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hardening, and the obtained solutions are compared 
with finite-element solutions, showing that the meshless 
approach developed is efficient and accurate.
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point interpolators · Elasto-plastic analysis · Anisotropic 
hardening

1  Introduction

In the recent years, the significant development of advanced 
discretization meshless techniques permits them to be con-
sidered as a valid alternative to the finite-element method 
(FEM) [1, 2]. The complete freedom and flexibility in the 
domain discretization of meshless methods are very attrac-
tive. Within meshless methods, the solid domain can be 
discretized with an arbitrarily set of nodes rather with an 
element mesh [3]. In meshless methods, the nodal con-
nectivity is imposed with the influence-domain concept, in 
opposition to the fixed size element used in the FEM. Fur-
thermore, in contrast with the FEM, to enforce the nodal 
connectivity, the influence domains may and must overlap 
each other.

One of the first developed meshless methods is the 
smooth particle hydrodynamics (SPH) method. Initially, the 
SPH method was used to model astrophysical phenomena 
[4]. Later, the SPH was extended to solve solid mechan-
ics problems using a strong formulation [5], as well as the 
SPH-corrected versions that, meanwhile, emerged [1].

More recently, other approximation meshless methods 
seeking the weak form solution were developed. The dif-
fuse element method (DEM) [6] was one of the first fully 
developed approximation meshless methods. The DEM 
uses the moving least square (MLS) approximants to 
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construct the approximation functions, which was initially 
proposed by Lancaster and Salkauskas [7] for surface fit-
ting. Later, Belytschko evolved the DEM and developed 
one of the most popular meshless methods, the element-
free Galerkin method (EFGM) [8]. In the same period, the 
reproducing kernel particle method (RKPM) was devel-
oped [9], as well as the meshless local Petrov–Galerkin 
(MLPG) method [10].

However, the aforesaid methods employ approximation 
functions, which mean that the constructed shape functions 
do not possess the Kronecker delta property. As a conse-
quence, the treatment of the essential and natural bound-
ary conditions is not as straightforward as within numerical 
methods using interpolation functions [1, 11, 12].

To overcome this drawback, in the last few years, several 
interpolator meshless methods were developed, such as the 
point interpolation method (PIM) [13, 14], the radial point 
interpolation method (RPIM) [15, 16], the natural neigh-
bour finite-element method (NNFEM) [17, 18], the mesh-
less finite-element method (MFEM) [19], more recently, 
the natural neighbour radial point interpolation method 
(NNRPIM) [11, 20, 21], and the radial natural element 
method (NREM) [22, 23, 24].

The NNRPIM uses mathematic concepts, such as the 
Voronoï diagrams [25] and the Delaunay tessellation [26], 
to construct the influence-cells (the basic structure of the 
nodal connectivity in the NNRPIM [3]) and the back-
ground integration mesh [3]. Both these numerical struc-
tures are totally dependent on the nodal discretization. 
Unlike the FEM, where geometrical restrictions on ele-
ments are imposed for the convergence of the method, in 
the NNRPIM, there are no such restrictions, permitting a 
random nodal distribution for the discretized problem. The 
NNRPIM interpolation functions, used in the Galerkin 
weak form, are constructed with the radial point interpo-
lators (RPI) [15, 16, 27]. The RPI functions possess the 
delta Kronecker property, facilitating the enforcement of 
boundary conditions, which can be directly imposed as in 
the FEM. The RPI function construction is simple, and its 
derivatives are easily obtained [3].

In the literature, it is possible to find research works 
in which meshless methods were extended to the nonlin-
ear structural analysis considering elasto-plastic materials. 
The elasto-plastic analysis using the EFGM was initially 
applied to fracture problems [28, 29, 30] and subsequently 
applied to 2D problems [31, 32] and to 3D problems [33, 
34]. Afterwards, Belinha and Dinis extended the EFGM to 
the nonlinear analysis of thick plates [35] and composites 
[36] assuming anisotropic elasto-plastic materials with ani-
sotropic hardening. Regarding the RKPM, Chen and cow-
orkers [37] were able to study large deformation analysis of 
nonlinear elastic and inelastic structures using the RKPM. 
Other approximation methods were used to solve nonlinear 

problems considering elasto-plastic materials, such as the 
meshless integral method [38] and the MLPG [39].

Advanced discretization meshless techniques using 
interpolation functions were also successfully extended 
to the nonlinear analysis of structures considering elasto-
plastic materials. Dai et al. [40] extended the RPIM to the 
inelastic analysis of 2D problems. In addition, it is possi-
ble to find some elasto-plastic research works on meshless 
methods using the natural neighbour concept, such as the 
meshless natural neighbour method [41] and the hybrid 
natural element method [42].

In this work, the NNRPIM is used to analyse two-
dimensional problems considering a small strain formula-
tion and assuming anisotropic elasto-plastic materials with 
anisotropic hardening. Thus, To extend and validate the 
NNRPIM in the elasto-plastic analysis, the used nonlinear 
solution algorithm is the modified Newton–Raphson initial 
stiffness method, and the stress state is returned to the yield 
surface using a backward-Euler scheme [43].

The outline of this study is as follows: In Sect.  2, the 
basic concepts of the used meshless method are presented. 
In Sect.  3, the small strain elasto-plastic formulation is 
presented. In Sect.  4, several well-known 2D elasto-plas-
tic problems considering anisotropic hardening are solved 
using the NNRPIM. This work ends with conclusions and 
remarks in Sect. 5.

2 � Natural neighbour radial point interpolation 
method

2.1 � Natural neighbours

The concept of natural neighbours emerged in 1980 by Sib-
son [44], and it allows to impose the nodal connectivity in 
the NNRPIM [45]. This mathematical concept can be mate-
rialised by the Voronoï diagram of the discretized domain.

Thus, considering a problem domain Ω ∈ R
d, bounded 

by a physical boundary Γ ⊂ Ω, which is discretized in sev-
eral randomly distributed nodes N = {n1, n2, . . . , nN } scat-
tered in the space domain: X = {x1, x2, . . . , xN } ∈ Ω. The 
Voronoï diagram of N is the partition of the domain defined 
by Ω in subregions Vi, closed and convex. Each subregion 
Vi is associated with the node ni, in a way that any point 
in the interior of Vi is closer to ni than any other node nj, 
where nj ∈ N ∧ j �= i

where || · || is the Euclidian metric norm and xI ∈ Ω . 
The set of Voronoï cells V defines the Voronoï diagram, 
V = {V1,V2, . . . ,VN }. In Fig. 1a, it is presented a Voronoï 

(1)

Vi :=
{

xI ∈ Ω ⊂ R
d : �xI − xi� <

∥
∥xI − xj

∥
∥, ∀i �= j

}

,
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diagram. In the literature, it is possible to find several 
works addressing properly the Voronoï construction proce-
dure [3, 11, 22].

2.2 � Nodal connectivity

Formed by a set of nodes in the neighbourhood of an inter-
est node xi ∈ X, the NNRPIM “influence-cell” concept 
permits to establish the nodal connectivity [11], allowing 
to organically determine the influence domain of an interest 
node xi. Since it is simpler to represent, only the determi-
nation of the 2D influence-cell is presented; however, this 
concept is applicable to a d-dimensional space. In Fig. 1a, 
two types of influence-cells are shown: the first-degree 
influence-cell and the-second degree influence-cell. The 
first-degree influence-cell is composed by the first natu-
ral neighbours of the interest node xi. The second-degree 
influence-cell, in addition to the first natural neighbours of 
the interest node xi, contains the natural neighbours of the 
nodes belonging to the first degree influence-cell of node 
xi . This procedure is well described in detail in the works 
of Belinha and coworkers [3, 11, 22].

It is possible to observe in Fig. 1a that the second-degree 
influence-cell enforces a higher nodal connectivity when 
compared with the first-degree influence-cell. The literature 
shows [11, 20, 46, 21, 47, 48, 49, 50] that regardless, the 
studied phenomenon, higher degree influence-cells, permits 
to achieve more accurate solutions. Therefore, due to the 
superior numerical behaviour, only the second degree influ-
ence-cells are considered in this work.

2.3 � Numerical integration

After the definition of the Voronoï diagram, Fig.  1a, it is 
possible to construct the integration mesh required to 
numerically integrate the differential equation ruling the 
studied physical phenomenon. One of the numerical advan-
tages of the NNRPIM is the complete dependency of the 
integration mesh on the nodal discretization, i.e., the inte-
gration mesh is constructed using only the information 
from the nodal spatial field X and from the subsequent 
Voronoï diagram V. Thus, in opposition to the majority 
of the meshless methods, the NNRPIM only requires the 
nodal spatial field X to determine: the nodal connectivity; 
the integration mesh; and the interpolation functions.

To obtain the integration mesh, first, the area of each 
Voronoï cell must be subdivided in several subareas. To 
perform this subdivision, the Delaunay triangulation [26] is 
applied, which can be determined by connecting the nodes 
whose Voronoï cells have common boundaries, as shown in 
Fig. 1b.

The Delaunay triangulation permits to divide the origi-
nal Voronoï cell area, AVj, of an interest node xj in k subar-
eas A

Vj
k , being AVj =

∑k
i=1 A

Vj
i , Fig. 1c. The distribution of 

integration points inside each subarea A
Vj
k , Fig. 1d, permits 

to obtain the integration mesh for the Voronoï cell Vj.
Repeating the process for the N Voronoï cells dis-

cretizing the problem domain, it is possible to obtain 
the integration mesh of the entire domain, Fig.  1e, being 
AΩ =

∑n
j=1

∑k
i=1 A

Vj
i , as suggested in the previous 

NNRPIM works [3, 11, 21].

Fig. 1   a Voronoï diagram. b Natural neighbours. c Subcells obtained 
by the overlap of a cell of the Voronoï diagram and the Delaunay tes-
sellation of that cell. d Application of the quadrature points (one in 

each subcell) following the Gauss–Legendre integration scheme. e 
Mesh of the integration points
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The distribution of the integration point inside each sub-
area A

Vj
k  follows the Gauss–Legendre quadrature rule. In 

Fig. 1d, only one quadrature point was applied in each one 
of the subareas, which is sufficient for the used NNRPIM 
formulation [3, 11].

2.4 � Interpolation functions

In this work, the shape functions are obtained combining 
radial basis functions with polynomial basis functions [11, 
15]. Consider a function space T  defined in the analysed 
domain Ω ⊂ R

d. The finite-dimensional space Th ⊂ T  dis-
cretizing the domain Ω is defined by:

where pm : Rd �→ R is defined in the space of polyno-
mials of degree less than m and r : Rd �→ R is at least a 
C1− function. Since, in this work, only two-dimensional 
domains Ω ⊂ R

2 are studied, the problem domain Ω 
is discretized by a set of N arbitrarily distributed nodes 
NI = {n1, n2, . . . , nN } defined in the two-dimensional space 
by X = {x1, x2, . . . , xN } ∧ xi ∈ R

2.
Consider now, for an interest point xI ⊂ Ω, not neces-

sarily coincident with any xi ∈ X, an interpolation func-
tion uh(xI) defined within the space of an influence-cell 
ΩI ⊂ Ω containing n nodes. The radial point interpolators 
(RPI) [11, 15] permit to construct an interpolation func-
tion uh(x) ∈ T  capable to pass through all nodes within the 
influence-cell, i.e., uh(xi) = ui, where ui is the nodal func-
tion value assumed on node xi, ui = u(xi).

Using a radial basis function r(x) and a polynomial basis 
function p(x), the interpolation function uh(x) ∈ T  can be 
defined at the interest point xI ∈ R

2 by:

where ai is the non-constant coefficient of ri(xI) and bj is 
the non-constant coefficient for pj(xI). The integer n is the 
number of nodes inside the influence-cell of the interest 
point xI and m is the number of monomials of the polyno-
mial basis p(xI). The vectors are defined by the following 
expressions:

(2)Th := �r(x− xi) : i ∈ N ∧ i ≤ N� + pm(x),

(3)
uh(xI) =

n∑

i=1

ri(xI)ai +

m∑

j=1

pj(xI)bj

= r(xI)
Ta+ p(xI)

Tb = u(xI),

(4)aT = {a1, a2, . . . , an}

(5)bT = {b1, b2, . . . , bm}

(6)r(x)T = {r1(x), r2(x), . . . , rn(x)}

(7)p(x)T = {p1(x), p2(x), . . . , pm(x)}.

The radial basis function used in this work is the multi-
quadrics radial basis function (MQ-RBF), first proposed by 
Hardy [51]:

where diI is the Euclidean distance between the interest 
point xI = {xI , yI }

T and the node xi = {xi, yi}
T. The MQ-

RBF requires the definition of the shape parameters c and 
p. The variation of these parameters can affect the perfor-
mance of the MQ-RBFs [11, 15, 16]. This work follows the 
conclusions of Dinis et al. [11], which suggest that the opti-
mal values should be c << 1 and p ∼= 1. Thus, the values 
used in this work are c = 0.0001 and p = 0.9999.

To assure that the interpolation matrix of the RBF is inverti-
ble, the polynomial basis added to the RBF must be completed 
[11]. In this work, it was considered the use of a constant 
basis, being the polynomial basis, for the two-dimensional 
space xi = {xi, yi}

T, defined as pT (xi) = {1} with m = 1.
Enforcing the interpolation to pass through all n nodes 

within the influence-cell, it is possible to determine the 
coefficients ai and bj of Eq. (3) [3]. Thus, the interpolation 
at the kth node is defined by:

The inclusion of the following polynomial term is an 
extra-requirement that guarantees unique interpolation [3]:

Thus, the computation of the shape functions is written 
in a matrix form as:

where G is the complete moment matrix, Z is a null 
matrix defined by Zij = 0, ∀ {{i, j} ∈ N : {i, j} ≤ m},  
and the null vector z can be represented by 
zi = 0, ∀ {i ∈ N : i ≤ m} . The vector for function val-
ues is defined as ui = u(xi), ∀ {i ∈ N : i ≤ n}. The radial 
moment matrix R is represented as:

(8)

ri(xI) = s(diI) =
(

d2iI + c2
)p

=
(∣
∣
∣(xi − xI)

2 + (yi − yI)
2
∣
∣
∣+ c2

)p

,

(9)
uh(xk , yk) =

n∑

i=1

ri(xk , yk)ai +

m∑

j=1

pj(xk , yk)bj = uk ,

k = 1, 2, . . . , n.

(10)

n∑

i=1

pj(xi, yi)ai = 0, j = 1, 2, . . . ,m.

(11)

[
R P

PT Z

]{
a

b

}

=

{
u

z

}

⇔ G

{
a

b

}

=

{
u

z

}

,

(12)R
[n×n]

=








r1(x1, y1) r1(x2, y2) · · · r1(xn, yn)

r2(x1, y1) r2(x2, y2) · · · r2(xn, yn)
...

...
. . .

...

rn(x1, y1) rn(x2, y2) · · · rn(xn, yn)







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and polynomial moment matrix P is defined as:

Notice that the distance is directionless, ri(xj, yj) = rj(xi, yi) ,  
i.e., Rij = Rji; therefore, R matrix is symmetric. A unique solu-
tion is obtained if the inverse of the radial moment matrix R 
exists:

The solvability of this system is usually guaranteed 
by the requirements rank(p) = m ≤ n [14]. Since, in this 
work, only the constant polynomial basis is used, the previ-
ous condition is largely satisfied. It is possible to obtain the 
interpolation with:

where the interpolation function vector Φ(xI) is defined by:

and the residual vector ψ(xI), with no relevant physical 
meaning, is expressed as follows:

The partial derivatives of the interpolated function can 
be easily obtained, as demonstrated in [3, 11]. The RPI test 
functions Φ(xI) depend uniquely on the distribution of scat-
tered nodes and are linearly independent in the influence-
cell [3, 11]. The RPI test functions possess several impor-
tant and useful numerical properties, such as the Kronecker 
delta property, reproducing property, the consistency 
property and the unity partition property [3]. In addition, 
since the obtained RPI test functions have a local compact 
support, it is possible to assemble a well-conditioned and 
banded equation system matrix.

2.5 � Discretized system equation of the NNRPIM 
for plane stress

Consider Ω ⊂ R
2, the solid domain bounded by Γ , where 

Γ ∈ Ω : Γu ∪ Γt = Γ ∧ Γu ∩ Γt = ∅, where Γu is the 
essential boundary and Γt is the natural boundary. The 

(13)P
[n×m]

=








p1(x1, y1) p2(x1, y1) · · · pm(x1, y1)

p1(x2, y2) p2(x2, y2) · · · pm(x2, y2)
...

...
. . .

...

p1(xn, yn) p2(xn, yn) · · · pm(xn, yn)







.

(14)

{
a

b

}

= G−1

{
u

z

}

.

(15)

uh(xI) =
{

r(xI)
T
; p(xI)

T
}

G
−1

{
u

z

}

=
{

Φ(xI)
T
;Ψ (xI)

T
}{

u

z

}

,

(16)Φ(xI) = {ϕ1(xI) ϕ2(xI) · · · ϕn(xI)}

(17)Ψ (xI) = {ψ1(xI) ψ2(xI) · · · ψm(xI)}.

linear elastostatic problem equilibrium equations can be 
expressed by:

where ∇ is the divergence operator, � is the Cauchy stress 
tensor, and b is the body forces per unit volume. The natu-
ral boundary conditions are given by � n = t̄ on Γt and the 
essential boundary conditions are imposed with u = ū on 
Γu, where ū is the prescribed displacement on the essential 
boundary Γu, t̄ is the traction on the natural boundary Γt and 
n is the unit outward normal to the boundary of domain Ω.

The Galerkin weak form of Eq. (18) can be written as:

Within the NNRPIM, the discrete system of equations is 
developed first for every influence-cell, i.e., the weak form 
has local support. Afterwards, the local systems of equa-
tions are assembled into the global system of equations, 
and then, the final equation system is solved. Using the 
interpolation functions ϕi(xI) obtained from Eq. (15), it is 
possible to define for an interest point xI ⊂ Ω the follow-
ing approximation:

where u(xi) is the nodal parameter of the ith node belong-
ing to the nodal set defining the influence-cell of interest 
node xI. Since, in this work, only two-dimensional exam-
ples are studied, there are two degrees of freedom per node 
u(xi) = { u(xi) v(xi) }

T. Thus, from Eq. (20), it is possible 
to obtain the virtual displacement approximation:

The strain and stress vectors on Eq.  (19) can be corre-
lated with the Hooke law:

where s is the compliance elasticity matrix for the general 
anisotropic material case, which is defined in Eqs.  (23) 
and (24), respectively, for the plane stress and plane strain 
formulations:

(18)∇�+ b = 0 in Ω ,

(19)

∫

Ω

δεTσ dΩ −

∫

Ω

δuTb dΩ −

∫

Γt

δuT t dΓ = 0.

(20)uh(xI) =

n∑

i=1

ϕi(xI ) u(xi),

(21)

δuh(xI) =

{
δuh(xI)

δvh(xI)

}

=

n∑

i=1

[
ϕi(xI) 0

0 ϕi(xI)

]{
δu(xi)

δv(xi)

}

=

n∑

i=1

Hi(xI) δu(xi).

(22)ε = s σ ⇒







εxx
εyy
γxy






=





s11 s12 s13
s21 s22 s23
s31 s32 s33











σxx
σyy
τxy






,
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where Eij is the elasticity modulus, υij is material Poisson 
coefficient, and Gij is the distortion modulus in material 
direction i and j. The stress vector can be obtained with the 
expression: σ = c ε, being c = s−1.

Considering small strains, the virtual strain vector can 
be obtained with the following relation:

Thus, using Eq. (21), it is possible to develop the virtual 
strain vector to the following expression:

Substituting in Eq.  (19) the virtual strain vec-
tor δε(xI) obtained in Eq.  (26), the stress vector by 
σ (xI) = c ε(xI) = c L u(xI) and the virtual displacement 
vector δuh(xI) with Eq.  (21), it is possible to rewrite 
Eq. (19) for an interest point xI:

(23)
splane stress =










1
E11

− υ21
E22

0

− υ12
E11

1
E22

0

0 0 1
G12










(24)splane strain =










1−υ31υ13
E11

−υ12+υ31υ23
E22

0

−υ12+υ32υ13
E11

1−υ32υ23
E22

0

0 0 1
G12










,

(25)δε = L δu ⇒







δεxx
δεyy
δγxy






=








∂
∂x

0

0
∂
∂y

∂
∂y

∂
∂x








�
δu

δv

�

.

(26)

δε(xI ) = L δuh(xI ) = L

n�

i=1

Hi(xI ) δu(xi) =

n�

i=1

[LHi(xI )] δu(xi)

=

n�

i=1

Bi(xI ) δu(xi) =

n�

i=1











∂ϕi(xI )
∂x

0

0
∂ϕi(xI )

∂y

∂ϕi(xI )
∂y

∂ϕi(xI )
∂x

















δu(xi)

δv(xi)







.

(27)

n∑

i=1

n∑

j=1

δuTi

∫

Ω

BT
i cBj dΩ

︸ ︷︷ ︸

(KI )ij

uj−

n∑

i=1

δuTi

∫

Ω

HT
i

{
bx
by

}

dΩ

︸ ︷︷ ︸

(f b)i

−

n∑

i=1

δuTi

∫

Γt

HT
i

{
tx
ty

}

dΓt

︸ ︷︷ ︸

(f t )i

= 0.

In the end, after assembling the stiffness matrices KI 
obtained for each interest point, Eq. (27) can be represented 
as the following linear system of equations:

(28)δuT
[
K u− f b − f t

]
= 0 ⇒ K u = f b + f t .

Since the RPI test functions possess the Kronecker delta 
property, the essential boundary conditions are directly 
imposed in the global stiffness matrix K [3].

3 � Elasto‑plastic formulation

To capture the nonlinear behaviour of an elasto-plastic mate-
rial, it is necessary to define the mathematical law for the 
plastic component of the deformation. Therefore, three 
aspects should be considered: a yield criterion, indicating the 
stress level in terms of the stress tensor and permitting to ana-
lyse the beginning of the plastic regime; a flow rule, defining 
the relationship between stress and deformation after plastifi-
cation; and a hardening law, describing if, and how, the yield 
criterion depends on the plastic deformation [52].

3.1 � Anisotropic yield criterion

The yield criterion permits to define the beginning of the 
plastic regime. Usually, a yield criterion can be formulated 
as: F(σ , κ) = f (σ )− σY (κ) = 0, where σ is the stress ten-
sor and κ is the hardening parameter. The yield function is 
the scalar function f (σ ) and σY (κ) is the yield stress, defin-
ing the elastic limit of the material. If the stress state at a 
point leads to f (σ ) < σY (κ), it means that the point shows 
an elastic behaviour, governed by the linear equations of 
the theory of elasticity [53], otherwise, it means that the 
point is in the plastic region ( f (σ ) = σY (κ)), under a load-
ing or unloading condition, depending on the flow vector 
direction.

The yield criterion used in this work is the generalised 
Huber–Mises criterion [54] for an anisotropic material, 
which is known as the Hill yield criterion:

(29)

f (σ ) = σ̄ =
[

α12(σxx − σyy)
2 + α23(σyy − σzz)

2 + · · ·

+α31(σzz − σxx)
2 + 3(α44τ

2
xy + α55τ

2
yz + α66τ

2
zx)

] 1
2
.

This yield function can be developed and the following 
expression is obtained:

(30)

f (σ ) = σ̄ =

[

a11σ
2
xx + a22σ

2
yy + a33σ

2
zz + · · · + a12σxxσyy

+ a23σyyσzz + a31σzzσxx + a44σ
2
xy + a55σ

2
yz + a66σ

2
zx

] 1
2
,
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where aij are the material anisotropic parameters defined 
by: a11 = α31 + α12, a22 = α12 + α23, a33 = α23 + α31 , 
a12 = −2α12, a23 = −2α23, a31 = −2α31, a44 = 3α44 , 
a55 = 3α55 and a66 = 3α66. Thus, Eq.  (30) can be repre-
sented in the matrix form:

where MA is the anisotropic parameters matrix, defined as:

The initial anisotropic parameters, before hardening, can 
be determined resorting to six independent yield tests. For 
each one of these tests, all the components of the stress vec-
tor are considered zero, except for the required component. 
However, as the previous works indicate [55, 56], the ani-
sotropic parameters are dependent on the actualized yield 
stress. Thus, the anisotropic parameters will vary along 
the plastic process. In the literature [55, 56], the following 
parameters are suggested:

(31)f (σ ) = σ̄ =
[
σ
TMAσ

] 1
2 ,

(32)MA =

















a11
a12
2

a31
2

0 0 0

a12
2

a22
a23
2

0 0 0

a31
2

a23
2

a33 0 0 0

0 0 0 a44 0 0

0 0 0 0 a55 0

0 0 0 0 0 a66

















.

(33)a11 =

[
σ̄0

σY1

]2

=
σ̄
2

ET1
ET

(
σ̄
2 − σ̄

2
0

)
+ σ 2

Y10

(34)a22 =

[
σ̄0

σY2

]2

=
σ̄
2

ET2
ET

(
σ̄
2 − σ̄

2
0

)
+ σ 2

Y20

(35)a33 =

[
σ̄0

σY3

]2

=
σ̄
2

ET3
ET

(
σ̄
2 − σ̄

2
0

)
+ σ 2

Y30

(36)a44 =

[
σ̄0

τY12

]2

=
σ̄
2

GT12
ET

(
σ̄
2 − σ̄

2
0

)
+ τ 2Y120

(37)a55 =

[
σ̄0

τY23

]2

=
σ̄
2

GT23
ET

(
σ̄
2 − σ̄

2
0

)
+ τ 2Y230

(38)a66 =

[
σ̄0

τY31

]2

=
σ̄
2

GT31
ET

(
σ̄
2 − σ̄

2
0

)
+ τ 2Y310

,

where σ̄ 0 is the yield stress in the material reference direc-
tion and σYj0 is the yield stress in the material principal 
direction j before hardening. ET1, ET2 and ET3 are the tan-
gential modulus in the directions 1, 2 and 3, respectively. 
ET is the effective tangential modulus. GT12, GT23 and GT31 
are the tangent shear modules. These quantities are inde-
pendent and obtained experimentally.

To obtain a12, it is necessary to submit a material sample 
obtained from the material plane 1–2 to an uniaxial tensile 
test [57]. Considering that the sample axis is oriented by 
an angle β in relation to material direction 1, and σYβ0 is 
the uniaxial yield stress in direction 1–2 before hardening, 
obtained in the aforementioned test, a12 is defined as:

where ETβ is the tangential modulus in direction β. Apply-
ing the same procedure in direction 2–3, considering now 
the sample oriented with an angle ϕ in relation to material 
direction 2, the parameter a23 can be obtained with:

To obtain the parameter a31, the sample is oriented with 
an angle φ in relation to material direction 3:

In this work, only two-dimensional analyses are per-
formed, which permits to simplify the problem formulation. 
If the problem is analysed assuming the plane strain defor-
mation theory, then τyz = τzx = 0, leading to an anisotropic 
parameter matrix MA with size [4× 4]. If the plane stress 
assumptions are considered, σzz = τyz = τzx = 0, the ani-
sotropic parameter matrix MA becomes a [3× 3] symmetric 
matrix.

In the numerical analyses where the principal material 
axes are not coincident with the global referential axis 
(x, y), the anisotropic parameters must be transformed 
to the global reference system. Considering a material 

(39)

a12 =
σ̄0

[
ETβ
ET

(
σ̄
2 − σ̄

2
0

)
+ σ 2

Yβ0

]

· sin2 β · cos2 β

−
a11 · cos

4 β + a22 · sin
4 β + a44 · cos

2 β · sin2 β

cos2 β · sin2 β
,

(40)

a23 =
σ̄0

[
ETϕ
ET

(
σ̄
2 − σ̄

2
0

)
+ σ 2

Yϕ0

]

· sin2 ϕ · cos2 ϕ

−
a22 · cos

4 ϕ + a33 · sin
4 ϕ + a55 · cos

2 ϕ · sin2 ϕ

cos2 ϕ · sin2 ϕ
.

(41)

a31 =
σ̄0

[
ETφ
ET

(
σ̄
2 − σ̄

2
0

)
+ σ 2

Yφ0

]

· sin2 φ · cos2 φ

−
a11 · sin

4 φ + a33 · cos
4 φ + a66 · cos

2 φ · sin2 φ

cos2 φ · sin2 φ
.
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orientated with an angle θ with relation to the global 
2D referential Oxy, the effective stress can be written in 
the form presented in Eq.  (42), where the transformed 
matrix of the anisotropic parameters, M̄A, is obtained 
with Eq.  (43). The transformation matrix T, defined 
in Eq.  (44), permits to account the orientation of the 
material:

3.2 � Plastic flow rule

In this works, it is considered the associated flow rule, since the 
plastic flow is associated with the yield criterion. The Prandtl-
Reuss flow rule defines that the plastic strain is defined as:

where dλ is the plastic rate multiplier and a is the flow vector, 
normal to the adopted yield function, f , defined by Eq. (42). 
The flow vector can be presented as:

and considering the yield function defined in Eq. (42):

(42)f (σ ) = σ̄ =
[

σ
TM̄Aσ

] 1
2

(43)M̄A = TTMAT

(44)

T =













cos2 θ sin2 θ 0 − sin 2θ 0 0

sin2 θ cos2 θ 0 sin 2θ 0 0

0 0 1 0 0 0

sin θ · cos θ − sin θ · cos θ 0 cos2 θ − sin2 θ 0 0

0 0 0 0 cos θ − sin θ

0 0 0 0 sin θ cos θ













.

(45)dεp = dλ
∂f

∂σ
= dλ a,

(46)a = ∂f /∂σ =
[

∂f
∂σxx

∂f
∂σyy

∂f
∂σzz

∂f
∂σxy

∂f
∂σyz

∂f
∂σzx

]

(47)
∂f

∂σxx
=

1

σ̄

[
ā11σxx + ā12σyy + ā13σzz

]

(48)
∂f

∂σyy
=

1

σ̄

[
ā21σxx + ā22σyy + ā23σzz

]

(49)
∂f

∂σzz
=

1

σ̄

[
ā31σxx + ā32σyy + ā33σzz

]

(50)
∂f

∂σxy
=

1

σ̄

[
ā44σxy

]

(51)
∂f

∂σyz
=

1

σ̄

[
ā55σyz

]

(52)

∂f

∂σzx
=

1

σ̄

[
ā66σzx

]
.

3.3 � Hardening law

Following the linear elastic Hooke law, the following rela-
tion between the stress rate dσ and the elastic strain rate dεe 
is assumed:

where dε is the total strain rate and dεp is the plastic strain 
rate. Considering the associated flow rule, Eq.  (45), and 
assuming that the yield surface, F(σ , κ), only depends on 
the magnitude of the applied principal stresses and of a 
hardening parameter κ, F(σ , κ) = f (σ , κ)− σY (κ) = 0, 
Eq. (53) can be rewritten as:

The stress must remain on the yield surface to occur 
plastic flow. Therefore,

or

where A is an hardening parameter that depends on the 
hardening rule [52], defined by:

Applying Eq. (54) on Eq. (56),

(53)dσ = c dεe = c
(
dε−dεp

)
,

(54)dσ = c(dε−dλ a).

(55)dF =
∂f

∂σ
dσ−

∂σY

∂κ
dκ = 0

(56)dF = aTdσ−A dλ = 0,

(57)A =
1

dλ

∂σY

∂κ
dκ .

(58)dλ =
aTc dε

aTca+ A
.

Fig. 2   Backward-Euler scheme
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Fig. 3   NNRPIM and KT0 
algorithm
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Introducing the value of dλ into Eq. (54), the stress rate 
can be written as:

where ct is the tangential constitutive matrix. To define 
explicitly the hardening parameter A, the work hardening 
hypothesis is employed [52] considering the associated 
flow rule. Since all the nonlinear materials used in the pre-
sent work show a “linear elastic”-“linear plastic” harden-
ing behaviour, the hardening parameter A can be defined as 
[52]:

where Eo and ETo are the elastic modulus and the tangential 
modulus in the reference direction, respectively.

3.4 � Stress returning algorithm

In this work, the material behaviour is modelled in the form 
of an incremental relation between the incremental stress 
vector and the strain increment. To force the stress to return 
to the yield surface, the “backward-Euler” procedure [43] 
shown in Fig. 2 is considered.

Within this methodology, which solves the nonlinear 
equations acting on the level of the Gauss points, it is not 
require to determine the intersection point of the incre-
mental load with the yield surface, point A. Thus, after the 
incremental load application, and for each Gauss point, it 
is verified if the achieved stress state is inside or outside 
the yield surface. The stress returning algorithm is called 
every time the stress state is outside the yield surface. 
Consider the stress on point B represented in the two-
dimensional Westergaard stress space, Fig. 2. Since point 
B is outside the yield surface, it must be pushed back to 
point C, on the yield surface. To perform the returning of 
the stress state to the yield surface, the implemented algo-
rithm starts with a predictor, simulating that point B is on 
the surface of a ‘forward’ yield function fB, consequently 
avoiding the computing of the intersection point A. The 
flow vector is calculated from point B, aB, being the yield 
function in point B defined by fB = σ̄B − σ ∗

Y, where σ ∗
Y is 

the updated yield stress. Next, using Eq. (54), an estima-
tive of the stress in point C is obtained:

To correctly obtain the stress in point C, it should be 
used the flow vector on point C, aC. However, aC cannot be 
directly obtained with only the data from points X and B . 

(59)

dσ = c dε −
a
T
c dε

a
T
ca+ A

· ca =

(

c−
caa

T
c

a
T
ca+ A

)

dε = ct dε,

(60)A =
ETo

1− ETo
Eo

,

(61)σC= σB − dλ c aB.

Hence, the information from point B must be employed to 
estimate point C. This process continues iteratively until C 
is satisfactorily approximated, concluding the process.

3.5 � Nonlinear solution algorithm

The solution algorithm, used in the nonlinear NNRPIM 
code developed by the authors, is shown in Fig. 3 and sum-
marised as follows.

First, the problem domain is discretized with a nodal 
distribution and a nodal dependent integration mesh is con-
structed. Afterwards, the nodal connectivity is defined, and 
the interpolation functions are obtained for each integration 
point. Then, the linear elastic stiffness matrix, K0, can be 
constructed, ending the preprocessing phase.

Since this work considers the elasto-plastic deformation 
problem, the incremental form of the discretized system 
[presented in Eq.  (28)] within an incremental load can be 
written as:

where KT is the tangent stiffness matrix, �u is the incre-
mental displacement field and �f  is the incremental load 
vector. The residual force vector is defined as f res. This 
work considers a variation of the Newton–Raphson non-
linear solution method—initial stiffness method combined 
with an incremental solution (KT0)—to solve the non-
linear equations [43]. Within this approach, the stiffness 
matrix is calculated only once: at the preprocessing phase 
(K0 ) assuming the elastic constitutive matrix. Thus, for any 
given increment, j: K j

T= K0, ∀j ∈ N.
The overall solving process is given by the follow-

ing algorithm. First, construct the initial stiffness matrix 
K0 and set as 0 the vectors: u, f  and f res. Then, begin the 
incremental procedure:

	 1.	 Set �f  equal to the current increment load vector f j: 
�f = f j.

	 2.	 Solve �u = K0�f .
	 3.	 Set uj= uj−1 +�u.
	 4.	 For each integration point, evaluate the strain incre-

ment: �ε = B�u.
	 5.	 Using the elastic constitutive matrix (c = s−1, from 

Eqs. (23) and (24)) evaluate, at each integration point, 
the incremental stress state: �σ = c�ε, and the trial 
total stress state: σ j

trial= σ
j−1 +�σ.

	 6.	 At each integration point, evaluate σ j
trial to sat-

isfy the yield criterion. If f (σ
j
trial) ≤ σY (κ), then: 

σ
j
new = σ

j
trial , otherwise, the algorithm described in 

Sect.  3.4 is applied and a new modified total stress 
state is obtained: σ j

new �= σ
j
trial. After the evaluation, it 

is possible to define the total stress field of the present 
increment: σ j = σ

j
new. Notice that the incremental 

(62)KT�u−�f = f res,
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stress and strain resultant relation is valid under the 
assumption of a proportional loading path.

	 7.	 Evaluate the residual force vector: 
f res = �f −

∫

Ω
BT (σ j − σ

j−1)dΩ.
	 8.	 Check the convergence using the follow-

ing residual force convergence criteria: 
Eres = (f res · f res)1/2 × (f j · f j)−1/2 < toler, where 
toler is a specified tolerance.

	 9.	 If Eres < toler, the process moves to step 1. Else, the 
process moves to the iterative phase: step 10.

	10.	 The iterative procedure starts with iteration i = 0, set-
ting: uj0 = uj, σ j

0 = σ
j and f res0 = f res. Afterwards, 

the iterative procedure continues:

10.1	 Set �f  equal to the last residual force vector 
f resi−1: �f = f resi−1.

10.2.	 Solve �u = K0�f .
10.3.	 Set uji = u

j
i−1 +�u.

10.4.	 For each integration point, evaluate the strain 
iterative increment: �ε = B�u.

10.5.	 Using the elastic constitutive matrix (c = s−1 , 
from Eqs. (23) and (24)) evaluate, at each inte-
gration point, the iterative incremental stress 
state: �σ = c�ε, and the trial total stress state: 
(σ

j
trial)i= σ

j
i−1 +�σ.

10.6.	 At each integration point, evaluate 
(σ

j
trial)i to satisfy the yield criterion. If 

Fig. 4   a Cook’s membrane; b 
Irregular nodal mesh with 414 
nodes

Fig. 5   Load–displacement 
curve for: a the horizontal 
displacement of point A; b the 
vertical displacement of point A
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f ((σ
j
trial)i) ≤ σY (κ) , then: (σ

j
new)i = (σ

j
trial)i, 

otherwise, the algorithm described in Sect. 3.4 
is applied and a new modified total stress state 
is obtained: (σ j

new)i �= (σ
j
trial)i. After the evalu-

ation, it is possible to define the total stress 
field of the present iteration: σ j

i = (σ
j
trial)i.

10.7. 	� Evaluate the residual force vector: 
f resi = �f −

∫

Ω
BT (σ

j
i − σ

j
i−1)dΩ.

10.8. 	� Check the convergence using: 
Eres = (f resi · f resi )1/2 × (f j · f j)−1/2 < toler.

10.9. 	� If Eres < toler, the process moves to step (1). 
Else, the process continues in the iterative 
phase, moving to step (10.1).

4 � Numerical examples

In this section, several two-dimensional benchmark examples 
are presented. The results obtained with the NNRPIM are 
compared with FEM solutions obtained by the commercial 
software ANSYS 14.0, considering exactly the same nodal 
spatial distribution and the same material properties. Regard-
ing the FEM ANSYS analysis, it was used the linear quadri-
lateral finite element: PLANE182, with bilinear interpolation, 
indicated for 2D plane strain and 2D plane stress. In addition, 
concerning the plasticity model of ANSYS, to permit a fair 
comparison, it was considered the “generalised anisotropic Hill 
potential” option.

Fig. 6   Normal stress distribu-
tion along the membrane essen-
tial boundary for increasing 
load levels
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4.1 � Cook’s membrane

The benchmark example of the Cook’s membrane with the 
geometry, properties and boundary conditions presented 
in Fig. 4a is analysed [58]. The problem was studied con-
sidering the plane stress assumptions, and the domain was 
discretized with the irregular nodal distribution shown in 
Fig. 4b. The same nodal discretization was used to obtain 
the NNRPIM and the FEM solutions using ANSYS.

In Fig.  5, the plots of horizontal, uA, and vertical, vA , 
displacement components of node A, Fig.  4a, versus the 
applied uniform distributed load P are presented for both 
NNRPIM and FEM ANSYS solutions. As it is visible, the 
NNRPIM solution adjusts very well to the FEM ANSYS 
solution for both the displacement components.

Figure  6 shows the distribution of the normal stress 
σxx along the membrane’s essential boundary (x = 0 and 
y = [0, 44]) for increasing values of the applied uniform 
distributed load. Similar to the load–displacements curves 
presented in Fig. 5, a nearly close correlation between the 
NNRPIM and FEM ANSYS solution is obtained, even 
for higher load levels. As it would be expected, due to the 
type of the applied load and the geometry of the Cook’s 
membrane, it is possible to visualise a stress concentra-
tion in the top-left corner of the Cook’s membrane, at 
{x, y} = {0, 44} m. As a consequence, these nodes are the 
first to yield.

Figure  7 shows the distribution of the shear stress τxy 
along the left boundary (x = 0). Once again, the NNRPIM 
solution shows a good correlation with the FEM ANSYS 

Fig. 7   Shear stress distribution 
along the membrane essential 
boundary for increasing load 
levels
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solutions. However, it is possible to observe that the two 
solutions are not as close as the solutions obtained for the 
normal stress σxx. The distribution of the normal stress σxx 
and the shear stress τxy on the global problem domain are 
shown in Fig. 8 for different load levels.

4.2 � Infinite plate with a circular hole

The second example, considering only isotropic materials 
with isotropic hardening, is an infinite plate with a circu-
lar hole subjected to a traction pressure in the extremities. 

Due to the double symmetry of the infinite plate, the prob-
lem can be simplified, as shown in Fig.  9a. The material 
properties are shown in Fig. 9a. The problem domain was 
discretized with the nodal distribution shown in Fig. 9b. In 
this example, it was considered the plane stress deforma-
tion theory.

The elasto-plastic results obtained with the NNRPIM 
and the FEM ANSYS regarding the punctual displacements 
evolution with the load increment in control points A, B and 
C, Fig. 9a, are shown in Fig. 10. For the interest point A, it 
is shown the vertical displacement component: vA, Fig. 10a. 

Fig. 8   Distribution of normal (σxx) and shear (τxy) stress along the Cook’s membrane for distinct stages of load

Fig. 9   a Quarter of an Infinite 
plate with a circular hole; b 
Irregular nodal mesh with 1654 
nodes
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For the interest point B, it is presented the quadratic norm 

of the local displacement: dB =

√

u2B + v2B, Fig.  10b. The 

horizontal displacement component: uC, on interest point C 
is shown in Fig. 10c. The results show that the NNRPIM 
solution is very close with the FEM ANSYS solution.

Figure 11 shows the normal stress σxx distribution along 
the vertical essential boundary (x = 0 and y = [2, 5]) for 
increasing load levels. A close correlation between the 
NNRPIM and FEM ANSYS solution is obtained, even for 
higher values of load. As expected, the bottom nodes are the 
firsts to yield, since discontinuities introduce higher stresses.

Regarding the stress distribution, it is possible to observe 
in Fig.  12 that the stress field’s distributions obtained, 
for distinct load levels, present a smooth variation. With 
Fig. 12, it is also possible to visualise the evolution of the 
stress along the plate.

4.3 � Cantilever beam

In this section, the cantilever beam represented in Fig. 13, 
loaded in the free end with a vertical uniform distributed 
load, is analysed. The considered material properties for 
isotropic and anisotropic behaviour are the same assumed 
by Brünig [59], which are referred in Fig. 13.

The problem was analysed considering the plane stress 
assumptions, and the domain was discretized with two 
distinct nodal distributions: a regular nodal discretization 
and an irregular nodal distribution, both with 516 nodes, 

Fig.  14a, b. Only the regular discretization was used to 
obtain FEM ANSYS solutions.

In Fig. 15, the plots of the vertical displacement compo-
nent, vA, on node A, Fig. 13, versus the uniform distribute 
load P are presented for both NNRPIM and FEM ANSYS 
solutions.

As it is visible, the NNRPIM solution adjusts very 
well to the FEM ANSYS solution, regardless the mate-
rial used: isotropic or anisotropic. Due to the similar-
ity of the NNRPIM results obtained with the regular 
(NNRPIM RM) and irregular (NNRPIM IM) nodal dis-
cretization for the isotropic material behaviour, only the 
regular nodal distribution was considered in the aniso-
tropic analysis.

From Fig.  15, it is visible that, comparing the results 
from the analyses of the two materials (isotropic and ani-
sotropic), the anisotropic material yields later and shows a 
higher load-carrying capacity during loading. As it can be 
seen from Fig.  15, while the anisotropic material shows 
only a vertical displacement v = 35 mm for an applied load 
of 5.5 kN/m, for the same load value, the isotropic material 
shows approximately a vertical displacement v = 65 mm in 
point A, which is almost the double.

Figure  16 shows the normal stress σxx distribution 
along the clamped side (x = 0 and y = [0, 4]) of the iso-
tropic cantilever beam for increasing load values. From 
Fig. 16, it can be seen that the NNRPIM solution is very 
close with the FEM ANSYS solution, even for higher val-
ues of load.

Fig. 10   Load displacement curve for: a the vertical displacement in point A; b the displacement in point B; and c the horizontal displacement in 
point C
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Fig. 11   Normal stress distribu-
tion along the vertical essential 
boundary for increasing load 
levels

Fig. 12   Stress field distribution (σxx) obtained for the infinite plate with a circular hole
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Regarding the stress distribution along the domain of the 
cantilever beam and considering the isotropic material and 
the regular nodal discretization, it is possible to observe in 
Fig. 17 that the stress fields obtained for distinct load levels 
present a smooth variation. In Fig. 17, it is also possible to 
visualise the most stressed regions of the beam, where the 
yielding occurs first.

Figure  18 shows the formation of plastic zones (dark 
grey) during load, for isotropic and anisotropic materials. It 
also shows that yielding starts earlier in the isotropic case, 
being the results comparable, and very similar, to Brünig 
results [59].

4.4 � Punch pressure

In this section, another benchmark example is studied 
[59], in which a rigid punch is pressed over a solid. The 
problem is analysed assuming the plane strain defor-
mation theory. The geometry, the boundary conditions 
and the material properties of the problem are shown in 
Fig.  19. The considered material properties for isotropic 
and anisotropic material behaviour are the same assumed 
by Brünig [59].

The problem domain was discretized with an irregular 
nodal distribution (1977 nodes), as shown in Fig.  20. As 
it is visible, the irregular discretization has a high concen-
tration of nodes in the nearby region of application of the 
rigid punch, where higher stresses are expected.

In Fig. 21, it is presented the load–displacement curves 
of the vertical displacement vA of node A, the node immedi-
ately below the node with coordinates {x, y} = {3, 5.1}. The 
NNRPIM solutions are compared with the FEM ANSYS 
solutions.

From Fig. 21, it is visible that NNRPIM solution shows 
a close correlation with FEM ANSYS solution. Figure 21 
also shows that the load-carrying behaviour increases con-
siderably when anisotropic materials are considered, as 
happened in the previous example, the cantilever beam.

The normal stress σyy distribution along the vertical 
essential boundary (x = 0 and y = [0, 5.1]) for increasing 
load levels is shown in Fig. 22. A close correlation between 
the NNRPIM and FEM ANSYS solution is obtained for all 
the load levels considered.

Fig. 13   Cantilever beam
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Fig. 14   Nodal meshes of the 
cantilever beam. a Regular 
nodal mesh; b Irregular nodal 
mesh

Fig. 15   Cantilever Beam: load displacement curves for anisotropic 
and isotropic material behaviours
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At last, Fig. 23 shows the distribution of the normal σyy 
stresses along the geometry of the considered problem, for 
the different stages of applied loads. A smooth variation 
of the stress field is observed in all the distinct load levels 
considered (Fig. 23).

5 � Conclusions

In this work, the NNRPIM was extended to the analysis 
of nonlinear elasto-plastic examples, considering a small 
strain formulation. The modified Newton–Raphson initial 

Fig. 16   Cantilever beam: 
normal stress (σxx) distribution 
along the essential boundary for 
increasing load levels, consider-
ing isotropic material behaviour
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stiffness method combined with an incremental solution 
(KT0) was used to solve the nonlinear system of equa-
tions. The generalised Huber–Mises criterion, also known 
as Hill yield criterion, was considered in the elasto-plastic 

formulation. To return the stress to the Hill anisotropic 
yield surface, it was assumed a “backward-Euler” proce-
dure. From the results obtained in this work, it can be con-
cluded that:

Fig. 17   Stress field distribution (σxx) obtained for the cantilever beam, considering distinct load levels

Fig. 18   Formation of plastic zones
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i.	 The nonlinear solution algorithm was successfully 
implemented in the context of the used meshless 
method, as well as the algorithm to return the stress to 
the yield surface.

ii.	 With the NNRPIM, the imposition of the boundary 
conditions is straightforward, reducing the computa-
tional time when compared with approximation meth-
ods, in which complex and computational expensive 
numerical procedures have to be considered.

iii.	 The irregularity of the discretization does not signifi-
cantly affect the final results. In addition, the convex 
boundaries of the problem, due to the NNRPIM node 
connectivity scheme, do not represent a setback, as in 
other meshless methods that for instances use the influ-
ence-domain concept.

iv.	 The NNRPIM analysis produces a variable fields 
smooth, accurate and very close to the FEM ANSYS 
solution.

The major advantage of the NNRPIM is that it permits 
to define the nodal connectivity, the integration mesh and 

Fig. 19   Rigid punch
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Fig. 20   Rigid punch nodal meshes

Fig. 21   Rigid punch: load displacement curves for anisotropic and 
isotropic material behaviours considering an irregular nodal mesh
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the interpolation functions using uniquely the informa-
tion of the nodal discretization, which is a characteris-
tic of truly meshless methods. This property allows the 
NNRPIM to analyse any numerical problem requiring 

only the information from the computational nodal 
distribution.

Nevertheless, it is important to mention the NNRPIM 
principal disadvantage. This meshless method technique, 

Fig. 22   Rigid punch: normal 
stress distribution (σyy) along 
the essential boundary with 
x = 0 for increasing load levels, 
considering isotropic material 
behaviour and an irregular nodal 
mesh
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due to its heavy preprocessing phase, presents a higher 
computational cost when compared with FEM. The deter-
mination of the natural neighbours and the construction of 
the integration mesh represent most of the computational 
cost of the analysis.
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