical solutions via homotopy analysis method (HAM) 
[20–29] are constructed. Relevant convergence criteria 
of solutions is established and examined. Plots of various 
quantities are elaborated and discussed.

2  Mathematical formulation

Here, we consider the two-dimensional steady mixed con-
vection flow of an incompressible Carreau liquid towards 
a stretched surface near a stagnation point. The sheet is 
stretched in such a manner that x-axis is along the surface 
of sheet and y-axis perpendicular to it. An incompressible 
fluid flow is confined to y > 0. The thermo-physical charac-
teristics of liquid at surface are taken variable. The consti-
tutive relation for Carreau material is [6]:

(1)τ =
[

η0

(

1+ �
2γ̇ 2

)
n−1
2

]

A1,

where

or

Now

with

Since

so inserting Eqs. (4), (8) and (9) in Eq. (11) we obtain

Two-dimensional flow equations for Carreau liquid in 
the presence of stagnation point, variable viscosity, mixed 
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convection, thermal radiation and temperature-dependent 
thermal conductivity are:

In the above equations, u and v denote the velocity com-
ponents in the x and y-directions, respectively, λ the time 
constant, T the fluid temperature, ν the kinematic viscosity, ρ 
the density, cp the specific heat, η0(T) the variable dynamic 
viscosity depending on temperature, g the gravitational 
acceleration, βT the thermal expansion coefficient, the σ ∗ 
Steafan-Boltzmann constant, k∗ the mean absorption coef-
ficient, (a, b, c) the dimensional constants, vw is the mass 
transfer velocity and Tw the variable temperature at the sheet 
and T∞ the ambient temperature. The constant mass trans-
fer velocity is taken as vw. Here vw > 0 denotes injection or 
blowing, vw < 0 for suction and ue the free stream velocity.

Thermal conductivity K(T) and variable viscosity 
η0(T) are [30, 31]:

or

where

here k∞ is the thermal conductivity of the ambient 
fluid, ε is a small scalar parameter which portrays the 

(13)
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∂x
+ ∂v
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dx
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∂
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(
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,

(16)

u =uw(x) = cx, v = vw, T = Tw(x) = T∞ + bx at y = 0,

u →ue(x) = ax, T → T∞ as y → ∞.

(17)K(T) = k∞

(

1+ ε
T − T∞
�T

)

,

(18)
1

η0(T)
= 1

η∞

[

1+ γ (T − T∞)
]

,

(19)
1

η0(T)
= δ(T − Tr),

(20)δ = γ

η∞
and Tr = T∞ − 1

γ
,

impact of temperature on variable thermal conductivity, 
�T = Tw − T∞, η∞ the ambient dynamic viscosity, γ the 
thermal property of fluid, (δ, Tr) are the constants and 
their values depend upon the thermal state and thermal 
property, i.e., γ. Also δ > 0 for liquids and δ < 0 for gases.

To transform the above problem in dimensionless 
form, we employ

The continuity Eq. (13) is identically satisfied, and the 
resulting problems in f and θ are reduced to the following 
forms

where prime signifies differentiation with respect to η 
and dimensionless quantities can be expressed as follows:

Here, λ1 denotes the material parameter, S the mass 
transfer parameter with S > 0 for suction and S < 0 for 
injection, Pr the Prandtl number, θr the variable viscos-
ity parameter, G the mixed convection parameter, Grx the 
Grashof number, Rex the Reynolds numbers, A the ratio 
of rate constants and N the thermal radiation parameter.

The terms 
(

1+ 4
3
N
)

 and Pr in Eq. (23) can be com-
bined. In this way, a single parameter is obtained i.e. 
Preff = 3 Pr

3+4N
. Hence Eq. (23) takes the form [32, 33]:
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in which Preff is known as the effective Prandtl number. 
Benefit of aforementioned combination is that effects of 
linear radiation are neglected and the problem reduces to 
the case of without radiation. Idea of such combination 
can be found in the analysis provided in [32, 33].

The skin friction coefficient Cf and local Nusselt num-
ber Nux are defined as

where

In terms of dimensionless form one has

3  Series solutions

The initial guesses and auxiliary linear operators are given 
below:

The above auxiliary linear operators satisfy the follow-
ing properties

where Ci (i = 1–5) indicate the arbitrary constants.
The corresponding problems at the zeroth order are 

given in the following forms [22–24]:

(27)Cf =
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1
2
ρu2w
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,
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Cf Re
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(30)f0(η) = Aη + (1− A)
(

1− e
−η

)

, θ0(η) = e
−η

,

(31)Lf = f ′′′ − f ′, Lθ = θ ′′ − θ .

(32)
Lf(C1 + C2e

η + C3e
−η) = 0,

Lθ (C4e
η + C5e

−η) = 0,
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[
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]

,
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(35)
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When p = 0 and p = 1 one has [25, 26]:

Clearly when p is increased from 0 to 1 then f(η, p) and 
θ(η, p) vary from f0(η), θ0(η) to f(η) and θ(η). By Taylor’s 
expansion we have [27, 28]:

The convergence of above series strongly depends 
upon �f  and �θ . Considering that �f  and �θ are selected 
properly so that Eqs. (37) and (38) converge at p = 1, 
then we can write

The resulting problems at mth order deformation can 
be constructed as follows:

(36)
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∣
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∑
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Solving the above mth order deformation problems, 
the general solutions can be written as follows:

in which the f ∗m and θ∗m indicate the special solutions.

(45)

R
θ
m
(η) =

(

1+ 4

3
N

)

θ ′′
m−1(η)+ ε

m−1
∑

k=0

θm−1−kθ
′′
k
+ ε

m−1
∑

k=0

θ ′
m−1−k

θ ′
k

+ Preff

m−1
∑

k=0

(

θ ′
m−1−k

fk − f
′
m−1−k

θk

)

,

(46)fm(η) = f ∗m(η)+ C1 + C2e
η + C3e

−η
,

(47)θm(η) = θ∗m(η)+ C4e
η + C5e

−η
,

Fig. 1  ℏ-curve for f and θ

Fig. 2  Effects of A on fʹ(η)

Fig. 3  Effects of λ1 on fʹ(η)
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4  Convergence of the homotopy solutions

Here, our desire is to ensure the convergence of the 
obtained series solutions. Thus Fig. 1 has been plotted for 
the admissible values of �f  and �θ regarding convergence of 
the solutions (39) and (40). Ultimate the admissible values 
have been noticed in the ranges −1.30 ≤ �f ≤ −0.20 and 
−1.40 ≤ �θ ≤ −0.30.

5  Discussion

This section elaborates the influence of different param-
eters on velocity fʹ and temperature profile θ. Figures 2, 3, 
4, 5, 6 and 7 show the variations of different parameters 

A, λ1, G, S, n and θr on the velocity fʹ. The effects of A on 
the velocity fʹ are shown in Fig. 2. It is revealed that the 
velocity fʹ enhances for larger values of A. The thickness 
of boundary layer is stronger for A < 1. Here the stretch-
ing rate dominates over the free stream rate. For A > 1 
(the stretching rate of velocity is lower than free stream 
velocity rate) the thickness of boundary layer reduces 
while the velocity fʹ enhances. For A = 1, no boundary 
layer situation appeared. Figure 3 explores the effect of 
material parameter λ1 on fʹ. By increasing λ1 the velocity 
enhances and the profiles approaches to zero as η → ∞. 
This shows an enhancement in hydrodynamic boundary 
layer. It is pointed out that the values of Carreau num-
ber vary from 0.1 to 20. Figure 4 shows the influence 
of mixed convection parameter G on velocity fʹ. We can 

Fig. 4  Effects of G on fʹ(η)

Fig. 5  Effects of S on fʹ(η)
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see that velocity profile increases with an enhancement 
in the mixed convection parameter G. Physically, the 
buoyancy force takes place due to consideration of mixed 
convective parameter which enhances the velocity fʹ. The 
impacts of suction parameter S on velocity fʹ are visual-
ized in Fig. 5. The liquid particles are sucked by sheet 
due to the larger suction parameter that offers a resistance 
to fluid flow and hence the velocity fʹ decreases. Figure 6 
elucidates the variation of power law index n on veloc-
ity fʹ. The liquid velocity increases due to presence of 
power law index. The non-linearity of sheet is enhanced 
for larger n due to which the resistive force decreases 

and hence a reduction in velocity fʹ is achieved. Charac-
teristics of θr on fʹ(η) are addressed through Figs. 7 and 
8. Here fʹ(η) decays for θr > 0 (i.e. for gases) whereas 
reverse behavior is noted for θr < 0 (i.e. for liquids). Phys-
ically larger θr diminishes convective potential between 
the heated surface and ambient liquid and so fʹ(η) decays.

Figures 9, 10, 11, 12, 13, 14 and 15 show the influence 
of different parameters A, S, Pr, N, ɛ and θr on tempera-
ture profile θ(η). The effects of A on temperature profile θ 
are shown in Fig. 9. We can see that the temperature pro-
file decreases by increasing A. Higher values of A corre-
spond to more pressure which provides less resistance to 

Fig. 6  Effects of n on fʹ(η)

Fig. 7  Effects of θr > 0 on fʹ(η)
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fluid. Hence less heat is produced and temperature profile 
reduces. Figure 10 shows the behavior of S on temperature 
profile. Clearly, temperature profile reduces for larger S. 
In fact some fluid particles are absorbed by the sheet and 
each particle has energy which is transferred to the envi-
ronment. Therefore, temperature of the fluid decreases. The 
conduction phenomenon decreases while pure convection 
enhanced due to an increase in Prandtl number Pr. That fact 
leads to lower temperature and thickness of thermal bound-
ary layer (see Fig. 11). Small values of the Prandtl number 
Pr ≪ 1 means the thermal diffusivity dominates whereas 

the large values Pr ≫ 1 implies the momentum diffusiv-
ity dominates the behavior. It depends on the fluid proper-
ties like for gases Pr ranges 0.7–1.0, for water Pr ranges 
1–10, for liquid metals Pr ranges 0.001–0.03 and for oils 
Pr ranges 50–2000. Figure 12 explores the variations of N 
on temperature θ. Here, we revealed that the temperature 
and its related thickness of boundary layer are higher for 
larger N. Influence of ɛ on temperature profile is presented 
in Fig. 13 It is examined that large amount of heat transfers 
from surface to material and thus θ(η) increases. Figures 14 
and 15 are disclosed to analyze the impacts of θr > 0 and 

Fig. 8  Effects of θr < 0 on fʹ(η)

Fig. 9  Effects of A on θ(η)
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θr < 0 on temperature θ(η). Clearly θ(η) boosts when θr > 0. 
However, opposite situation is examined for θr < 0.

Table 1 is presented to find that how much order of 
computations is required for a convergent solution. It is 
noticed that 15th and 20th order of deformations are 

required for the velocity and temperature solutions respec-
tively. Table 2 is made to analyze the numerical values 
of skin friction coefficient and local Nusselt number 
for different values of A, G, S, θr, Pr and N. This Table 
elaborates that heat transfer rate become larger when we 

Fig. 10  Effects of S on θ(η)

Fig. 11  Effects of Pr on θ(η)



3014 J Braz. Soc. Mech. Sci. Eng. (2017) 39:3005–3017

1 3

Fig. 12  Effects of N on θ(η)

Fig. 13  Effects of ɛ on θ(η)

increase the values of A, G, S, Pr and N; however, oppo-
site situation is noticed for larger θr. Moreover, skin fric-
tion coefficient becomes larger when we increase Pr and 

S while it reduces via larger A, G, θr and N. Tables 3 and 
4 provides a comparative analysis of existing solutions 
with the previous results in a limiting case. From these 
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Tables, we have examined that our present solutions have 
an excellent match with the previous published data that 
shows the reliability and validity of technique used for the 
computations.   

6  Concluding remarks

Mixed convective flow of Carreau liquid near a stagnation 
point considering variable properties is examined. The fol-
lowing conclusions can be extracted from this investigation:

Fig. 14  Effects of θr > 0 on 
θ(η)

Fig. 15  Effects of θr < 0 on 
θ(η)

Table 1  Convergence of homotopy solutions when n = 3, G = 0.3, 
λ1 = ɛ = 0.2, A = 0.1, S = 0.6, Pr = 2.0, θr = 1.1 and N = 0.3

Order of approximation − f′′(0) −θ′(0)

1 1.0001 0.32381

5 1.0199 0.31553

10 1.0182 0.31485

15 1.0182 0.31481

20 1.0182 0.31481

25 1.0182 0.31481

30 1.0182 0.31481

35 1.0182 0.31481
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•	 Impact of A on temperature and velocity fields is 
quite reverse. Velocity is increased while temperature 
reduces with an increase in A.

•	 Suction parameter S reduced the velocity of liquid 
while it increases the momentum boundary layer 
thickness.

•	 Prandtl number Pr creates a reduction in temperature 
θ(η) and thickness of thermal boundary layer.

•	 The increasing values of θr (i.e. θr > 0) correspond to 
lower velocity and higher temperature.

•	 The effects of S and Pr on temperature θ(η) are similar 
in a qualitatively way.
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