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1  Introduction

Most of the rotating equipment in industries has rolling 
element bearings as essential mechanical components to 
provide support and relative motion between parts. Safety 
and reliability are the major issues of concern for bearing 
applications. Though bearings are reliable rotary com-
ponent, some failures are associated with it. Due to load-
ing and high- speed rotation, wear occur in associated 
components of bearing, which lead to develop incipient 
faults. These incipient faults need to be detected at an early 
stage to avoid chances of catastrophic failure of machin-
ery. Techniques such as vibration measurement, lubricant 
analysis, infrared thermography, and acoustic measure-
ment are frequently used techniques to detect and diag-
nose the faults associated with bearing [1, 2]. Most of the 
researchers focused on vibration analysis of defective sig-
nals for detecting faults since vibration signals are related 
to the structural dynamics of the machine. It is observed 
that diagnostic information from vibration signal of faulty 
bearings can be obtained by applying signal processing 
techniques [3, 4]. Authors [5, 6] calculated the time domain 
statistical parameters from the healthy bearing and bearing 
with different faults. They used artificial intelligence (AI) 
techniques such as Artificial neural network (ANN) Sup-
port Vector Machine (SVM) and Random Forest for fault 
classification. Yang et al. [7] investigate the application of 
Random Forest as a classifier for machine fault diagnosis. 
They compared Random Forest with other classifiers, like 
SVM and ANN, and observed high accuracy from Random 
Forest classifier.

Nonlinearity due to varying stiffness and development 
of faults in bearings makes vibration signal to possess non-
linear characteristics [8, 9]. Therefore, features from time 
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domain signals are not efficient alone since these features 
calculated are masked by noise. In these circumstances, 
researchers focused their attention toward advanced signal 
processing techniques such as Wavelet Transform (WT) 
[10, 11]. To identify the type of faults, Nikolaou and Anto-
niadis [12] have used wavelet packet transform. Authors 
found that time–frequency localization capabilities of 
wavelet packet transform makes it an efficient method to 
identify the nature of rolling element bearing faults. Fur-
ther, Discrete Wavelet Transform (DWT) was used by 
Prabhakar et al. [13] for detecting single and multiple faults 
in bearing races. While, using Wavelet Transform challenge 
is to choose most appropriate wavelet. Therefore, mother 
wavelet selection methodologies were proposed based on 
Maximum Energy to Shannon Entropy ratio, Maximum 
Relative wavelet Energy, and Multiscale Permutation 
Entropy [14–16].

The information contained by various features extracted 
from signals is an important issue in the area of machine 
learning. To enhance classification accuracy, feature selec-
tion procedure is applied by researchers in various applica-
tions. The goal is to select most informative features based 
on feature ranking and discard irrelevant features so that 
classification accuracy is enhanced with minimum fea-
ture subset. Fisher Score and Mahalanobis Distance tech-
nique were employed by Wu et  al. [17] to select the top-
ranked feature so that classification accuracy is improved. 
Zheng et  al. [18] used another feature ranking technique, 
Laplacian score, for identifying informative features from 

the various faults associated with the bearing. Kappagan-
thu and Nataraj [19] calculated statistical features from 
time domain, frequency domain, and time–frequency 
domain and, utilized mutual information (MI) technique 
to choose feature sets and realized that using feature rank-
ing techniques classification accuracy can be enhanced 
considerably.

In the present study, a generalized approach has been 
proposed to select an optimal number of the feature set 
using Information Gain (IG) and ReliefF (RF) feature rank-
ing techniques to select significant features calculated from 
time domain and Discrete Wavelet Transform. The advan-
tage of feature ranking method is that it is independent of 
classifier used and the features are selected based on their 
ranking. Proposed feature ranking techniques are applied 
to the Case Western Reserve University (CWRU) bearing 
data set for testing the efficacy of proposed methodology. 
The combination of feature ranking methods and classifi-
ers are used to select the optimum number of feature set so 
that maximum efficiency is obtained with reduced number 
of feature set. Considering the reduced scope of speeds and 
loading conditions, the optimum number of feature set and 
the features calculated may differ for a different data set. In 
most of the previous studies, features are divided into train-
ing and testing set; therefore, results reported may carry a 
statistical biasedness. In the present study, the robustness 
of proposed technique is evaluated using 10-fold cross-val-
idation which is the standard method of testing classifiers 
and gives statistically unbiased results. The result shows 
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improvement in classification efficiency with reduced fea-
ture set. Figure 1 shows the flowchart of the methodology 
proposed.

2 � Machine learning techniques

2.1 � Support Vector Machine

Support Vector Machine is a type of supervised learning 
algorithm mainly used for classification and regression. The 
theories of Support Vector Machines have been described 
by Vapnik [20]. Due to its high accuracy and good gener-
alization capability even when the samples are few, some 
researchers [8, 15] had employed the SVM as a tool for the 
classification of mechanical faults in bearing. The formu-
lation of SVM is based on the principle of structural risk 
minimization. For binary classification problem, the aim 
is to maximize margin between the separating planes. The 
maximum margin which separates the hyperplane (H1) can 
be used to classify data sets into the classes consider. The 
equation for H1 can be written as

here x is a point that lies on a separating plane (H1) and w 
is a vector perpendicular to the plane. The normalization of 
parameter w for two classes can be represented as

and

On combining Eqs. (2a) and (2b) we get

here ξi represents slack parameter.
To evaluate the performance of SVM, Meyer et al. [21] 

conducted an extensive study and concluded that the SVM 
is best for fault classification problems. In the present 
study, the sequential minimal optimization (SMO) algo-
rithm is used with ten-fold cross-validation method. Pear-
son VII kernel function (PUK) kernel is chosen, and pen-
alty parameter C is set to 10. Due to better generalization 
capability, SVM as an algorithm for fault detection systems 
is of great interest for academic and industrial societies.

2.2 � Random Forest

Random Forest is a type of Artificial intelligence tech-
nique to identify the state of machinery component. The 
Random Forest algorithm was developed by Breiman [22] 
and is based on building a decision tree. In the initial stage, 
the training set consisting of features is divided into the 

(1)x.w+ b = 0,

(2a)xi · w+ b ≤ −1+ ξi for yi = −1

(2b)xi · w+ b ≥ +1− ξi for yi = +1.

(3)yi(xi.w+ b) ≥ +1− ξi,

in-bag and out-bags set. The method of bootstrapping is 
repeated several times on feature set to produce several in-
bag sets and out-bag set subsets. A Decision tree is mod-
eled for each in-bag data set, and the out-of-bag set is used 
for evaluating the classification accuracy of each decision 
tree. The final outcomes based on algorithm are obtained 
from out-bag sets from the entire training dataset. Every 
decision tree casts a vote for one class, and this vote can 
be used to estimate the generalization capability of the 
classifier. The class from the feature set is recognized by 
gaining maximum vote [23]. The Random Forest error rate 
depends on the correlation between any two trees in forest 
and strength of each tree in the forest. Increasing the cor-
relation increases the forest error rate. On the other hand, a 
tree with a low error rate is a strong classifier.

3 � Feature selection

Feature selection is required to choose a small subset of 
features from original feature subset to reduce dimension-
ality without compromising information contained. To 
make a decision which feature has to retain and which fea-
ture has to discard depends solely on the technique which 
has to be applied. By eliminating redundant features, the 
performance of classifier improves. To eliminate an irrele-
vant feature, a feature selection criterion is desirable which 
can measure the significance of each feature in a feature set 
with respect to class labels. Feature-ranking techniques, 
such as Fisher Score [24], ReliefF [25], Information Gain 
[26], and dimensionality reduction technique as Principal 
Component Analysis (PCA) [27], are widely used tech-
niques applied to a variety of problems. The advantage of 
features selected by applying feature-ranking techniques 
is to maintain the original physical structure without the 
space transformation as in PCA. Feature-ranking methods 
aim not only to reduce dimensionality but at the same time 
superior feature separability and conserving required infor-
mation. In this study, two feature-ranking criteria are com-
pared namely: Information Gain and ReliefF. These criteria 
are used for selecting features having high distinguishabil-
ity with an optimum number of feature sets for obtaining 
maximum accuracy.

3.1 � Information Gain

In Information Theory, Information Gain (IG) is associated 
to entropy which measures the unpredictability of system. 
When we apply Shannon Entropy to Random variable M 
[28] then

(4)E(M) = −
∑

i=M

pi(M) · log2(pi(M)),
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here pi(M) is probability density function of Random vari-
able M; then, entropy of M after observing N is

here pi(M/N) is conditional probability of M given 
N.Information Gain is given by

Information Gain measures a reduction in uncertainty 
about M due to the knowledge on a feature N which is 
measured by entropy change.

3.2 � ReliefF

Sikonja et al. [29] used ReliefF (RF) in their study as a fea-
ture subset selection method and found that it is a powerful 
attribute estimator method which can be applied to solve a 
variety of classification problems. RF computes the weight 
of feature Wi from the feature set Xi. Let NH and NM rep-
resent the nearest hit and nearest miss from the same class 
and opposite class, respectively. The instances which are 
closer within class are known as the nearest hit, and the 
closest different class instance is known as the nearest 
miss. Weight can be computed by [30]

The weight of feature depends on the weight gain by 
that feature in nearby instances of the same class. ReliefF 
uses ɛ0 = ɛ1 = 1 which implies that within class conserva-
tion and inter-class divergence are weighted equally.

(5)E(M/N) = −
∑

i=N

pi(N) ·
∑

i=M

pi(M/N). log2(pi(M/N)),

(6)IG = E(M)− E(M/N).

(7)Wi = Wi + ε0|Xi − NMi| − ε1|Xi − NHi|.

4 � Experimental procedure

The experimental data set used in present study is made 
available by Case Western Reserve University Bearing Data 
Center [31]. As shown in Fig. 2, setup consists of 2HP three-
phase induction motor, a dynamometer connected with the 
coupling device, and a torque transducer. 7 Ball bearings type 
6205 is used as test bearing whose specification is shown in 
Table 1. The data set belongs to 12 K drive end bearing due 
to the broader variety of fault sets. Faults are introduced with 
the help of electric discharge machining with defect diam-
eter 0.1778, 0.3556, 0.5334, and 0.7112 mm. Vibration sig-
nals are collected with four different conditions: Healthy 
bearing (HB), Inner race fault (IRF), Outer race fault (ORF), 
and Ball fault (BF). To record signal, an accelerometer was 
mounted at the drive end. Vibration signals are recorded at 
various rotational speed as 1725, 1748, 1772, and 1796 rpm, 
and the sampling frequency was set to 12 kHz.

4.1 � Feature extraction/calculation

Vibration signals acquired with the help of sensors from 
bearings are highly nonlinear in nature. It is, therefore, 

Fig. 2   Bearing test rig Bearing at 
Fan End 

Electric 
Motor

Bearing at 
Drive End

Torque 
Transducer

Dynamometer

Table 1   Specification of bearing 6205 (drive end)

Bearing type Inside diam-
eter (mm)

Outside 
diameter 
(mm)

Ball diam-
eter (mm)

Pitch 
diameter 
(mm)

6205 25 52 7.94 39
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necessary to use proper signal processing techniques to 
extract useful information about the healthy or faulty sta-
tus of the component. Generally, features are extracted 
from vibration signal using time domain, frequency domain 
(FFT), and time–frequency domain (Wavelet) [32]. Time 
domain signal can be directly analyzed by looking at its 
pattern and has the advantage of simple calculations. Time 
domain features are directly calculated from time wave-
form of the signal. Kurtosis, Skewness, Root Mean Square, 
Mean Value, and Shannon Entropy are frequently used 
features which are calculated from vibration signals. The 
drawback of features calculated by time domain method is 
that it is unable to detect faults at an early stage. Further, 
the statistical parameters calculated from time domain sig-
nal could not identify faults in bearing since vibration sig-
nals were masked by noise. Frequency domain method is 
another technique for fault diagnosis of bearing. Vibration 
signal can be of stationary or non-stationary nature. When 
signal statistics do not change with respect to time then it 
will be categorized as a stationary signal. In case of non-
stationary signal, statistical properties change with time. 
Frequency domain method is suitable for analyzing sta-
tionary signal. Due to a narrow range of features, available 
FFT-based features are reported less.

Methods such as Wavelet Transform (WT), Short-Time 
Fourier Transform (STFT), and Wigner-Ville Distribution 
(WVD) emerged as a potential technique for analyzing 
non-stationary signals [32]. As compared to FFT, Wavelet 
Transform decomposes a signal into both time and fre-
quency simultaneously. STFT is similar to WT in opera-
tion, but the difference lies in using window function. In 
STFT, fixed window function is used as a result both time 
and frequency resolution will be fixed. Whereas in WT, 
varying window functions are used which make it useful 
for detecting the impulses present in the signal. Discrete 
Wavelet Transform (DWT) is useful to obtain time–fre-
quency information from the signal. With the help of DWT, 
the impulses occuring due to the presence of defect can be 
detected efficiently [13].

Kim et  al. [33] validated the importance of calculat-
ing features from DWT by a comparative study. Methods 

compared were Short-Time Fourier Transform (STFT) and 
Wigner-Ville distribution (WVD). A detailed description of 
applications of wavelet for fault diagnosis can be found in 
[8, 10]. Detail list of time domain and DWT-based features 
calculated in the present study are listed in Table  2. The 
feature vector constructed consists of 62 instances and 35 
attributes. The overall size of feature vector is 2170.

4.2 � Wavelet selection

Wavelet Transform-based features are found useful in 
detecting abrupt changes from the measured vibration sig-
nal. The advantages of wavelet transform for bearing fault 
detection is the availability of several base wavelets func-
tions developed over the past decades. To extract the fault 
feature of signals, an appropriate wavelet-base function 
should be selected. To calculate DWT-based features from 
detail and approximation coefficients from bearings sig-
nals, Maximum Energy to Shannon Entropy ratio criterion 
(MESE) [14, 15] is used for selecting the base wavelet in 
the present study.

A wavelet is selected as the base wavelet, when it 
extracts maximum amount of energy from the meas-
ured signal and simultaneously minimizing the Shannon 
Entropy of the corresponding wavelet coefficients [14]. 
The wavelets compared in this study are Daubechies (db1), 
Symlet (sym2), Coiflet (coif1), and reverse Biorthogonal 
(rbio1.1). Bearings with faults in outer race, inner race, and 
ball are considered in the present study to select wavelet at 
speed 1730, 1750, 1772, and 1797  rpm. To convert bear-
ing signals into the wavelet coefficients, these raw signals 
are decomposed into detail and approximation coefficients 
using ‘dwt’function. Signal is decomposed up to three lev-
els, and statistical features are calculated. It is clear from 
Fig. 3 that Coiflet Wavelet gives Maximum Energy to Shan-
non Entropy ratio and thus it is chosen to calculate DWT-
based statistical features. Figure  3 depicts MESE value 
with inner race fault (IRF), outer race fault (ORF), and ball 
fault (BF) with corresponding rotational speed. It is evident 
that for all the wavelet considered, MESE value for IRF is 
maximum, in almost all the cases considered, and for BF, 

Table 2   Features considered 
in study

Domain Features

Kurtosis Skewness RMS Mean Shannon entropy

Time domain KT ST RT MT SET

DWT detail level 1 KD1 SD1 RD1 MD1 SED1

DWT approximation level 1 KA1 SA1 RA1 MA1 SEA1

DWT detail level 2 KD2 SD2 RD2 MD2 SED2

DWT approximation level 2 KA2 SA2 RA2 MA2 SEA2

DWT detail level 3 KD3 SD3 RD3 MD3 SED3

DWT approximation level 3 KA3 SA3 RA3 MA3 SEA3
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MESE value is lowest except for biorthogonal wavelet. 
This can be inferred that IRF is severe as compared to other 
faults consider in the present study. The average MESE val-
ues for wavelets considered for 0.7112 mm depth fault are 
shown in Table 3.

5 � Results and discussion

In the present study, statistical features are obtained from 
time domain and DWT. A sample time response and spec-
trum (FFT) of vibration signals for healthy bearing, bear-
ing with a fault in an inner race (0.1778 mm), bearing with 

ball fault (0.1778 mm), and bearing with fault at the outer 
race (0.1778 mm) are shown in Fig. 4a–d. In Fig. 4a, the 
time response and frequency response in terms of FFT, for 
healthy bearing at 1797  rpm are shown. From FFT, it is 
observed that the peak amplitude was observed at Varying 
Compliance Frequency (VC) and their multiples. The Vary-
ing Compliance Frequency measured for healthy bearing 
at 1797 rpm is 87.51 Hz. Figure 4b shows the response of 
inner race fault at 0.1778 mm defect condition at a rotat-
ing speed of 1797 rpm. It is observed that the wave passage 
frequency on inner race (ωbpfi) was 154 Hz for bearing with 
inner race defect. The peak amplitude appears at super-har-
monic of wave passage frequency (4ωbpfi = 616 Hz). It is 
observed that time waveform is aperiodic in nature. When 
ball fault is considered at 0.1778 mm defect, aperiodic time 
waveform appears in Fig.  4c. The ball passage frequency 
(ωbpfs) corresponding to defect in a ball of the roller bearing 
is 98 Hz. The peak amplitude appears at (7ωbpfs = 686 Hz) 
in frequency spectra. The measured vibration response for 
outer race defect is shown in Fig. 4d. The peak in ampli-
tude appears at (6ωbpfo = 684 Hz). After analyzing the fre-
quency spectrum and peak amplitude, it is observed that the 
impact of a fault in an outer race is more severe as com-
pared to a fault in an inner race which is followed by a fault 
in a ball.

In total, thirty-five features based on the time domain 
and Discrete Wavelet Transform are measured from vibra-
tion signals and used as an input to machine learning 
algorithms for classification of faults [34]. To optimize 
the feature set two feature ranking algorithm viz. Infor-
mation Gain and ReliefF are used to reduce the order of 
feature set. Tables 4 and 5 show the feature ranking of the 

Fig. 3   Maximum Energy to 
Shannon Entropy ratio (MESE) 
for wavelets at rotational speed
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Table 3   Average MESE values for 0.7112 mm depth fault for wave-
lets

db1 sym2 coif1 rbio 1.1

MESE 25.05 95.95 96.61 25.05

25.83 89.24 90.74 25.83

18.84 57.90 60.11 18.84

15.97 40.86 42.28 16.0

4.62 14.90 15.54 25.05

5.39 15.86 16.27 25.83

8.69 25.52 26.53 18.84

8.48 20.31 19.9 16.0

13.47 40.23 41.73 13.47

15.88 47.96 48.45 15.88

17.69 50.32 51.52 17.69

19.98 51.79 52.04 20.0

Average value 14.997 45.909 46.812 19.873
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Fig. 4   Time response and frequency response for different bearing conditions a healthy bearing, b inner race fault, c ball fault, d outer race fault
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calculated features. For Information Gain-based feature 
ranking, Shannon Entropy at DWT approximation level 1 
is found to be most informative features among the whole 
feature set. The reason lies in the fact that Shannon Entropy 
measures the disorders present in the signal. It also repre-
sents status of signal with considerable high information 
at DWT approximation level 1. RMS value at time domain 
is found to be the second most feature, since it represents 
the average power of measured signal and is weighted 

high as compared to the other feature. It is observed from 
Table 4 that features calculated from DWT secure top rank-
ing based on IG selection criterion. In the present study, 
the feature ranking not only depends on the domain from 
which features are calculated but also depends on the 
weight assigned from the ranking method. 

The 10-fold cross-validation efficiency of SVM classi-
fier of ranked feature based on Information Gain (IG-SVM) 
is shown in Fig.  5. When SEA1 alone was used for clas-
sification than 49% cross-validation efficiency is obtained. 
As the numbers of features are increasing, the efficiency is 
increasing and the peak efficiency of 90.3226% is achieved 
when top fourteen ranked features are used. A very inter-
esting fact is observed from Fig.  5 that as the number of 
features increases then efficiency goes on decreasing. This 
gives information that only fourteen top-ranked features 
are sufficient enough for achieving highest efficiency based 
on the classifier used. To compare the accuracy of Infor-
mation Gain criterion one more classifier, Random For-
est, is utilized. The cross-validation efficiency of Random 
Forest classifier based on Information Gain (IG-Random 
Forest) is shown in Fig.  6. When SEA1 alone was used 
as a feature than 69.3548% cross-validation efficiency is 
achieved. Further, when SEA1 together with RT was used 
then 90.3226% cross-validation efficiency is achieved. This 
suggests that only two features are sufficient to achieve 
accuracy of 90.3226% which is equivalent to the efficiency 
achieved when top fourteen ranked feature are used with 
SVM as a classifier. Therefore, it is concluded that feature 
ranking alone is not sufficient for fault classification but its 
combination with the classifier is also significant.

To further show the utilization of feature ranking method 
for fault classification, one more ranking algorithm ReliefF 
(RF) is used, and the ranked feature list is shown in Table 5. 
Mean value obtained from DWT detail level 2 becomes 
the most significant feature among thirty-five measured 
features from RF ranking method. The weight achieved 
by mean value from RF suggests that this feature carries 
most information content from all the classes considered 
in the present study, since mean value represents the aver-
age amplitude of the signal over time. The second-ranked 
feature is skewness at DWT detail level 1. It is observed 
from Table 5 that DWT-based measured features are more 
significant as compared to the time domain features. The 
same observation is also found in Table 4. Using the ranked 
feature set from RF, two classifiers are used for compar-
ing classification accuracy with selected features. Fig-
ure  7 shows the cross-validation efficiency obtained from 
SVM as a classifier and ReliefF as ranking method (RF-
SVM). It is observed that the maximum cross-validation 
efficiency 91.9355% is obtained when top twelve features 
are selected. The lowest classification accuracy obtained is 
46.7742% when single top-ranked feature is used.

Table 4   Information Gain-based feature ranking

Order Ranking Ranked 
feature

Selected 
feature

Cross-validation effi-
ciency (%)

IG-SVM IG-Random 
Forest

10 1 SEA1 1 48.38 69.35

3 2 RT 1–2 61.30 90.32

23 3 RD2 1–3 59.67 90.32

13 4 RD1 1–4 64.51 91.93

15 5 SED1 1–5 64.51 93.54

8 6 RA1 1–6 66.13 91.93

7 7 SA1 1–7 77.42 91.93

25 8 SED2 1–8 77.42 96.77

11 9 KD1 1–9 75.80 96.77

24 10 MD2 1–10 79.02 96.77

12 11 SD1 1-11 87.09 93.54

21 12 KD2 1–12 87.09 90.32

6 13 KA1 1–13 88.70 87.09

1 14 KT 1–14 90.32 88.70

26 15 KA3 1–15 90.32 91.93

30 16 SEA3 1–16 87.09 91.93

20 17 SEA2 1–17 87.09 91.93

35 18 SED3 1–18 88.02 87.09

9 19 MA1 1–19 85.48 88.70

5 20 SET 1–20 85.48 90.32

2 21 ST 1–21 83.87 91.93

4 22 MT 1–22 80.64 95.16

31 23 KD3 1–23 80.64 88.70

28 24 RA3 1–24 82.25 88.70

29 25 MA3 1–25 79.03 93.54

34 26 MD3 1–26 75.80 88.70

32 27 SD3 1–27 75.80 93.54

33 28 RD3 1–28 75.80 91.93

17 29 SA2 1–29 75.80 88.70

14 30 MD1 1–30 70.96 83.87

16 31 KA2 1–31 72.58 83.87

22 32 SD2 1–32 69.35 80.64

27 33 SA3 1–33 77.42 87.09

18 34 RA2 1–34 75.80 85.48

19 35 MA2 1–35 75.80 83.87
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When KD1 is used along with previous top three ranked 
feature, there is a considerable increase in validation effi-
ciency suggesting that the combination of ranked feature 
enhanced the classification accuracy. When numbers of 
features are increasing beyond twelve features, then effi-
ciency decreases. It can be judged that only twelve fea-
tures are sufficient enough to get the highest accuracy from 
SVM classifier and ReliefF ranking method (RF-SVM). 
The ReliefF ranking method is compared with Random 
Forest for fault classification. The highest cross-validation 
efficiency achieved is 98.3871% with top ten ranked fea-
tures and the lowest cross-validation efficiency achieved 

is 45.1613% with top two ranked features. It is observed 
from Fig. 8 that just top ten features are sufficient enough 
for achieving highest classification accuracy when ReliefF 
is combined with Random Forest classifier (RF-Random 
Forest). Table 6 shows the cross-validation efficiency-based 
confusion matrix obtained from Information Gain when 
SVM and Random Forest are used. From SVM 15, 15, 
22, 4 instances are identified correctly for IRF, BF, ORF, 
and HB classes. The accuracy obtained is 90.3226% with 
fourteen features. Similarly, for Random Forest 16, 15, 26, 
4 instances are identified correctly for IRF, BF, ORF and 
HB classes. The accuracy obtained is 96.7742% with eight 

Table 5   ReliefF-based feature 
ranking

Order Ranking Ranked feature Selected feature Cross-validation efficiency

RF-SVM RF-Random Forest

24 1 MD2 1 46.77 46.77

12 2 SD1 1–2 50.00 45.16

7 3 SA1 1–3 56.45 62.90

11 4 KD1 1–4 74.19 64.51

21 5 KD2 1–5 74.19 75.80

1 6 KT 1–6 75.80 77.41

6 7 KA1 1–7 75.80 69.35

13 8 RD1 1–8 80.64 79.03

3 9 RT 1–9 79.03 88.70

8 10 RA1 1–10 82.25 98.38

2 11 ST 1–11 88.70 95.16

23 12 RD2 1–12 91.93 96.77

16 13 KA2 1–13 91.93 96.77

18 14 RA2 1–14 90.32 90.32

31 15 KD3 1–15 90.32 93.54

26 16 KA3 1–16 87.09 93.54

28 17 RA3 1–17 85.48 91.93

33 18 RD3 1–18 85.48 93.54

10 19 SEA1 1–19 88.70 88.70

25 20 SED2 1–20 88.70 93.54

5 21 SET 1–21 88.70 95.16

15 22 SED1 1–22 88.70 93.54

20 23 SEA2 1–23 88.70 93.54

29 24 MA3 1–24 85.48 93.54

32 25 SD3 1–25 85.48 93.54

35 26 SED3 1–26 85.48 91.93

30 27 SEA3 1–27 83.87 93.54

22 28 SD2 1–28 80.64 96.77

4 29 MT 1–29 77.41 91.93

19 30 MA2 1–30 75.80 91.93

9 31 MA1 1–31 75.80 91.93

17 32 SA2 1–32 77.41 90.32

27 33 SA3 1–33 82.25 95.16

14 34 MD1 1–34 77.41 93.54

34 35 MD3 1–35 75.80 91.93
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Fig. 5   Cross-validation effi-
ciency of SVM classifier based 
on Information Gain
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Fig. 6   Cross-validation effi-
ciency of Random Forest classi-
fier based on Information Gain
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Fig. 7   Cross-validation effi-
ciency of SVM classifier based 
on ReliefF
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features. It is clear from Table  6 that Random Forest is 
best classifier for Information Gain-based feature-ranking 
method. Table  7 shows cross-validation efficiency-based 
confusion matrix obtained from ReliefF when SVM and 
Random Forest are used. From SVM correctly identified 
instances are 15, 16, 22, and 4 for IRF, BF, ORF, and HB 
classes. Inner race fault and healthy bearings are identified 
exactly where as outer race fault is identified least. From 
Random Forest, correctly identified instances are 15, 16, 
26, and 4 for IRF, BF, ORF and HB. Ball fault, outer race 
fault, and healthy bearing are identified exactly where as 
inner race fault is identified least.

Figure 9 shows the class identification rate through SVM 
and Random Forest using two ranking methods. Based on 
Information Gain ranking method shown in Fig.  9a the 

classification accuracy of Random Forest (Eight features) 
is found to be efficient as compared to SVM (Fourteen fea-
tures). Random Forest correctly predicted IRF, ORF, and 
HB classes, whereas SVM correctly predicted HB class 
only. For ReliefF-based ranking, Fig.  9b correctly identi-
fied classes are BF, ORF, and HB with Random Forest 
while SVM identified BF and HB classes correctly. Thus, 
the average class prediction rate with Random Forest clas-
sifier is higher than with SVM classifier. Table  8 shows 
the numeric prediction rate of SVM and Random Forest 
classifier. It can be concluded that for RF-Random Forest 
98.3871% cross-validation efficiency is achieved which 
is a promising result based on the present methodology. 
Also, ten features are sufficient enough to gain the highest 
accuracy with ReliefF and Random Forest. Table 9 shows a 

Fig. 8   Cross-validation 
efficiency of Random Forest 
classifier based on ReliefF
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Table 6   Information Gain 
confusion matrix (SVM and 
Random Forest)

IG-SVM Classified as IG–Random Forest

IRF BF ORF HB IRF BF ORF HB

15 0 1 0 IRF 16 0 0 0

0 15 1 0 BF 0 15 1 0

0 4 22 0 ORF 0 0 26 0

0 0 0 4 HB 0 0 0 4

Accuracy–90.3226% (14 Features) Accuracy–96.7742% (8 Features)

Table 7   ReliefF confusion 
matrix (SVM and Random 
Forest)

SVM Classified as Random Forest

IRF BF ORF HB IRF BF ORF HB

15 0 1 0 IRF 15 0 1 0

0 16 0 0 BF 0 16 0 0

0 4 22 0 ORF 0 0 26 0

0 0 0 4 HB 0 0 0 4

Accuracy–91.935% (12 Features) Accuracy–98.3871% (10 Features)



2980	 J Braz. Soc. Mech. Sci. Eng. (2017) 39:2969–2982

1 3

comparative study based on available literature demonstrat-
ing the effectiveness of present methodology.

In general, Random Forest achieves maximum accuracy 
when used with IG and RF due to less generalization error. 
Breiman [22] suggested that the generalization error in 

Random Forest classifier is due to the correlation between 
any two trees in the forest and due to the strength of indi-
vidual tree in the forest. It was observed that a tree with low 
error rate emerges as a strong classifier. On the other hand, 
decreasing correlation among different classes decreases 
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Fig. 9   Cross-validation accuracy based on class

Table 8   Numeric prediction 
rate

Parameters IG-SVM IG-Random 
Forest

RF-SVM RF–Random 
Forest

Instances which are correctly classified 56 60 57 61

Instances which are incorrectly classified 6 2 5 1

Kappa value 0.8135 0.9527 0.8839 0.9764

Time (s) 0.16 0.01 0.05 0.01

Cross-validation efficiency (%) 90.3226 96.7742 91.9355 98.3871

Table 9   Comparison table demonstrating significance of present study with published literature

Authors Number of feature 
used

Feature selection 
technique

Classifier used Peak efficiency Remark

Kavathekar et al. [6] Ten Not applied Seven classifier 75% Training efficiency

Wu et al. [17] Eighty (statistical) Fisher score and 
Mahalanobis dis-
tance

SVM 98.5% (Ten features 
with Mahalanobis 
distance)

Training efficiency

Wang et al. [35] Hundred Statistical locally 
linear embedding

CART,KNN and SVM 97.26%  ---- 

Li et al. [36] One hundred eighty Laplacian score SVM-BT 100% Training efficiency

Zhang and Li [37] Twenty PCA, LPP, LDA, and 
ISOP

Neighborhood preserv-
ing embedding and 
SOM

99% Training efficiency

Present work Thirty-five (statistical) ReliefF and Informa-
tion Gain

SVM and Random 
Forest

98.38% (Ten features 
with Random Forest 
classifier)

Ten-fold cross-vali-
dation efficiency
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the forest generalization error. These can be a reason of 
better classification from Random Forest classifier. Another 
reason is only one variable, i.e., number of trees need to 
be set by user thus complexity achieved by classifier 
decreases. The disadvantage of SVM is that basically, SVM 
is a binary classifier and for conducting multi-class clas-
sification one against all procedure can be used. Thus, the 
average results obtained are computationally expensive and 
may contain biasedness. This can be a reason of the inferior 
performance of SVM as compare to Random Forest.

6 � Conclusion

This study presents the comparison of two ranking methods 
Information Gain and ReliefF for ranking features. Fea-
tures are calculated from vibration signals obtained from 
CWRU-bearing data center. The feature set obtained con-
sists of five time domain features and thirty DWT-based 
features. To obtain classification accuracy, cross-validation 
technique is used for SVM and Random Forest as a clas-
sifier. For fault classification, optimum feature selection is 
an important task which is reported less in the literature. 
In the experiments conducted, ReliefF is found to be effi-
cient feature-ranking method when it is used with Random 
Forest classifier. An insight is obtained after conducting an 
experiment about a number of features necessary for get-
ting highest accuracy from the feature set. Till now, few 
researchers focused on reducing feature set and improving 
classification accuracy for fault diagnosis of bearing which 
is shown in Table 9. The importance of present study lies in 
comparing ranking methods and using them with classifiers 
which are reported less in the literature. Further, the results 
obtain depends on the data sets used and the methodology 
adopted for calculating statistical features. Experimen-
tal results show that the RF–Random Forest method can 
choose an optimum set of features with high cross-valida-
tion efficiency of 98.3871% as compared to IG-SVM, IG-
Random Forest, and RF-SVM. The result obtained shows 
the efficacy of proposed methodology.
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