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1  Introduction

Optimization of steel frames is an important open problem 
in engineering. Many techniques and algorithms have been 
applied and adapted to solve this kind of problem [1]. Opti-
mization techniques in structural design can be categorized 
into conventional techniques and meta-heuristic techniques. 
For the conventional or classical approach, extra informa-
tion about the problem is required, such as gradients. The 
solution applying conventional techniques usually depends 
on the initially selected points and the optimum found may 
not be global, eg. for non-convex optimization problems. In 
order to avoid the limitations and requirements of the clas-
sical approach, numerous alternative meta-heuristic tech-
niques have emerged in the last two decades.

In the meta-heuristic approach the optimal solution is 
found by applying rules and randomness to guide the solu-
tion process towards the global optimum. The algorithms 
from this approach are well suited to solve the discrete 
highly non-linear and non-convex optimization problems 
often found in real-world engineering and do not need any 
extra information about the function being optimized. As a 
result of their robustness and efficient performance, meta-
heuristic search procedures have attracted a lot of attention 
from researchers [2].

Authors have employed several different meta-heuristic 
methods for solving the steel frame discrete optimization 
problem. Some well established classical algorithms, such 
as: Genetic Algorithm (GA) [3–5], Simulated Annealing 
(SA) [6–8], Ant Colony Optimization (ACO) [9–11], Par-
ticle Swarm Optimization (PSO) [12, 13] and Tabu Search 
[14–16]. Novel and relatively recently developed heuristics 
were also used, for instance: Harmony Search (HS) [17–
20], Imperialist Competitive Algorithm (ICA) [21–23], Big 
Bang-Big Crunch (BB-BC) [24–27], Charged System (CS) 
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[28, 29], Artificial Bee Colony (ABC) [30, 31], Teaching-
Learning Based Optimization (TLBO) [32], Cuckoo Search 
(CS) [33] among others.

Gonçalves et  al. [34] developed a new meta-heuristic 
method, the so-called Search Group Algorithm (SGA). 
Contrary to most heuristic algorithms, SGA is not nature 
inspired. Its execution is divided in a global and a local 
phase and the main idea is based on the creation e evalua-
tion of search groups based on promising individuals found.

In this paper, SGA is applied to solve three planar steel 
frame design optimization problems, selected from the lit-
erature. The optimization problem is discrete and the objec-
tive is to find the steel section for each design group which 
minimizes the overall structure weight. The results are then 
compared with studies applying different algorithms in a 
manner to demonstrate the algorithm effectiveness, robust-
ness and applicability for this type of problem. In order to 
obtain a meaningful comparison, extra care has to be taken 
on the formulation of problem and which normative prem-
ises are being considered. This work aims to formulate the 
planar steel frame problem and cite every consideration 
made, making the results easier to reproduce. As it will be 
seen later, some authors don’t specify for example, which 
kind of analysis is being made. This makes comparatives 
between the final optimized solution less meaningful as 
the problem being solved is effectively different. In addi-
tion, instead of focusing only on the minimum obtained, 
a broader evaluation of the algorithm performance is 
assessed from statistical results from multiple runs.

2 � Optimum design problem

The general idea in the design of steel frames is to select 
from a standard table, the steel section for the columns and 
beams in the structure. This can be formulated as a dis-
crete optimization problem. The objective is to minimize 
the frame weight subject to displacements and stress con-
straints from a design code.

Differently from truss optimization problems [35], 
frame problems in literature usually develop the optimum 

design formulation based on a specification. Considering 
steel only, there are multiple specifications and multiple 
design methods inside of each. Evidently, depending on the 
design method chosen, different results will arise. For this 
reason, this paper describes the methods and considerations 
adopted in detail.

The design code applied was the most recent from the 
American Institute of Steel Construction (AISC), namely 
ANSI/AISC 360-10 [36]. Among the available design meth-
ods from the specification, the Effective Length Method 
(ELM) was chosen. This method was used to correspond 
the method employed by previous authors using the dated 
Manual of Steel Construction [37], also from AISC.

The optimization problem can be stated as follows:

where ρ denotes material density; mg is the number of 
design groups; Ak is the member cross-sectional area; nk 
is the number of members in each design group; Li is the 
length of ith member. The symbol x corresponds to the 
design vector of indices. Each integer index represents 
a steel section from an available profile database. Table 1 
represents the W section database used for the analyzed 
problems. It is a table with 267 rows and every index cor-
responds to a row in the table, which group the correspond-
ing section parameters.

The term P(x) ensures the constraints are satisfied. This 
term is added to the total structure weight, penalizing infea-
sible solutions. When a solution is feasible this term equals 
zero. Its value is calculated as the sum of violations from 
every constraint, amplified by an arbitrary factor. For the 
studied problems the amplification factor is taken as a very 
large number (1010). The effect of choosing a very high 
multiplier is to rule out all of the infeasible solutions which 
could potentially disrupt convergence. This technique is 
known in literature as Death Penalty [38]. 

2.1 � Constraints from steel specification

Optimal design of frame structures is subjected to the fol-
lowing constrains according to AISC [36] provisions:

2.1.1 � Maximum inter‑story displacements constraints

where δs is relative inter-story drift in story s, δsu is its limit 
value according to the specification and ns is the total num-
ber of stories.

(1)argmin
x

W(x) =ρ

mg
∑

k=1

(

Ak(x)

nk
∑

i=1

Li

)

+ P(x),

(2)
δs

hs
≤ δsu, for s = 1 to ns,

Table 1   AISC W profile database

Index x W-shape (AISC) A(x)(in2) I(x)(in4)

1 W6x8.5 2.51 14.8

2 W6x9 2.68 16.4

3 W8x10 2.96 30.8
.
.
.

.

.

.

.

.

.

.

.

.

265 W14x730 215 14,300

266 W36x798 235 62,600

267 W14x808 237 16,000
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2.1.2 � Maximum strength constraints

Structural elements from frames must have ample axial–
flexural interaction capacity. The following constraints 
ensure that each member satisfies the strength requirement 
for combined axial and flexural effects:

where Pu is the required axial strength (tension or com-
pression); Pn is the nominal axial strength (tension or 
compression); φ is the resistance factor which is taken as 
0.85 for members in compression and 0.90 for members 
in tension; Mux and Muy are the required flexural strengths 
about the x and y axes, respectively (for plane frames, 
Muy = 0); Mnx and Mny are the nominal flexural strengths 
about, respectively, the x and y axes and φb is the flex-
ural resistance factor taken as 0.9. The nominal tensile 
strength of a member is computed employing the follow-
ing expression:

and the nominal compressive strength of a member is com-
puted as:

where

In these expressions Ag is the cross-sectional area of the 
member; E is the modulus of elasticity; K is the effective 
length factor; L is the member length; r is the radius of 
gyration, and Fy is the yield stress of steel. The value of Fe 
corresponds to the Euler buckling load and is calculated as:

The effective length factor K, for unbraced frames is cal-
culated from the following approximate equation given by 
Dumonteil [39]:

(3)

Pu

2φPn

+
8

9
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+
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φPn
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+
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(4)Pn = AgFy,

(5)Pn = AgFcr,

(6)Fcr =























�

0.658
Fy
Fe

�

Fy for
KL

r
≤ 4.71

�

E

Fy

0.877 · Fe for
KL

r
> 4.71

�

E

Fy

.

(7)
Fe =

π2E
(

KL

r

)2
.

(8)K =

√

1.6 GA GB + 4.0(GA + GB)+ 7.5

GA + GB + 7.5
,

in this expression, GA and GB are relative stiffness ratios of 
a member with end nodes A and B. The value of G for each 
node is calculated as:

where I and L are respectively the moment of inertia and 
length of the members connected to the node analyzed.

The flexural strength is calculated based on the mem-
ber slenderness factor �. For a member with � < �p, the 
section is compact and the nominal strength is equal to 
the plastic moment Mp, calculated as:

where Z is the plastic section modulus, Fy is the yield 
stress of steel. Details for the formulation according to 
different slenderness limits are given in the specification 
[36].

The Effective Length Method (Sect.  2) requires tak-
ing account of the second order effects. These effects are 
caused by the vertical forces acting on the deformed struc-
ture. To deal with this effect the Moment Amplification 
formulation is applied. In this method, the overall second 
order effect comprises two superposed linear static analy-
ses. The moment and forces are amplified according to Eqs. 
(11) and (12):

where Mnt and Pnt are, respectively, the required flexural 
and axial strength in a member assuming there is no lateral 
translation (nt) in the frame, and Mlt and Plt are the required 
flexural and axial strength in a member as a result of lateral 
translation (lt) of the frame only. The term B1 accounts for 
the P–δ effect and is given by:

where Cm is

and Pe1 is the Euler buckling load as in Eq. (7) with K = 1 . 
The term B2 accounts for the P-� effect and is calculated 
for each floor as:

where �h is the first order drift due to lateral forces, h is the 
height of story, Pstory is the total vertical load and H is the 
shear force due to the lateral loads.

(9)G =

∑

(Icolumn/Lcolumn)
∑

(Ibeam/Lbeam)
,

(10)Mn = Mp = ZFy,

(11)Mu = B1Mnt + B2Mlt ,

(12)Pu = Pnt + B2 Plt ,

(13)B1 = Cm

1

1− Pu/Pe1
,

(14)Cm = 0.6−0.4
M1

M2
,

(15)
B2 =

1

1−
1

0.85

�h

h

Pstory

H

,
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3 � Search group optimization: SGA

The SGA is a meta-heuristic method that aims at having a 
good balance between the exploration and exploitation of the 
design domain. Both components are important in order to 
obtain a global optimum result. The basic idea is that in the 
first iterations of the optimization process the SGA tries to 
find promising regions on the domain (exploration), and as the 
iterations pass by, it refines the best design in each of these 
promising regions (exploitation). For this reason, the optimiza-
tion process is separated in two phases: global and local. In 
this section the important steps in the method as applied to 
optimization of steel frames are summarized. Further details 
of SGA implementation can be found in Gonçalves et al. [34].

3.1 � Initial population

The optimization process starts with a randomly generated 
population P on the search domain:

where Pij is the jth design variable of the ith individual 
of the population P, U[0, 1] is a uniform random variable 
which ranges from 0 to 1, xmin

j , xmax
j  are the lower and upper 

bounds of the jth design variable, respectively, n is the num-
ber of design variables and npop is the size of the population.

3.2 � Initial search group selection

After the initial population is generated, the objective func-
tion is evaluated on every individual from P. A search 
group R of size ng is then selected from the population. The 
selection procedure consists of tournament, where the best 
individuals are taken from a randomly selected subgroup. 
More details on this type of selection can be found in [40].

In the same manner as the population P, each row of R 
represents and individual. The individuals are ranked by the 
objective function at each iteration, that is, R1 holds the best 
design while Rng holds the worst search group member.

3.3 � Mutation of the search group

In order to increase the global search ability of the pro-
posed algorithm, the search group R is mutated at each 
iteration. This mutation strategy consist of replacing nmut 
individuals from R by new individuals generated based on 
the statistics of the current search group. The idea here is 
to include in the search group individuals away from the 
position of the current members, exploring new regions of 
the search domain. Thus, each new individual is generated 
according to Eq. (17):

(16)
Pij = xmin

j + (xmax
j − xmin

j )U[0, 1],

j = 1 to n, i = 1 to npop,

where xmut
j  is the jth design variable of a given mutated 

individual, E and σ are the mean value and standard 
deviation operators, ǫ is a convenient random variable, t 
is a parameter that controls how far the new individual is 
generated, and R:,j is the jth column of the search group 
matrix (Fig. 1). The probability of a member to be replaced 
depends on its rank in the current search group, i.e. the 
worse the design is, the more likely it is to be replaced. 
This is accomplished with an inverse tournament selec-
tion. This is a variant of the selection routine applied in 
Sect.  3.2, where the worst design is the “winner” and is 
therefore replaced with a new potentially better individual, 
employing Eq. (17).

3.4 � Generation of the families of each search group 
member

In this step of the algorithm occurs the creation of families. 
A family consists of a member of the search group and the 
individuals that it generated. Each family is denoted by Fi 
where i = 1 to ng. Thus, once the search group its formed, 
each one of its members generates a family by the perturba-
tion described in Eq. (18).

where α controls the size of the perturbation. This param-
eter is reduced at each iteration k of the search process. The 
update is given by:

where b is a parameter of the SGA.
It is important to note that the variation of αk controls 

how the search is conducted. It has similarities to the effect 
of temperature in a cooling scheme on a simulated anneal-
ing (SA) heuristic [6, 41]. It is chosen in order to permit, 
in a probabilistic sense, the ability to any individual to visit 
any point in the design domain on the first iterations. This 
emphasize the focus on exploration primarily. Later, as iter-
ations of the algorithm pass by, the value of αk decreases. 
The search process reduces its diversification in favor of a 
more focused investigation of the favorable regions encoun-
tered. A parameter αmin is also defined, which is a lower 
bound to α, in order to prevent a null diversification value.

Another important aspect of the algorithm is that the fam-
ily size, that is, the number of individuals a certain member 
of the search group generates, can vary with member perfor-
mance. Smaller objective value individuals generate bigger 
families than those with higher value. This is controlled by 
the υ parameter. It consists of a vector with the same number 
of elements as the search group. The ith value in this vector 

(17)xmut
j = E[R:,j] + tǫσ [R:,j], for j = 1 to n,

(18)xnewj = Ri,j + αǫ, for j = 1 to n,

(19)αk+1
= bαk ,
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corresponds to the number of individuals the ith member of 
the search group can generate. Two rules must be observed 
in order to set υ: (i) sum(υ) = npop − ng and (ii) υ i+1 ≤ υ i . 
The first rule is to keep the number of designs evaluated at 
each iteration constant and the second is to make it possible 
for better designs to have bigger families.

3.5 � Selection of the new search group

As commented in the beginning of this section, the pro-
posed algorithm is comprised by two phases: the global and 
local phases. In the first itmax

global iterations, called the global 
phase, the main objective of the algorithm is to explore the 
most of the design space. Hence, the new search group is 
formed by the best member of each family.

When the iteration number is higher than itmax
global, the 

selection scheme is modified: the new search group is 
formed by the best ng individuals among all the families. 
This phase is called local because the algorithm will tend to 
exploit the region of the current best design.

4 � Numerical examples

In this section, the optimal design of three steel structures 
is performed by the algorithm detailed in Sect.  3. The 
computational implementation of the algorithm is made 
in Matlab, where the structures are also analyzed using a 
direct stiffness method routine. The problems have increas-
ingly complexity and search space serving as benchmark 

Fig. 1   A flowchart of SGA
Initialize SGA parameters

Generate the initial
population 

Create initial Search Group

Replace mutated
individuals 

Generate the families  

Yes

GLOBAL PHASE

No

LOCAL PHASE

Assign best individuals of
the population to  

Assign best members of
each family to : 

Update  

Make  

No

Yes

Solution: first row of  
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problems. The final results are then compared against dif-
ferent algorithms from the literature.

The stopping criterion adopted for all problems is the 
number of objective function evaluation (OFE). For SGA, 
this value is calculated as follows:

and given along with the best design found in each 
problem.

For every example a convergence history curve is pre-
sented for both the best run of the algorithm and the aver-
age of a fixed number of independent runs.

A diversity index curve is also given for every bench-
mark problem. This index, proposed by Kaveh and Zol-
ghadr [42] aims to measure how disperse the individu-
als are on population-based heuristic methods. The curve 
shape can identify the exploration/exploitation behavior of 
different algorithms. The index is calculated as follows:

where O(i) is the value of the ith variable of the best indi-
vidual found so far in the population; Xj(i) is the value of 
the ith variable of the jth individual; Xi,min and Xi,max are 
the minimum and maximum values assumed by the ith var-
iable, respectively; n is the number of design variables and 
npop is the number individuals in the population.

On the following examples, some SGA param-
eters remained constant: ǫ is a uniform random vari-
able ranging from −0.5 to 0.5; t is an integer ranging 

from 1 to nmut; b = max

(

1− 4k
itmax
global

, 0.25− k
itmax
global

)

 and 

υ = 2i−1
n2g

(npop − ng) for i = ng down to 1.

4.1 � Two‑bay three‑story frame design

The first example is the two-bay by three-story steel frame 
originally presented by Wood et  al. [43]. The purpose of 
this frame was to serve as a benchmark. It has been studied 
by many authors over the years [4, 9, 17, 19, 44]. Displace-
ment constraints were not imposed for the design. The elas-
tic modulus (E) and yield stress (Fy) values were 29,000 
and 36 ksi, respectively.

The structure was divided in two design groups: beams 
and columns. The value of the beam element group may 
choose from all 267 W-shapes listed in Table  1 and the 
value of the column element group is limited to W10 sec-
tions (18 W-shapes). For each column, the effective length 
factor Kx is calculated as for a sway-permitted frame 
employing a simplified form of the transcendental equa-
tions proposed by Dumonteil [39]. For the out-of-plane 

(20)OFE = (npop − ng + nmut) itmax,

(21)
1

npop

npop
∑

i=1

√

√

√

√

n
∑

j=1

(

O(i)− Xj(i)

Xi,max − Xi,min

)2

,

effective length factor the assumed value is Ky = 1.0. Each 
column is considered unbraced along its length and the 
unbraced length for each beam member is specified as one-
sixth of the span length.

The values of the uniform and the point loads in Fig. 2 
are factored loads, which means that the strength and 
stability provisions from the AISC specification can be 
applied directly.

Table  2 summarizes the best designs encountered 
by Pezeshk et  al. [4] using Genetic Algorithm (GA), 
Degertekin [17] using Harmony Search (HS), Toğan [32] 
using Teaching-learning based Optimization (TLBO) and 
SGA from this study. It also shows the average weight of 
100 independent algorithm runs and the corresponding 
standard deviation.

The following algorithm parameters were adopted 
for this problem: α0 = 3.0, αmin = 0.02, npop = 45, 
ng = 0.11 npop, itmax = 10, itglobalmax = 9 and nmut = 2.

The search space of this problem was small, with only 
4806 possible combinations. It was possible to verify the 
solution applying an exhaustive search, that is, testing all 
possible combinations and selecting the smallest weight. 
The result obtained by exhaustive search matched the 
results from SGA: W10x60 for columns and W24x62 for 
beams. The result was the same obtained in the studies 
from Camp et al [9] and Pezeshk et al. [4]. The result from 
Dekertekin [17] and Toğan [17] turned out to be slightly 
infeasible. Murren and Khandelwal [19] also considered 
infeasible the result from Degertekin [17].

Figure 3 shows converge history for the best design and 
an average of 100 runs of the algorithm. It can be seen that 
after only seven iterations SGA already obtains on aver-
age a solution around 20,000 lbs. As a consequence of the 
small total number of iterations and also high the non-con-
vexity of the problem, SGA acts mostly (90 % of the itera-
tions) on the global phase. It is an important characteristic 
of the algorithm that the fraction of time spent on each of 

36 ft 36 ft

10
 ft

10
 ft

10
 ft

1 2 1

1 2 1

1 2 1
3 3

33

3 3

2.5 kips

5.0 kips

5.0 kips

2.8 kips/ft 2.8 kips/ft

2.8 kips/ft 2.8 kips/ft

2.8 kips/ft 2.8 kips/ft

Fig. 2   Two-bay, three-story problem
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its phases can be adjusted according to the problem. SGA 
needed fewer objective function evaluations than other 
algorithms and its relatively low standard deviation demon-
strates that it can achieve satisfactory results consistently.

A diversity index curve is shown in Fig. 4. It is possi-
ble to visualize how diversity decays gradually after each 
iteration. The low initial diversity value indicates the small 
number of distinct individuals in the population by reason 
of the small search space.

4.2 � One‑bay ten‑story frame design

The second example consisted of a one-bay ten-story plane 
frame shown in Fig. 5. It has been studied by Pezeshk et al. 
[4] using Genetic Algorithm (GA), Doğan et al. [12] using 
Particle Swarm Optimization (PSO), Camp et al. [9] using 
Ant Colony optimization (ACO), Degertekin [17] using 
Harmonic Search (HS), Toğan et  al. [32] using Teaching-
Learning Based Optimization (TLBO).

This frame is designed according the AISC specification 
with a displacement constraint considered as inter-story 
drift < story height/300. The material has a modulus of 
elasticity E = 29,000 ksi and a yield stress of Fy = 36 ksi. 
The effective length factors of the members are calculated 
as Kx ≥ 1.0 for a sway-permitted frame employing the 
simplified form of the transcendental equations from Dum-
monteil [39]. The out-of-plane effective length factor is 
specified as Ky = 1.0. Each column is considered unbraced 
along its length, and the unbraced length for each beam 
member is specified as one-fifth of the span length.

All 30 frame members were gathered in 9 design 
groups as shown in Fig. 5. Beam and columns groups were 
assigned, respectively, at every three and two consecutive 
stories, beginning at foundation. Beams groups could be 
selected from any of the 267 W-sections from the database. 
Columns were restricted to W12 and W14 sections (66 pro-
files) due to fabrication conditions. The resulting search 
space was considerably larger than previous problem, with 
approximately 6.36 · 1018 designs.

The following algorithm parameters were adopted 
for this problem: α0 = 0.70, αmin = 0.05, npop = 40, 
ng = 0.425, itmax = 347, itglobalmax = 0.3 itmax and nmut = 7.

The optimal result from the optimization process along 
with the results from literature are shown in Table 3. This 

2 4 6 8 10
18,000

20,000

22,000

24,000

26,000

28,000

Iteration

W
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gh

t
(l
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Fig. 3   Convergence history of best and average solutions for the 
2× 3 frame
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0

0.2

0.4
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D
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x

Best
Average

Fig. 4   Diversity Index of best and average solutions for the 2× 3 
frame

Table 2   Optimization results 
from Problem 1

OFE objective function evaluations
a Unfeasible design

Group no. AISC W-shapes

Pezeshk et al. [4] Camp et al. [9] Degertekin [17] Toğan [32] SGA

1 (columns) W10x60 W10x60 W10x54 W10x49 W10x60

2 (beams) W24x62 W24x62 W21x62 W24x62 W24x62

OFE 1800 3000 1853 800 420

Min. weight (lb) 18,792 18,792 18,292a 17,789a 18,792

Avg. weight (lb) 22,080 19,163 18,784 17,795.6 19,011

SD (lb) 5818 1693 411 28.58 385.09
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table also shows the average of 100 independent runs of the 
algorithm with the corresponding standard deviation.

As lighter weight values have been found it is important 
to ponder if SGA would also be able to find these values 
after more iterations or after adjusting its parameters. As 
a mean to verify the possibility, the claimed optimal solu-
tion provided by some literature authors was given as input 
to the objective function being optimized. The results are 
shown in Fig. 6, where the stress ratio from the interaction 
equation (Eq. (3)) is plotted for every member. It can be 
seen that both results that achieved smaller structural weight 
were considered infeasible to the proposed objective func-
tion, in consequence of points where the stress ratio is above 
limit. This means that although some authors state better 
results, achieving them is not possible algorithmically by 
virtue of slight objective function discrepancies (Figs. 7, 8).

The present work analyses the structure considering 
non-linear geometric effects employing the method of 
Moment Amplification. Such amplification is an impor-
tant difference when considering that other authors usually 
adopt only linear static analysis. Even when considering 
only the design specification, there is margin for distinct 
considerations which then lead to distinct objective func-
tions. That is to say that variations on the final result do not 
always mean a poor algorithmic performance. It is impor-
tant to evaluate the conception, convergence and adaptation 
together with the overall performance.

Considering only the feasible results, that is, the results 
that could be found according the adopted objective func-
tion, SGA obtained the best weight of 62,262 lbs within 

5 kips

10 kips

10 kips

10 kips

10 kips

10 kips

10 kips

10 kips

10 kips

10 kips

30 ft

9 
@

 1
2 

ft
15

 ft

3 kips/ft

6 kips/ft

6 kips/ft

11

11

22

22

33

33

44

44

55

55
9

8

8

8

7

7

7

6

6

6

6 kips/ft

6 kips/ft

6 kips/ft

6 kips/ft

6 kips/ft

6 kips/ft

6 kips/ft

Fig. 5   One-bay ten-story problem

Table 3   Optimization results from Problem 2

OFE objective function evaluations
a Unfeasible design

Group no. AISC W-shapes

Pezeshk et al. [4] Doğan et al. [12] Camp et al. [9] Degertekin [17] Toğan [32] SGA

1 (Columns S. 1–2) W14x233 W14x99 W14x233 W14x211 W14x233 W14x233

2 (Columns S. 3–4) W14x176 W14x99 W14x176 W14x176 W14x176 W14x176

3 (Columns S. 5–6) W14x159 W14x132 W14x145 W14x145 W14x145 W14x132

4 (Columns S. 7–8) W14x99 W14x159 W14x99 W14x90 W14x90 W14x99

5 (Columns S. 9–10) W12x79 W33x141 W12x65 W14x61 W12x65 W14x68

6 (Beams S. 1–3) W33x118 W30x116 W30x108 W33x118 W33x118 W30x108

7 (Beams S. 4–6) W30x90 W21x68 W30x90 W30x99 W30x90 W30x90

8 (Beams S. 7–9) W27x84 W14x61 W27x84 W24x76 W24x76 W27x84

9 (Beams S. 10) W24x55 W40x183 W21x44 W18x46 W14x30 W21x50

OFE1 3000 12,000 8300 3690 2440 7980

Min. weight (lb) 65,136 64,948 62,610 61,864a 61,820a 62,262

Avg. weight (lb) Not given Not given 63,308 62,923 Not given 65,257

SD (lb) Not given Not given 684 1.74 Not given 1328.8
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a reasonable amount of objective function evaluations 
(7980). Both Degertekin and Toğan results were deemed 
slightly infeasible and thus a comparative was not viable. 
The minimum weight design obtained is compared with 
other feasible designs in Table 4.

4.3 � Three‑bay 24‑story frame design

The last benchmark example is the three-bay, 24-storey steel 
frame, consisting of 168 members. This frame was originally 
designed by Davison and Adams [45]. It was also designed 
by Camp et al. [9] using an ACO algorithm, by Murren et al. 
[19] using a Design-Driver Harmonic Search (DDHS) algo-
rithm, by Kaveh and Talatahari [10] using an improved ACO 

(IACO) algorithm, and again by Kaveh and Talatahari [46] 
using an imperialist competitive algorithm (ICA).

The following algorithm parameters were adopted 
for this problem: α0 = 1.5, αmin = 0.04, npop = 181, 
ng = 0.02 , itmax = 45, itglobalmax = 0.97 itmax and nmut = 2.

The effective length factors are calculated as a sway-
permitted frame (Kx ≥ 1) using the approximated equa-
tions from Dummonteil [39]. For the out-of-plane effective 
length factor the assumed value is Ky = 1.0.

Loads and overall design group distribution can 
be seen in Fig.  9. The loads acting on the structure 
are W = 5, 761.85  lb, w1 = 300  lb/ft, w2 = 436  lb/ft, 
w3 = 474  lb/ft, and w4 = 408  lb/ft. The material proper-
ties as specified by Saka and Kameshki [47] are a modu-
lus of elasticity E = 29, 732  ksi and a yield stress of 
Fy = 33.4 ksi. The frame structure contains 20 groups, of 
which 16 are column groups and 4 are beam groups. Each 
of the 4 beam element groups could be chosen from all the 
W-shapes listed in AISC standard list, while the 16 column 
element groups were limited to W14 sections (37 profiles). 

Table 4   Min. weight variation from feasible designs—Problem 2

Author Pezeshk et al. 
[4]

Doğan et al. 
[12]

Camp et al. [9] SGA

Variation 4.62 % 4.31 % 0.56 % Best
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Therefore, the size of the resulting search space was 
approximately 6.27 · 1034 designs. All beams and columns 
were considered unbraced along their lengths.  

The result from the optimization process along with the 
results from literature are shown in Table 5. In comparison 
with the other algorithms, SGA obtained the second best min-
imum weight. As for convergence, the algorithm obtained a 
good result within a reasonable number of iterations (8010) 
similar number as the previous 10 floor problem. The algo-
rithm takes a slightly bigger number of iterations to converge 
when compared to some authors. This happens because the 
Death Penalty approach used to satisfy the constraints forces 
the algorithm to work only with feasible designs. Consider-
ing infeasible designs can improve the convergence rate but 
can also lead to incorrect results. An adaptive penalty method 
could be employed in order to improve convergence, taking 
care to ensure the final result feasibility.

In Figs. 10 and 11 the convergence history and diver-
sity index curves are presented, respectively. Initially, 
when no clear exploitable region has been reached, 
diversity is higher. Both diversity and weight drastically 
decreases until around iteration 50. From there, a pattern 
of plateaus and slight decreases can be seen on conver-
gence history. The diversity curve represents the same 
behavior by decreasing gradually the diversity index. This 
represents the algorithm focus shifting from exploration 
to exploitation, mainly influenced by the decay of the α 
parameter.

Similarly as the previous example, some results found in 
literature were deemed infeasible according to the proposed 
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objective function. The reasons might be the more penaliz-
ing analysis employed in the routine, which considered sec-
ond order effects and possibly different design code consid-
erations as discussed in Sect. 4.2. Among feasible designs, 
SGA achieved the best minimum weight. In order to show 
that SGA indeed converged to an optimized solution the 
stress ratios of the minimal weight solution are shown in 
Fig.  12. It is possible to see that some stress ratio values 
are very close to the unit limit, which means that members 
are using almost all of their strength capacity, thus lead-
ing towards an optimal result. The minimal weight design 

found is compared with other feasible designs in Table  6 
(Figs. 13, 14).

5 � Conclusion

A novel global optimization method, SGA, developed by 
Gonçalves et al. [34] is applied on the discrete problem of 
planar steel frame optimum design. The algorithm selects 
optimum W-sections from a standard American steel sec-
tions table for beams and columns of planar frames such 
that design constraints described in AISC specification 
are satisfied and the frame has the minimum weight. A 
series of benchmark problems are solved demonstrating 
the effectiveness of the algorithm on minimizing structural 
weight while satisfying imposed constraints (Figs. 15, 16).

The algorithm achieved a competitive performance regard-
ing number of function evaluations and total weight of designs. 

Table 5   Optimization results from Problem 3

OFE Objective Function Evaluations
a Using IACO
b Using ICA
c Unfeasible design

Group no. AISC W-shapes

Camp et al. [9] Murren et al. [19] Kaveh et al.a [10] Kaveh et al.b [46] Toğan [32] Maheri [20] SGA

1 W30x90 W30x90 W30x99 W30x90 W30x90 W10x19 W24x68

2 W8x18 W12x26 W16x26 W21x50 W8x18 W12x190 W21x55

3 W24x55 W24x55 W18x35 W24x55 W24x62 W6x8.5 W24x62

4 W8x21 W6x8.5 W14x22 W8x28 W6x9 W24x370 W12x87

5 W14x145 W14x159 W14x145 W14x109 W14x132 W14x132 W14x159

6 W14x132 W14x109 W14x132 W14x159 W14x120 W14x30 W14x145

7 W14x132 W14x109 W14x120 W14x120 W14x99 W14x99 W14x120

8 W14x132 W14x74 W14x109 W14x90 W14x82 W14x53 W14x99

9 W14x68 W14x68 W14x48 W14x74 W14x74 W14x74 W14x68

10 W14x53 W14x48 W14x48 W14x68 W14x53 W14x26 W14x48

11 W14x43 W14x43 W14x34 W14x30 W14x34 W14x68 W14x48

12 W14x43 W14x26 W14x30 W14x38 W14x22 W14x193 W14x34

13 W14x145 W14x99 W14x159 W14x159 W14x109 W14x145 W14x109

14 W14x145 W14x109 W14x120 W14x132 W14x99 W14x26 W14x82

15 W14x120 W14x109 W14x109 W14x99 W14x99 W14x26 W14x99

16 W14x90 W14x99 W14x99 W14x82 W14x90 W14x43 W14x109

17 W14x90 W14x74 W14x82 W14x68 W14x68 W14x26 W14x90

18 W14x61 W14x61 W14x53 W14x48 W14x53 W14x120 W14x74

19 W14x30 W14x34 W14x38 W14x34 W14x34 W14x426 W14x43

20 W14x26 W14x22 W14x26 W14x22 W14x22 W14x68 W14x43

OFE 15,500 17,395 3,500 7,500 12,000 1,259 8,010

Min. weight (lb) 220,465 205,386 217,464 212,736c 203,008c 194,400c 194,508

Avg. weight (lb) 229,555 207,140 Not given Not given Not given Not given 213,545

SD (lb) 4561 843 Not given Not given Not given Not given 7,027.11

Table 6   Min. Weight variation from feasible designs—Problem 3

Author Camp et al. [9] Murren et al. 
[19]

Kaveh et al. 
[10]

SGA

Variation 11.34 % 5.59 % 11.80 % Best
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It is important to stress that the performance was assessed by 
statistical results (ie. mean and standard deviation) and the total 
number of objective function evaluations. As seen, results from 
some authors were considered infeasible. Just looking at the 
minimum result is thus misleading as authors not always fully 

specify the normative considerations used which may lead to 
designs being feasible or not depending on the objective func-
tion developed. Considering feasible designs according to the 
proposed formulation, SGA was able to outperform well estab-
lished and state of the art optimization algorithms.

SGA has effective heuristic mechanisms, which avoid 
solutions to be trapped in local optimums. The distinction 
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between global and local phase is one of them. By being 
able to allocate iterations on one phase or another it is 
possible to have a finer control over the exploration and 
exploitation emphasis that can drastically change between 
problems. Another important mechanism is that bet-
ter individuals in the population generate bigger families. 
This allows for a faster convergence. Lastly, the mutation 
scheme is also valuable. It promotes diversity and continu-
ally explores newer regions of the search space.

As drawbacks from the approach used, it is clear that the 
limitation of working on the feasible domain only, can lead 
into a larger number of function evaluations needed. An 
aspect that could be considered in future works would be 
the use of an adaptive penalty process instead of the Death 
Penalty approach employed. With this in mind, it should be 
possible to further lower the computational costs involved 
in the optimization process.
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