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as Doblaré et al. [8], which introduces bone biology, bone 
mechanical properties, mechanisms of bone fracture, and 
comments about a tentative bone fracture criteria, models 
fractures, and fracture healing. The bone failure theories 
were accessed, for instance, by Keyak and Rosi [20], which 
propose a comparative study, via finite-element method, 
between experimental fracture load of frozen human 
femurs and the application of failure theories of ductile 
and fragile materials. Very interesting research was done 
in plate clinical applications by Kubiak et al. [21], which 
proposes to review the history of locked plates and the cur-
rent recommendations for the use of those devices and look 
toward future trends in the clinical application of locked 
plates. Rockwood and Green [25] made a very complete 
treatise about plate applications, including surgical instruc-
tions and Frigg [14], based on clinical experience with PC-
Fix, and indicated the advantages of bridging plate with the 
utilization of internal fixator in comparison with the con-
ventional plate procedures.

Numerical models were proposed by Rudman et al. [26] 
to access muscle-bone interactions, through the utilization 
of a 2D F.E. model, by studying the influence of tendons 
on stress distribution in the proximal femur. Duda et al. [9] 
used a finite-element model to demonstrate the influence of 
muscle forces in human femur strain distribution, showing 
that the bone loaded with all the thigh muscles experienced 
a somewhat homogeneous strain distribution.

Many published research of bone and/or plate deal with 
experimental research. Femoral implants are the subject of 
Bergmann et al. [3] that measured the hip contact forces 
through the utilization of instrumented femoral implants. 
Tung-Wu et al. [34] did experiments on two patients with 
custom-made instrumented massive proximal femoral pros-
theses implanted after tumor resection. In vivo axial forces 
transmitted along the prostheses were telemetered during 
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1 Introduction
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just plates, in long-bone surgery has undergone enormous 
developments. The bone material was analyzed by authors 
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level walking, single and double-leg stance, and isometric 
exercises of the hip muscles. It was concluded that appro-
priate simulation of muscle forces was important in the 
experimental or theoretical studies of load transmission 
along bones.

The plate performance was accessed by Goswami et al. 
[16], which experimentally analyzes various combina-
tions of locking and non-locking screws under simultane-
ous axial and torsional loadings to determine the optimal 
hybrid locking plate-screw construct in a fourth generation 
composite femur. Talbot et al. [30] studied the fixation of 
long-bone segmental defects through the utilization of three 
constructs: lateral locking plate; lateral non-locking plate 
and medial allograft strut; and lateral non-locking plate and 
intramedullary fibula allograft. Ahmad et al. [1] did in vitro 
investigation of the mechanical stability of a locking com-
pression plate (LCP) construct in a simulated diaphysis 
fracture of the humerus at increasing distances between the 
plate and bone. Cordey et al. [5] did an experimental quan-
tification of the importance of the screws bending stiff-
ness and the friction between plate and bone in the plate 
performance.

The bone surface strains were measured by Simões et al. 
[27] who studied the influence of muscle action and a hori-
zontally constrained femoral head on the strain distribution 
within the intact femur for three loading configurations: 
joint reaction force only, joint reaction force plus abduc-
tors, and joint reaction force plus the abductors, vastus lat-
eralis, and iliopsoas, with the use of uniaxial strain gauges 
placed on the medial, lateral, anterior, and posterior aspects 
of the proximal femur. Cristofolini et al. [7] studied experi-
mentally the bone surface strains using a custom designed 
jig to measure external surface strains at proximal human 
femur, generated by the simulated loading of each thigh 
muscle, resulting in a great variability of strain responses 
as a function of the muscles or group of muscles selected.

Other experimental methods were used by Edwards 
et al. [13] stating that the external muscular loading of 
long bones is an important factor in determining stress and 
strain distributions at the external surface of cortical bone. 
Muscle forces are estimated by the utilization of force plat-
form and motion capture data through static optimization 
in conjunction with a SIMM musculoskeletal model. Som-
mers et al. [29] develop a mechanical surrogate model for 
osteoporotic diaphysis bone, to replicate torsional rigidity 
and strength, bending rigidity and strength, and screw pull-
out strength. Experimental tests indicate good agreement 
between surrogate long-bone models and cadaveric femura.

Duda et al. [11], in an experimental study, determine that 
anatomical variability significantly influences the results of 
biomechanical analyses, particularly the moment arm of 
the various thigh muscles, and conclude that some muscle 
moment arms are very sensitive to the anatomical situation, 

such as gluteus maximus and m. rectus femoris, whereas 
others are not, such as gluteus medius and m. gastrocnemi.

Analytical models are accessed by Kenedi and Riagusoff 
[18] through the utilization of mechanics of solids theory, 
to model the stress distribution at a medial external bone 
surface path. Both cortical and trabecular bone tissues were 
recognized, and the medial bone cross sections were model 
as circular or as elliptical. The principal stress, with respec-
tive angles, results were accessed and compared with an 
F.E. model, used as reference. Ramos and Simões [24] used 
the well-known Castigliano theorem to access stresses and 
displacements of a femur modeled as a straight column and 
an arch. Duda et al. [10] represent a system in equilibrium 
through the forces exerted together by the soft and hard tis-
sues. In addition, to improve the understanding of femoral 
loading, a three-dimensional model was developed taking 
into account thigh muscles, body weight and contact forces 
at the hip, patello-femoral, and knee joints. Raftopoulos 
and Qassem [23] proposed two interesting analytical mod-
els: one with straight and homogeneous beams and other 
with curved and composite beams. Gdoutos et al. [15] did 
an interesting review of what other researchers have done 
in stress analysis of human femurs. Toridis [33] in an early 
work proposed an analytical model of human femur stress 
analysis taking into account both cortical and trabecular 
bones tissues at an arbitrary bone cross section.

In this work, an analytic model, based on mechanics of 
solids, is proposed as a development of Kenedi and Vignoli 
[19], to relate external forces acting at a human femur head 
with the internal loads acting at combined set of bone and 
plate cross sections and to obtain a better understanding of 
internal loadings shares between bone and plate at a dia-
physis long-bone central region and, consequently, its cross 
sections stress distributions. A finite-element model is also 
provided, as a reference, including the presence of screws 
and contact stresses.

Figure 1a shows a model of a real human femur bone 
with femur’s head load with a plate installed on a dia-
physis femur bone external surface region. The external 
forces used in this model were adapted from of Tay-
lor et al. [31] fourth load case of a human femur’s head. 
These forces are named : Joint Reaction, at point A; 
Abductors, at point B; Ilioopsoas, at point C, and, Ilio-
Tibial Tract, at point D, which are a significant simplifi-
cation of real human’s femur bone external loading (see 
Bitsakos et al. [4] for a more complete muscle loading 
case description). Figure 1b shows bone/plates at a coro-
nal plane in detail. The plate is fixed at the lateral side of 
the central part of the femur diaphysis through the utiliza-
tion of six screws. In addition, it is possible to recognize 
that the bone irregular external surface generates irregu-
lar distances between plate and bone, which could lead to 
irregular contacts between them.
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Note that relative position between plate and bone, for 
instance, the plate parallelism with bone to z axis, varies 
from bone to bone, which adds a certain degree of geomet-
ric variability to the definition of plate-effective position.

At next item, the analytical model is proposed in detail.

2  Analytical model

In this section, an analytical model is proposed, based on 
mechanics of solids, to describe the load share between 
bone and plate, with the ultimate objective of estimating 
the stress distribution at plate diaphysis cross sections.

To implement the analytical model, few hypotheses 
have to be imposed as: the external loading is represented 
by four static forces that are concentrated at femur’s head, 
as already mentioned at the previous section; no bone side 
ligaments are recognized; and the bone and plate cross sec-
tions are assumed to be, respectively, hollow circular (with 
constant thickness wall) and rectangular (with or without a 
screw hole). In addition, the bone tissue is assumed to be 
cortical and the plate material is made of stainless steel, 
both modeled as isotropic, see Kenedi and Vignoli [19].

To estimate the load acting at a plate medial cross sec-
tion, the load sharing between bone and plate must be 
calculated. To facilitate mathematical manipulation, the 
static forces, applied at the femur’s head, are represented 
by numerical indices: Joint Reaction force (P1), Abductor 
force (P2), Iliopsoas force (P3), and Iliotibial Tract force 
(P4). The forces Pi and the moments Mi are calculated at 
the combined cross-sectional centroid; and the distances di 

between forces application points and the combined cross-
sectional centroid can be written as

where the indices i vary from 1 to 4, g subscripts are refer-
enced to global system coordinates. �i, �j, and �k are unit vec-
tors. Pi,xg,Pi,yg,Pi,zg and Mi,xg,Mi,yg,Mi,zg are, respectively, the 
components of each global force and global moment at the 
combined cross-sectional centroid. Note that the combined 
cross section is the set of plate and bone cross sections, 
as shown in Fig. 2a. The expressions (3) and (4) show the 
components global force and global moment summation:

where Ng, Vg
x , Vg

y  and Mg
x , Mg

y , and Tg are, respectively, 
the global force and global moment summation at a com-
bined cross-sectional centroid. Figure 2a shows plate and 
bone cross sections, with the plate in a generic angular 
position θz, and Fig. 2b shows the plate at angular position 
θz = 180°, which was used in this work example.

Where B and H are, respectively, plate width and thick-
ness, Do and Di are, respectively, bone model external and 
internal diameters. Beyond the main dimensions, Fig. 2a, 
b shows the position of bone centroid, plate centroid (both 
marked with a cross), and the combined cross-sectional 
centroid (where the local axis origin is positioned).

As already commented at the previous section, the plate 
effective position has some variability, so the plate centroid 
position can be shifted at both x and y local axis directions 
to accommodate such deviations. To describe the rela-
tions between the plate cross-sectional centroid, the bone 
cross-sectional centroid, and the combined cross-sectional 
centroid, four variables were created: m, n, s, and t. The 
variables m and n are, respectively, the distances from bone 
centroid and from plate centroid to the combined cross 
section in local y axis direction. The variables s and t are, 
respectively, the distances from bone centroid and from plate 
centroid to the combined cross section in local x axis direc-
tion. Figure 2b also shows the distances used to estimate the 
combined cross-sectional centroid for θz = 180°, in which 
expressions are shown in (5) and (6), Crandall et al. [6]:

(1)
Pi = Pi,xg

�i + Pi,yg
�j + Pi,zg

�k di = di,xg
�i + di,yg

�j + di,zg
�k

(2)





Mi,xg

Mi,yg

Mi,zg



 =





di,ygPi,zg − di,zgPi,yg

di,zgPi,xg − di,xgPi,zg

di,xgPi,yg − di,ygPi,xg





(3)Ng =

4
∑

i=1

Pi,zg Vg
x =

4
∑

i=1

Pi,xg Vg
y =

4
∑

i=1

Pi,yg

(4)Mg
x =

4
∑

i=1

Mi,xg Mg
y =

4
∑

i=1

Mi,yg Tg =

4
∑

i=1

Mi,zg

Fig. 1  Human femur with a plate at diaphysis region (coronal plane): 
a general view and b detailed view
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where b, c, and p refer, respectively, to bone, combined, and 
plate. A is a cross-sectional area, E is a modulus of elastic-
ity, and u is a position. Note that ub_x, ub_y, up_x, and up_y are 
real positions to be obtained from bone/plate cross sections. 
Figure 3a shows the forces and moments summation vectors 
of expressions (3) and (4) at combined centroid cross sec-
tion in global coordinates, and Fig. 3b shows the force and 

(5)

uc_x =
AbEbub_x + ApEpup_x

AbEb + ApEp
uc_y =

AbEbub_y + ApEpup_y

AbEb + ApEp

(6)
m = ub_y − uc_y n = up_y − uc_y

s = ub_x − uc_x t = up_x − uc_x

moment summation vectors in local coordinates, in which 
expressions are shown, in a compact form, in (7).

Expression (7) shows the force and moment summations 
in local coordinates, as shown in Fig. 3b:

where Vx, Vy, N, and Mx, My, and T are, respectively, the 
local force and moment summation in local coordinates, 
and Θz is the rotation transformation matrix around z axis, 
which is available in Appendix Table 8.

In the next section, the load sharing between bone and 
plate is proposed.

(7)





Vx

Vy

N



 = Θz





V
g
x

V
g
y

Ng









Mx

My

T



 = Θz





M
g
x

M
g
y

Tg





Fig. 2  Plate and bone cross sections main dimensions. a Plate at a generic angular position θz and b plate at θz = 180º

Fig. 3  Combined cross section: a global force and moment summation, b local force and moment summation
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2.1  The load sharing

One of the alternatives to deal with a bi-material problem 
using mechanics of solids is to suppose that the problem 
can be reduced to two different material beams in paral-
lel configuration, as in Crandall et al. [6]. The plate is 
firmly attached to the bone external surface by screws, as 
can be seen in Fig. 1b. For analytical model purposes, it is 
important to stablish how plate and bone cross-sectional 
responses to the load input.

Figure 4 shows the Vx, Vy, N, Mx, My, and T components 
at combined cross section and the distance variables: m, n, 
s, and t.

Although the plate isn’t in entirely vertical position, it is 
supposed that the deviation is quite small, and for the ana-
lytical model purposes, its effects are neglected.

The load share expressions, for axial force N in Fig. 4, 
are estimated as

where a* and e* are, respectively, the area ratio and the 
modulus of elasticity ratio, in which expressions are avail-
able in Appendix Table 8. The load share expressions, for 
shear forces Vx and Vy in Fig. 4, are estimated as

(8)Np =

(

1

1+ (a∗e∗)−1

)

N Nb =

(

1

1+ a∗e∗

)

N

(9)

Vp
x =

�

1

1+
�

e∗s∗x
�−1

�

Vx Vb
x =

�

1

1+ e∗s∗x

�

Vx

Vp
y =







1

1+
�

e∗s∗y

�−1






Vy Vb

y =

�

1

1+ e∗s∗y

�

Vy

where, s∗x and s∗y are, respectively, area moment of inertia 
ratio (relative to x axis) and area moment of inertia ratio 
(relative to y axis) of combined cross section, in which 
expressions are available in Appendix Table 8. Note that 
expressions (10) represents the use of the parallel axis theo-
rem [6] to take into account the distances m and s of the 
bone centroid and the distances n and t of the plate cen-
troid, and both relatives to the combined cross-sectional 
centroid.

In the next section, stress distribution in two different 
plate cross sections is estimated.

2.2  Plate cross‑sectional stress distribution

In this item, the plate cross-sectional distribution is esti-
mated for a diaphysis plate cross section without hole, 
named for now on full, and for a diaphysis plate cross sec-
tion with a hole of diameter d, named for now on hollow, as 
shown in Fig. 11a, by the following expressions, from (11) 
to (21), with the aid of Appendix Tables 7 and 8.

The plate axial stress distribution σ p
zaxial can be estimated 

as, Crandall et al. [6]:

The Ap expression depends on the cross section being 
full or hollow, as shown in Appendix Table 7. The 2D 
stress concentration factor (SCF) of the hole, at extremities 
of lines 5a and 5b in Fig. 11, in y axis direction, is Kt_axial 
[37]:

Note that although Kt_axial correspond to two punctual 
values (diametrically opposed at each plate surface), it is 
supposed, as an upper bound approximation, that Kt_axial 
is maintained through all extension of lines 5a and 5b in 
Fig. 11.

The plate bending out of plane stress distribution 
σ
p
zbend (x) and the plate bending in plane stress distribution 

σ
p
zbend (y) can be estimated as, Crandall et al. [6]:

(10)

Ib∗x = Ibx + Abm2 Ip∗x = Ipx + Apn2

Ib∗y = Iby + Abs2 Ip∗y = Ipy + Apt2

(11)σ p
zaxial

= C1

Np

Ap
C1 =

∣

∣

∣

∣

1 full

Kt_axial hollow
.

(12)

Kt_axial = 3.00− 3.13

(

d

B

)

+ 3.66

(

d

B

)2

− 1.53

(

d

B

)3

.

(13)

σ p
zbend

(x) = −
x

(

1+
(

e∗s∗y

)−1
)My for−H

/

2+ t ≤ x ≤ H
/

2+ t

Fig. 4  Force and moments at combined cross section at local coordi-
nates and the distance variables: m, n, s, and t
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Note that the analytical model does not recognize the 
differences of stress distribution for plate transverse shear 
stresses and torsional stresses between full and hollow plate 
cross sections. It uses, for both cases, the cross-sectional 
stress distribution for full plate. As these shear stresses are 
an order of magnitude lower that the normal stresses, axial 
and bending, it is supposed that this model limitation do 
not disturb excessively the plate cross-sectional stress dis-
tribution. In addition, note that for the hollow cross section 
(with a screw hole), only the nominal axial stresses was 
multiplied by a stress concentration factor (SCF). For hol-
low plate cross-sectional geometry for bending, transverse 
shear, and torsional loadings, there is no SCF available in 
technical literature, as in [36, 37]. Nevertheless, see [38] 
for an interesting technical paper in this area. The sum of 
the stress distribution effects produced by each load at a 
diaphysis plate cross section can be estimated utilizing the 
von Mises criterion, as Crandall et al. [6]:

To implement the analytical model expressions, from 
(1) to (21), a mathematical software as Mathcad or MAT-
LAB must be used. In next section, the Numerical model is 
presented.

3  Numerical model

The numerical model was built up using the F.E. software 
ANSYS, to simulate the effects of muscles loads acting on 
the bone/plate set. In next item, a detailed description of 
geometry and mesh is given.

3.1  The geometry and meshing

Figure 5 shows the mesh used at many parts/regions of the 
numerical simulation. The bone head mesh was less refined 

(20)

σ
p
z (x, y) = σ

p
zaxial + σ

p
zbend (x, y) τ

p
zx(x, y) = τ

p
zxts (x)+ τ

p
zxt (x, y)

τ
p
zy(x, y) = τ

p
zyts (y)+ τ

p
zyt (x, y)

(21)

σvM (x, y) =

{

(

σ
p
z (x, y)

)

2

+ 3

[

(

τ
p
zx(x, y)

)

2

+

(

τ
p
zy(x, y)

)

2

]}
1

2

.

(14)

σ
p
zbend (y) =

y
(

1+
(

e∗s∗x
)−1

)Mx −B
/

2−n ≤ y ≤ B
/

2−n for full−B
/

2−n ≤ y ≤ −d
/

2−n and d
/

2−n ≤ y ≤ B
/

2−n for hollow.

Note that s∗x and s∗y expressions depend if the cross sec-
tions are full or hollow, as shown in Appendix Table 7. The 
plate transverse shears stresses τ pzxts(x) and τ pzyts(y) can be 
estimated as, Crandall et al. [6]:

Where Qp
x(y) and Qp

y(x) are the first moment of area rela-
tive, respectively, to x and y axes, and have different expres-
sions for full or hollow cross sections, as shown in Appen-
dix Table 7. Because the range of expressions (15) and (16) 
is relative to the combined cross-sectional centroid, they do 
not predict null stresses at external plate surfaces, as they 
should, which can be considered a limitation of this model. 
As stress values of expressions (15) and (16) present small 
values, the overall effect is not significative (principally 
near of external plate surfaces) and can be neglected.

The torsional load share between plate and bone is esti-
mated supposing a parallel configuration [28, 32]:

where G is the shear modulus, k is the torsional stiffness, 
and the subscript eq is the abbreviation of equivalent. The 
effect of two different structures in parallel with an applied 
torque is discussed with more detail in [32]. The torsional 
stresses can be estimated as, Timoshenko and Goodier [32] 
and Ecsedi [12]:

(15)

τ
p
zxts (x) =

V
p
x Q

p
y(x)

(

1+
(

e∗s∗y

)−1
)

B

for−H
/
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/

2+ t

(16)

τ
p
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V
p
y Q

p
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)
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/
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(17)
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1

3

GpBH3
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1− 0.63

H

B

)

kb = Gbπ

(

D4

o − D4

i

32

)

keq = kb + kp

(18)

τ pzxt (x, y) = −
8GpH

π2
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∞
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than the diaphysis bone region, based on Vignoli and Ken-
edi [35] results. The green line shown in Fig. 5a limits 
these different mesh regions. The head region has an aver-
age element size of 2.5 mm, and the body region has the 
average element size of 2.0 mm. For both femur regions, 
because the irregular geometry, elements with midside 
nodes were adopted, SOLID186 and SOLID187. For the 
plate mesh, it was chosen simpler elements as SOLID285 
and SOLID185, which not have midside nodes; therefore, 
the average element size decreases to 1 mm. A circular 
region was created concentric to each plate screw hole 
with 90 division along the circumference and 5 divisions in 
radial direction, as shown in Fig. 5b and c. The screw mesh 
used the elements SOLID285 and SOLID185 with 1.5 mm 
size, except at the external surface, where the bolt preten-
sion is applied, which was used the element PRETS179 
with 0.25 mm size. All the mesh dimensions, as well as the 
elements, were adopted after a convergence study to obtain 
a better convergence without an excessive computational 
cost. A total of 323,945 solid elements, 83,099 contact ele-
ments, and 424,471 nodes were used.

To simplify the contacts nomenclature, the following 
abbreviations were adopted: PS, BS, and PB for, respec-
tively, plate/screw, bone/screw, and plate/bone contacts. 
The simulations were carried out using a few hypotheses 
with respect to contacts between parts: the BS and PS con-
tacts do not allow separation neither slip on their surfaces, 
representing the screw thread. It was difficult to gener-
ate F.E. screw threads model, because it is quite irregu-
lar shape. In addition, it was hard to model the contact 
because penetration issues, and thus, a smooth surface was 
used. The MPC (Multi-Point Constraint) formulation was 
selected for the screw contacts, because it faster solution. 
As this formulation has some limitations, it only can be 
used for some specific contact definitions.

The PB contact is set as frictionless and the Pure Pen-
alty was used because of convergence issues. All the con-
tacts are defined as asymmetric. The following definition 
of contact/target bodies was used: for PS, the plate was 
the contact, because its finer mesh and the screw were 
the target; for BS, the bone was the contact and the screw 
was the target, because of its stiffer characteristic; and for 
PB, the plate was the contact and the bone was the target, 
because of its element sizes. For a more detailed descrip-
tion about contacts formulation applied in Ansys, see Lee 
[22].

The bolt preload is considered enough to fix the plate. 
The screw torque was set in 1 Nm, and the torque coeffi-
cient was set to 0.2. The simulation was executed in two 
load steps: on the first step, the bottom part of the bone was 
fixed and each bolt pretension was applied, at the second 
load step, the static forces acting on the femur head were 
applied. The numerical model was built up using the finite-
element software ANSYS to simulate the effect of the 
muscles loads acting on the bone/plate set. Four external 
static forces applied at femur’s head and proximal region 
(Fig. 1a). The distal part is considered fixed.

Figure 6 shows the femur in a sagital position with seven 
cross sections named from a to g. Note that six cross sec-
tions have screw hole and the medial one not.

Figure 6 shows many interesting aspects of bone cross 
sections. The most apparent is the huge cross-sectional 
variations, especially with respect to the outer diameter and 
thickness, whereas the internal diameter although alters its 
dimensions maintains a reasonable circular aspect. Another 
point that worth mentioning is that although the screw 
holes were done with the intention of maintaining them 
relatively centralized, in respect to each cross section, the 
overall results were rather decentralized. Note that only at 
central cross section d there is no screw hole.

Fig. 5  Mesh: a Bone; b plate, and c pate hole in detail
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Figure 7 shows three cross-sectional examples, one 
proximal, one medial, and one distal. As was already men-
tioned, there are huge dimensional variations between 
bone cross sections, principally at outer diameters and 
thicknesses. Therefore, it is very important to analytical 
model performance, to do the best possible regular pattern 
fit of a circle to the irregular pattern of the bone external 
diameters.

To meet the best possible circular fit to the outer diam-
eter, two circular blue lines were plotted at each analyzed 
cross sections (note that the inner diameters are pretty cir-
cular). One blue circle is tangent to the inner point of outer 
cross-sectional diameter and the other is tangent to outer 
point of the outer cross-sectional diameter. The average 
diameter of these two blue lines of external diameter was 
chosen, after a geometrical analysis, as the best possible 
circular fit to a quite irregular bone real pattern. Figure 8 

shows two real combined cross sections, with the centroids 
positions, used in the article example.

The medial cross-sectional bone/plate (full) set, shown 
in Fig. 8a, corresponds to Fig. 6. at position d. A cross in 
Fig. 8a displays the origin of the coordinates. The medial 

Fig. 6  Bone cross sections. 
Proximal: a, b, and c, Medial d, 
and Distal e, f, and g

Fig. 7  Examples of bone cross sections: a proxinal (c in Fig. 6), b medial (d in Fig. 6), and c distal (e in Fig. 6)

Fig. 8  Combined cross sections, with centroids positions for: a plate 
full (d in Fig. 6) and b plate hollow (e in Fig. 6)



653J Braz. Soc. Mech. Sci. Eng. (2017) 39:645–659 

1 3

cross-sectional bone/plate (hollow) set, shown in Fig. 8b, 
corresponds to Fig. 6 at position e. Note that although the 
inner diameters are pretty circular, the outer diameters are 
not, resulting in an overall non-constant thickness patterns. 
In addition, the plate cross-sectional centroids have a sig-
nificant shift in both x and y axes’ directions in respect to 
each bone cross-sectional centroid. In next item, the data 
used in the article example were given.

3.2  The example data

The next six tables show geometrical, material, and loading 
inputs necessary to do the article example for both analyti-
cal and F.E. models (Table 1).

Note that the outer bone diameter Do was chosen after 
a geometrical analysis of the best possible circular fit to a 
quite irregular bone real patterns, as shown in Fig. 7. The B 
and H plate dimensions were obtained from [2] (Tables 2, 
3, 4, 5, 6).    

The points of application of forces were adapted from 
a fourth load case of a human femur’s head of Taylor et al. 
[31].

The centroids of bone and plate cross sections were 
obtained from the SolidWorks design software, and the 

centroid of combined cross section was obtained through 
the application of (5) and (6) expressions.

In next section, the numerical model results are shown.

3.3  Numerical model results

In this section, the results of the numerical model are pro-
vided. The results of ANSYS program are shown in Fig. 9 
for cross-sectional longitudinal stresses and strains, for 
both full and hollow plate cross sections.

To estimate which parcel of each material resist-
ance is spent in this example, the resistance character-
istics of both materials were accessed. From [17] it was 
obtained the bone ultimate stress Sut_bone = 135 MPa and 
from [39] it was obtained the plate yielding resistance 
Sy_plate = 690 MPa. Analyzing Fig. 9a, the plate and bone 
maximum stresses are, respectively, around 8 % and up to 
8 % of their respective resistances, whereas for Fig. 9c, the 
plate and bone maximum stresses are, respectively, around 
9 % and up to 15 % of their respective resistances. In addi-
tion, it is interesting to check that the strain patterns have 
continuity through plate and bone cross sections. Figure 10 
shows plate von Mises equivalent stress in different views.

In Fig. 10, the von Mises stress color scale is quite dis-
cretized between 0 and 100 MPa, but present only the red 
color between 100 and 533 MPa. This approach was imple-
mented to show a detailed description over almost all plate 
surfaces and reserve the red color to represent only few 
punctual plate regions that hardly can be seen in the figures.

The plate central region and around the internal holes 
(diaphysis region) are the critical regions. Therefore, the 
plate central region, the stress distribution has higher val-
ues than other plate parts and it can be even more critical 
during healing process early stages. The von Mises stresses 
are higher between the internal screws and then decrease 
almost to zero at external screws (near to the plate ends). 
Around the holes, the main problem is the contact stresses, 
which were influenced by the torque applied on the bolts 
preload. Note that the contact stresses results should be 
viewed with caution because of its non-linear nature.

Table 1  Cross-sectional dimensions

Dimensions (mm) Bone (Fig. 7b) Bone (Fig. 7c) Plate

Di 15.4 15.4 –

Do 32.2 31.6 –

d – – 4.5

B – – 16.5

H – – 4.8

Table 2  Plate cross-sectional shifts

These dimensions are referred to local coordinates in Fig. 4

Dimensions (mm) Full (Fig. 8a) Hollow (Fig. 8b)

m 1.6 0.9

n −1.3 −1.3

s −10.9 −10.0

t 9.0 9.9

Table 3  Isotropic material properties [18]

Material properties Bone Plate

Modulus of elasticity (GPa) 20 190

Shear modulus (GPa) 8.1 73

Poisson ratio 0.235 0.3

Table 4  Loading forces and point of application of forces [18]

Bone

Joint reaction P1 (N) (−1062; −130; −2800)

Abductors P2 (N) (430; 0; 1160)

Iliopsoas P3 (N) (78; 560; 525)

Iliotibial tract P4 (N) (0; 0; −1200)

Point of application of joint reaction (mm) (37.4; −11.1; 218.0)

Point of application of abductors (mm) (−26.8; −14.9; 200.0)

Point of application of iliopsoas (mm) (5.5; −37.7; 143.7)

Point of application of iliotibial tract (mm) (−37.9; −12.6; 168.0)
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Although Fig. 10 presents a classical way of showing 
F.E. results, it can be rather difficult to access the stress 
value of a certain point. To enhance the results sharp-
ness, Fig. 11 shows another way of showing F.E. results: 

by the utilization of paths. Figure 11a shows a set of plate 
planes and paths. The planes were divided in five positions: 
−45, −20, 0, +20, and +45 mm. The plate cross section 
z = 0 mm is at same z axis position of bone cross section 
in Fig. 6 at position d. The −20 and +20 mm planes are at 
intermediate positions, between the z = 0 mm plane and 
the inner screw holes planes of −45 and +45 mm. Note 
that planes −20, 0, and +20 mm not have holes and the 
planes −45 and +45 mm have screw holes are, respec-
tively, at the same z axis position of bone cross section in 
Fig. 6 at positions e and c.

In Fig. 11a, for −20, 0, and +20 mm planes, there are 
paths 1, 2, 3, and 4, and for −45 and +45 mm planes 
and there are paths 1, 2a, 2b, 3, 4a, 4b, 5a, and 5b. 
These are named transversal paths. Fig. 11b presented 

Table 5  Equivalent forces/
moments at cross-sectional 
combined centroids

Plate full/bone (Fig. 8a) Plate hollow/bone (Fig. 8b)

Cross sections Forces (N) (609.2; −320.5; −2319) (609.2; −320.5; −2319)

Cross sections Moments (N m) (50.2; −4.7; 8.1) (47.1; 23.2; 8.1)

Table 6  Cross-sectional combined centroids

These dimensions are referred to global coordinates in Fig. 3a
a Is the origin of the coordinates

Dimensions  
(mm)

Bone Plate Combined

Full (Fig. 8a) (10.9; −1.6; 0) (−9.0; 1.3; 0) (0; 0; 0)a

Hollow (Fig. 8b) (10.0; −0.9; 
−45)

(−10.0; 1.3; 
−45)

(0; 0; −45)

Fig. 9  F.E. results—for full plate cross section: a longitudinal normal stress, b longitudinal normal strain, and for hollow plate cross section: c 
longitudinal normal stress and d longitudinal normal strain
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the longitudinal paths 6, 7, 8, and 9 at plate longitudinal 
edges.

As already commented, the utilization of the classi-
cal way of showing F.E. results can lead to difficulties 
of accessing a certain punctual stress value. Figures 12, 
13, and 14 show the F.E. results in a path way. Figure 12 
shows von Mises distribution at four horizontal planes 
(z = −45 mm, z = −20 mm, z = +20 mm, and 
z = +45 mm).

Note that at paths 5a and 5b, along the screw holes, 
there are stress amplifications only for the plate back region 
(closer to the bone external surface). Figure 13 shows von 
Mises distribution at paths 1, 2a, 2b, 3, 4a, and 4b.

Note in Fig. 13, paths 2 and 4 have a significative von 
Mises Stress variation, in function of bending moment 

influence around x local axis, as well as the stress con-
centration influence for the planes with screw holes (−45 
and +45 mm). Figure 14 shows the longitudinal normal 
stress variation along the longitudinal paths 6, 7, 8, and 9, 
the four edges of the plate with respect to the longitudinal 
coordinate z.

Figure 14 plotted with normal longitudinal stress instead 
of von Mises equivalent stress used in Figs. 12 and 13, 
to highlight the edges that are in tension or in compres-
sion states. Note that position of the hole screws is rep-
resented by dashed horizontal gray lines, where it is pos-
sible to see some sharp changes of stress amplitudes. The 
stresses are the highest at the inner hole screw position 
(position e in Fig. 6), whereas at the outer hole screws, the 
longitudinal stresses diminish almost to zero (positions 

Fig. 10  F.E. results of the von Mises equivalent stress for plate in different views: a front/proximal; b front/distal; c back/proximal; d back/
distal

Fig. 11  Paths at plate: a trans-
versal paths (for z = 0 mm and 
z = −45 mm are detailed) and b 
longitudinal paths
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a and g in Fig. 6). The cross-sectional result comparisons 
between analytical and F.E. models, for positions z = 0 and 
z = −45 mm (see Fig. 11a), are done at the next item.

4  Results comparison

In this section, the analytical and F.E. model results are 
presented and compared. The analytical and the F.E. model 
results for normal longitudinal stresses and for von Mises 
stresses are presented for two medial cross sections in 
Fig. 15 (position z = 0 mm in Fig. 11a) and Fig. 16 (posi-
tion z = −45 mm in Fig. 11a). To present the analytical 
results in a similar manner as F.E. postprocessing output, 
the results of analytical expressions from (1–21) were plot-
ted through the utilization of MATLAB program. As the 
stresses of the final expressions (20) and (21) are two vari-
able functions, the results could be presented by a Mathlab 
function using the surf tool, with a color bar to represent 
the scale. The color scales utilized by analytical and numer-
ical results are the same to allow a direct comparison. 

It is important to comment that in addition to the cross-
sectional geometric drawbacks of using a simple circular 
geometry to model the outer bone cross-sectional diameter, 

Fig. 12  von Mises stress along paths 5a and 5b

Fig. 13  von Mises stress along: a path 1; b paths 2, 2a, and 2b; c path 3; d paths 4, 4a, and 4b
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shown in Fig. 7b and c, there is also the fact that femur 
bone has a perceptible curvature in both sagital and coronal 
planes, so the straight plate installation at femur external 
surface leads to a little deviation from an absolute verti-
cal position. All these errors that summed up can affect the 
analytical model performance.

5  Conclusions

An analytical model of a bi-material set of a human femur 
and a plate was implemented using mechanics of sol-
ids theory. Every step for the analytical model construc-
tion was explicitly presented. The principal steps can be 
resumed as: from technical literature, it was obtained the 
forces, at femur head and proximal region, with values, 
angles, and points of application. In addition, the geomet-
ric description of a real human femur bone was obtained. 
It were estimated the bone, the plate, and the combined 
cross-sectional centroids at two medial planes bone region; 
it were establishment equivalent force and moment at 
combined cross-sectional centroid, a linear transformation 
for global to local coordinates was set; the calculation of 
sharing forces and moments between plate and bone cross 
sections was executed; and the normal stresses (axial and 
bending) and the shear stresses (transverse and torsion) 
were estimated. At plate diaphysis cross sections, the 
normal and shear stresses were summed up through von 
Mises failure criteria for ductile materials. Finally, the per-
formance of analytical model results was compared to F.E. 
model results.

Some geometrical details of a real human long bone, as 
a femur, limited the performance of the analytical model 
as: the bone cross-sectional outer diameter, that is quite 
non circular, results in an overall non-constant thickness 

Fig. 14  Normal longitudinal stress along 6, 7, 8, and 9 paths

Fig. 15  Cross-sectional stress distribution, at position z = 0 mm in Fig. 11a, for analytical and F.E. models: a normal longitudinal stresses and b 
von Mises stresses
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pattern; the femur bone has a perceptible curvature in both 
sagital and coronal planes that result in a deviation of plate 
vertical position after installation, including a significant 
shift in both x and y local axis directions (transversal direc-
tions) with respect to the combined cross-sectional cen-
troid. In addition, some researches use anisotropic constitu-
tive models to describe bone tissue [40].

Because these simplified assumptions, it is expected 
some inaccuracy of analytical model in comparison with 
the reference numerical model using the ANSYS, commer-
cial F.E. software. Nevertheless, the utilization of mechan-
ics of solids expressions, with the aid of mathematical 
software, such as Mathcad or MATLAB, could produce a 

convincing estimative of a diaphysis plate cross-sectional 
stress distributions.

Finally, the analytical model estimative of plate cross-
sectional stress distribution can be used not only in the 
design process but also to aid to the stress analysis part of 
the failure analysis of broken plates, provided that were 
taking into account the limiting utilization hypothesis and 
the relative inaccuracy of its results.

Appendix

See Tables 7, 8.

Fig. 16  Cross-sectional stress distribution, at position z = −45 mm in Fig. 11a, for analytical and F. E. models: a normal longitudinal stresses 
and b von Mises stresses
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Table 8  Aditional expressions

Denomination Expression

Area ratio a∗ = Ap
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Modulus of elasticity ratio e∗ = Ep

Eb

Area moment of inertia ratio (rela-
tive to axis x)
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p∗
x

Ib∗x

Area moment of inertia  
ratio (relative to axis y)

s∗y =
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Rotation transformation matrix 
around z axis Θz =
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