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1  Introduction

Fatigue analysis of ductile fracture has been the object of 
great importance, since most metals in engineering appli-
cation fail according to this mechanism. Fracture behavior 
of ductile materials is quite different from that of brittle 
materials. Ductile materials generally exhibit slow stable 
crack growth accompanied by considerable plastic defor-
mation [1]. The ductile fatigue fracture growth often leads 
to sudden and catastrophic failure of structures or compo-
nents. Therefore, fatigue analysis of ductile fracture growth 
is vital in ensuring the reliability of the structures under 
cyclic loading.

For the fracture mechanics problems, FEM requires that 
the mesh should be highly refined and rigorously aligned 
with the physical discontinuity. Moreover, special ele-
ments [2] around the crack tip should be created to han-
dle the singularity. Hence, the strenuous procedure of re-
meshing procedure is required as the crack propagates. 
Adaptive mesh-generation strategies have been proposed 
and conjugate with the FEM code. For example, Miranda 
et  al. [3] proposed a two-phase methodology for mixed-
mode crack growth under variable amplitude, using auto-
matic re-meshing procedure in FE code. Meggiolaro et al. 
[4, 5] developed an automatic re-meshing algorithm which 
works both for region without crack and that with one or 
multiple cracks. Over years, researchers have devoted to 
develop efficient numerical methods for the cracking mod-
eling, such as the boundary element method [6–8], mesh-
free method [9–11], numerical manifold method [12] and 
extended finite element method (XFEM) [13, 14]. Among 
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those methods, XFEM offers great advantages over others, 
since it enables the mesh to be independent of the evolving 
crack geometry; in addition, it avoids adaptive re-meshing 
and refinement work as the crack propagates. Fries [15] 
modified the standard XFEM approximation with a ramp 
function to overcome the shortcoming lying in blending 
elements, so optimal convergence rate and high accuracy 
can be achieved; the method is frequently referred to as 
corrected XFEM. Till now, the XFEM has been applied 
in various fracture problems including the cohesive crack 
propagation [16, 17], crack growth with frictional contact 
[18, 19], elastodynamic crack propagation [20], branched 
and intersecting crack growth [14], three dimension crack 
propagation [21] and even heat transfer problem [22].

So far, most of the developments in XFEM have focused 
mainly on linear elastic material behavior based on linear 
elastic fracture mechanics theory. The stress at the crack tip 
is theoretically infinite in the assumption of linear elastic 
fracture mechanics, where no real material can stand such 
stress. With regard to brittle material, the analysis within 
the elastic linear theory is still acceptable because the plas-
tic zone around the crack tip is relatively small. However, 
for the highly ductile material, the elastic linear theory is 
not admissible and the difference is significant. In the field 
of continuum mechanics, FEM has no limitation in solv-
ing nonlinear problems. For example, FEM was extended 
to nonlinear materials and large deformation problems by 
Zienkiewicz et al. [23]. The application of XFEM to elas-
tic–plastic fracture problem has been studied; however, 
there are still some limitations, such as the location of the 
initial crack locus or plastic behavior at the crack tip. For 
example, Jovicic et  al. [24] examined the possibility of 
applying standard XFEM algorithm without near tip enrich-
ing functions in the zone of plasticity. Elguedj et  al. [25] 
extracted elastic–plastic enrichment basis from the well-
known Hutchinson–Rice–Rosengren (HRR) fields to repre-
sent the singularities in elastic–plastic fracture mechanics. 
Seabra et  al. [26] combined XFEM with Lemaitre ductile 
damage model to simulate the whole process from crack 
initiation to crack propagation, but as for the formulation 
of XFEM only Heaviside enrichment function was incor-
porated and the accuracy of local stress field might be 
compromised. Shedbale et  al. [27] used nonlinear XFEM 
to simulate plate in the presence of a major pure mode I 
crack and other multiple discontinuities. XFEM was also 
extended by Singh et  al. [28] to simulate elastic–plas-
tic crack growth problem with large deformation. In their 
work, the developed technique was applied to pure mode 
I crack growth problems, and it was recommended that the 
work should be further extended to simulate stable crack 
growth for arbitrary cracks in ductile materials. Therefore, 
the fatigue analysis for arbitrary cracks in ductile materials 
is the main work in the current paper. In real fatigue life 

problems, the crack path is generally arbitrary and forms 
a mixed-mode problem. With enrichment functions modi-
fied, the corrected XFEM can offer the advantages of opti-
mal convergence rate and more accurate asymptotic crack 
tip stress field, which make the method more suitable for 
elastic–plastic fracture analysis. Hence, different from the 
previous nonlinear XFEM simulation, the corrected XFEM 
formulation was chosen to carry out elastic–plastic fracture 
analysis.

In the present work, corrected XFEM is extended to 
simulate mixed-mode crack growth in ductile materials. 
The Newton–Raphson technique is employed to solve the 
nonlinear equation. Mixed-mode stress intensity factors 
(SIFs) are calculated by interaction integral method, and 
crack growth rate is evaluated by modified Paris law. Two 
numerical examples are presented in this work. A compari-
son study with the experimental data and ANSYS simula-
tion is presented to verify this numerical method; then, the 
proposed methodology is applied to investigate the mixed-
mode crack growth problem under constant amplitude 
cyclic loading.

2 � Numerical formulation

2.1 � Framework of corrected XFEM

Based on the partition of unity method, standard finite 
element displacement approximation is locally enriched 
with enrichment functions to model the discontinuity and 
the singularity. As for 2D-corrected XFEM, displacement 
approximation takes the form:

As marked in Fig. 1, N is the set of all nodes in the mesh; 
M is the set of nodes belonging to those split elements 

(1)

uh(x) =
∑

j∈N
Nj(x)uj +

∑

k∈M
Nk(x)[H(x)− H(xk)]ak

+
∑

l∈I∪J
Nl(x)µ(x)

4
∑

α=1

(βα(x)− βα(xl))b
α
l .

Fig. 1   Nodal subsets and element types
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which intersect the crack; I is the set of nodes belonging 
to the tip element which contains the crack tip. If a node 
belongs both to the split element and tip element, then the 
node belongs to the I set. Those elements, in which parts 
of nodes belong to subset I, are blending elements. J is the 
set of those nodes belonging to blending elements, but does 
not belong to the tip element.

In Eq. (1), uj is the classical finite element displacement; 
Nj(x), Nk(x) and Nl(x) are standard FE shape functions. 
Technically, Nk(x) and Nl(x) do not have to be the same as 
Nj(x). H(x) is the Heaviside function used to model the dis-
continuity in displacement, which takes +1 on one side of 
the crack surface and −1 on the other side. ak is the nodal 
unknowns added to the M set of nodes. βα(x) (α = 1–4) are 
four asymptotic crack tip branch functions, used to incor-
porate the crack tip displacement field into tip elements. bαl  
(α = 1–4) are the nodal unknowns added to the I and J set 
of nodes. Considering the local polar coordinates r and θ 
centered at the crack tip, these four branch functions can be 
written as:

where, for linear XFEM, the value of exponent l = 0.5, and 
for nonlinear XFEM, the value of exponent l = 1/(1+ n̄), 
with n̄ being the hardening exponent, which depends on the 
material.

μ(x) is a ramp function which is defined as

As shown in Fig.  2, within the tip element, μ(x) =  1, 
while, in the blending elements, μ(x) varies continuously 
and reaches zero at the J set of nodes. After the modifica-
tion, the value of the enrichment functions is the same as 

(2)

[βα(x),α = 1− 4] =
[

r
l cos

θ

2
, rl sin

θ

2
, rl cos

θ

2
sin θ ,

r
l sin

θ

2
sin θ

]

,

(3)µ(x) =
∑

l∈I
Nl(x).

those in standard XFEM within the tip element and is zero 
in elements with some of their nodes in the J set.

2.2 � Mathematical theory of plasticity

The von Mises yield criterion along with isotropic strain 
hardening is used to determine the stress level at which 
plastic deformation begins. After the initial yielding, the 
strain can be assumed to be divisible into elastic and plas-
tic components, and the complete relation between stress 
increment and strain increment can be written as:

where, {dεe} is the elastic strain increment. According to 
generalized Hooke’s law, {dεe} =  [D]−1{dσ}, [D] is the 
elastic constitutive matrix; {dεp} is the plastic strain incre-
ment, which according to flow rule is proportional to the 
stress gradient of the plastic potential function Q:

In Eq.  (5), λ is a proportional constant termed the plastic 
multiplier. Equation (5) is known as flow rule, which gov-
erns the plastic constitutive relation after yielding. The 
complete constitutive relation can be rewritten as

The von Mises yield function can be written as

where κ is the plastic work during plastic deformation for 
the hardening material.

According to the total derivative method, the following 
equation can be obtained:

After mathematical manipulations, the plastic multiplier is 
calculated as

According to plastic flow rule of Drucker’s postulate, the 
yield function and potential function are identical, Q ≡ F, 
and this form of plastic constitutive relation is called asso-
ciated flow rule. Hence, the complete relation of stress and 
strain increments can be rewritten as:

(4){dε} = {dεe} + {dεp},

(5){dεp} = �

{

∂Q
∂σ

}

.

(6){dε} = [D]−1{dσ } + �

{

∂Q
∂σ

}

.

(7)F({σ }, κ) = 0,

(8)
{

∂F
∂σ

}T {dσ } + A� = 0.

(9)� =
{

∂F
∂σ

}T [D]{dε}
{

∂F
∂σ

}T [D]
{

∂Q
∂σ

}

− A
,

(10)A = ∂F
∂κ

{σ }T
{

∂Q
∂σ

}

.

(11){dσ } = [D]ep{dε} = ([D] − [D]p){dε},

Fig. 2   The value of ramp function μ(x) over a meshed domain
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where A = −H′, and H′ is the hardening function which 
defines the strain hardening of the material. As mentioned 
above, in Drucker’s postulate, the yield function and poten-
tial function are identical; in this case, the elastic–plastic 
constitutive matrix [D]ep is symmetric.

2.3 � Computation of stress intensity factors

Three main SIF calculation methods including displace-
ment correlation technique, the potential energy release 
rate method and the equivalent domain integral (EDI) were 
compared by Miranda et  al. [29]. It was concluded that 
the EDI results in the best SIF prediction. In this paper, a 
similar and more sophisticated method is employed, in 
which the J-integral is obtained by calculation of a domain-
based interaction integral [30]. In this method, deliberately 
selected auxiliary fields which satisfy both equilibrium 
equation and boundary conditions are superimposed onto 
the actual fields. The interaction integral for auxiliary state 
and actual state is given as

where A* is the integral domain which contains the crack 
tip; qs is a smoothing function; W(1,2) is the interaction 
strain energy density. The superscripts denote auxiliary and 
actual stress equilibrium states. The superscripts 1 and 2 
represent actual and auxiliary state, respectively.

Then, by intentionally selecting the auxiliary state as 

K
(2)
I = 1, K(2)

∐ = 0, and then K(2)
I = 0, K(2)

∐ = 1, the mixed 

SIFs can be obtained through the following equation:

2.4 � Fatigue crack growth model

In the present work, a modified version of Paris law intro-
duced by Huang et  al. [31] is used to predict the crack 
growth rate, with consideration of the stress ratio effect. 
The modified Paris model takes the form of

where a is the crack length, N is the number of load-
ing cycles, and C and m are Paris constants that depend 
on material properties. ΔKeq is the equivalent SIF range 

(12)
[D]p =

[D]
{

∂Q
∂σ

}

{

∂F
∂σ

}T [D]
{

∂F
∂σ

}T [D]
{

∂Q
∂σ

}

− A
,

(13)

M(1,2) =
∫

A∗

[

σ
(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1
−W (1,2)δ1j

]

∂qs

∂xj
dA,

(14)M(1,2) =
2

E′

(

K
(1)
I K

(2)
I + K

(1)
∐ K

(2)
∐

)

.

(15)
da

dN
= C(MR∆Keq)

m,

obtained by equivalent SIF Kmax
eq  and Kmin

eq  which corre-
spond to the maximum and minimum applied load in a sin-
gle cycle. MR is the stress ratio correction factor, given as

where γ is a constant obtained from experimental data.
The direction of crack propagation is accepted to be a 

function of the mixed-mode stress intensity factors present 
at a crack tip. To determine the crack propagation direc-
tion, maximum principal stress criteria [32] is used, which 
assumes that the crack propagates in the direction perpen-
dicular to the maximum principal stress. The direction of 
crack growth θc is obtained by making local shear stress 
zero, which is written as

The equivalent SIF is given as

3 � Discretization and integration

3.1 � Discretization

The discrete system of equilibrium equation takes the same 
form as that of classical FEM. However, the additional 
DOFs and enrichment functions result in an expansion in 
global stiffness matrix and force vector. For each element e, 
the stiffness matrix Ke, force vector fh and nodal unknown 
uh are defined as:

The sub-matrices in the Eqs. (19–21) are given as:

(16)MR =

{

1− R)γ 0 ≤ R < 0.5

(1.05− 1.4R+ 0.6R2)γ 0.5 ≤ R < 1
,

(17)θc = 2 arctan

[

1

4

KI

KII
− sign(KII)

1

4

√

K2
I

K2
II

+ 8

]

.

(18)Keq =
1

2
cos

(

θc

2

)

[KI(1+ cos θc)− 3KII sin θc].

(19)Ke
ij =







Kuu
ij Kua

ij Kub
ij

Kau
ij Kaa

ij Kab
ij

Kbu
ij Kba

ij Kbb
ij






,

(20)f h =
{

f ui f ai f b1i f b2i f b3i f b4i

}T
,

(21)uh =
{

u a b1 b2 b3 b4
}T

.

(22)K rs
ij =

∫

Ωe
(Br

i )
TDeq(B

s
j )hdΩ , (r, s = u, a, b),

(23)f ui =
∫

Ωe
NibdΩ +

∫

Γ t

Nit̄dΓ ,
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where b and t̄ are body force and surface force, respec-
tively. Bu

i ,B
a
i ,B

b
i  are shape function derivatives, defined as:

(24)

f
a
i
=

∫

Ωe
Ni(H(x)− H(xi))bdΩ +

∫

Γ t

Ni(H(x)− H(xi))t̄dΓ ,

(25)

f
bα
i

=
∫

Ωe
Ni(βα(x)− βα(xi))bdΩ +

∫

Γ t

Ni(βα(x)− βα(xi))t̄dΓ ,

(26)B
u

i
=





Ni,x 0

0 Ni,y

Ni,y Ni,x





3×8

,

(27)

B
a
i
=







[Ni(H(x)− H(xi))],x 0

0 [Ni(H(x)− H(xi))],y
[Ni(H(x)− H(xi))],y [Ni(H(x)− H(xi))],x






,

where R is the ramp function, as defined in Eq. (3).
We present in Fig. 3 the XFEM simulation of involving 

a crack.

3.2 � Numerical integration

As the integrands in split elements and tip elements are 
non-smooth, standard Gauss quadrature scheme cannot 
be used for numerical integration. In case of elastic mate-
rial, the numerical integration of cut elements is generally 
performed by partitioning them into standard sub-triangles 
[33].

In case of an elastic–plastic media, the values of stress 
and strain field are computed at Gauss points. Therefore, 
we chose to partition the tip element into 12 quadrilaterals, 
to better capture and display the singularity of the stress 
field asymptotic crack tip, which is an improvement in the 
present work. The division of enriched elements and Gauss 
points distribution is shown in Fig.  4. Within the tip ele-
ment, the size of the inner four sub-quadrilaterals can be 
relatively small, which leads to a concentration of Gauss 
points at crack tip to model the singularity of the stress 
field.

4 � Numerical simulation

Two examples of fatigue crack growth under constant ampli-
tude cyclic loading are presented below. The first example is 
pure mode I problem, in which comparison is made with a 
reference FE simulation and experimental data to verify the 
capacity of the established method. The second is aimed at 
studying the mixed-mode crack growth. Both examples are 
treated as plane stress conditions. The specimens are made 

(28)Bb
i =

[

Bb1
i Bb2

i Bb3
i Bb4

i

]

,

(29)

Bbα
i =







[Ni(βα(x)− βα(xi))R],x 0

0 [Ni(βα(x)− βα(xi))R],y
[Ni(βα(x)− H(xi))R],y [Ni(βα(x)− βα(xi))R],x







3×8

,

(α = 1, 2, 3, 4),

Generate the 
mesh

Update or create 
levelset φ and ψ

Assemble stiffness 
matrix

Create force vector and 
boundary conditions

Solve equation and 
compute SIFs

KIeq > KC

End

Determine crack growth 
direction and da/dN

No

Yes

Update the crack 
geometry

Fig. 3   Flowchart of XFEM simulation

Fig. 4   Division of enriched 
elements and Gauss points 
distribution. a Element split into 
quadrilaterals. b Element split 
into triangles. c Tip element
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of 2024-T4 aluminum alloy, and material properties are sum-
marized in Table 1, shown in [34]. In Table 1, the units of 
C and m are corresponding to the unit of da/dN being  mm/
cycle, and ΔK being MPa×

√
m [35]. Ramberg–Osgood 

model covers strain hardening behavior and shows that 
smooth elastic–plastic transition is used and given as:

 The specimens are subjected to constant cyclic loading. 
In each cycle, the amount of crack growth may be in the 

(30)ε =
σ

E
+ α

σ

E

(

σ

σy

)n̄−1

.

order of nanometers. In practice, simulation is conducted 
at discrete points. At each evaluation point, cyclic load-
ing is applied on the specimen, and SIF is evaluated on 
the bases of XFEM results. Then, the crack propagates at 
a small magnitude ∆a, which represents thousands of load-
ing cycles, until its final failure when KIeq reaches KIC. The 
usual incremental plasticity theory is used to predict the 
stress and strain history.

4.1 � Crack growth in round compact tension specimen

The experiment of crack growth in round compact ten-
sion specimen (RCT) under constant amplitude cyclic 
loading is selected from the literature [35]. The geometry 
and boundary condition is shown in Fig. 5. The thickness 
of the specimen is 3.7 mm, and the initial crack length is 
a0 = 5 mm . The domain is discretized using 4 node quad-
rilateral elements, totally 1407 elements and 1515 nodes 
are generated. Two loading cases are simulated here, i.e., 
maximum applied load Pmax = 3 kN, stress ratio R = 0.3 
and Pmax = 2 kN, R = 0.1, respectively.

As a reference numerical simulation, FEM analysis by 
commercial software ANSYS is conducted, and quarter 
point singular elements are generated circumferentially 
around the crack tip. According to the symmetry, only the 
upper half of the specimen is taken out for simulation, 
with the mesh highly refined at the crack tip. Whenever the 

Table 1   Material properties of the 2024-T4 aluminum alloy

Elastic modulus 73.1 GPa

Poisson’s ratio 0.33

Tensile yield strength Sy = 324 MPa

Paris exponent m = 3.738

Paris constant C = 1.049× 10−8

Strain hardening constant α = 0.314

Strain hardening exponent n̄ = 11.74

Fig. 5   Geometry and boundary conditions of RCT specimen (unit: 
mm)

Fig. 6   Meshing of the RCT 
specimen. a XFEM; b FEM

Fig. 7   Variation of plastic zone at the crack tip; a under minimum 
load; b under maximum load
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crack propagates, the mesh is renewed. The meshes used 
in XFEM and FEM are shown in Fig.  6. The fixed crack 
growth increment is chosen as ∆a = 6 mm.

The stress state at the integration points was checked 
against a material strength criterion. The plastic zone is dis-
played by all those integration points entering the yielding 
and hardening stage. The variation of plastic zone at the crack 
tip corresponding to maximum and minimum loading is pro-
vided in Fig. 7. By the choice of the Gauss points proposed 
by the current work, the plastic zone size can be better dis-
played. The stress contour plots obtained by the elastic–plas-
tic XFEM and ANSYS at a = 7.5 mm, are shown in Fig. 8. 
The stress contour plots show that the results obtained by the 

present method are in good agreement with those by ANSYS. 
Because of the discontinuity, those elements which intersect 
the crack should be traction free. As expected, a tensile stress 
zero area is shown in the front of the crack tip, and the maxi-
mum stress occurs at the crack tip except the loading holes. A 
compressive stress zone is shown at the right end of the speci-
men due to the nature of RCT specimen loading.

At each stage of crack propagation, the crack growth rate 
is predicted using modified Paris law. Figure 9 provides the 
comparison of numerical results and experimental data. It 
shows that the results obtained by FEM and elastic–plastic 
XFEM are both in good agreement with the experimental 
data, while linear XFEM produces a reduced crack growth 

Fig. 8   Stress contour plots for 
the RCT specimen; a σxx by 
XFEM; b σyy by XFEM; c σxx 
by ANSYS; d σyy by ANSYS 
(unit: MPa)

Fig. 9   Relationship between 
crack growth rate and crack 
length; a Pmax = 3 kN, R = 0.3; 
b Pmax = 2 kN, R = 0.1
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rate. The higher the applied load, the more significantly the 
result of linear XFEM deviates from the experimental data. 
Hence, the effect of plasticity is not negligible, when the 
applied load is high enough. Although simulation by tradi-
tional ANSYS software is more time consuming due to the 
refinement, the material plasticity and isotropic hardening 
can be taken into account with ease, and more sophisticated 
plasticity models are available.

4.2 � Overhanging beam specimen

An overhanging beam depicted in Fig.  10 is taken for 
mixed-mode analysis. The thickness of the specimen is 
10  mm, and the initial crack length is a0 = 10 mm. The 
beam is subjected to concentrated load  Pmax = 30 kN, the 
stress ratio is set as R = 0.3, and the crack growth incre-
ment is chosen to be ∆a = 3 mm.

The deformed shape of the overhanging beam in the 
final stage is depicted in Fig.  11. The crack path at dif-
ferent stages of crack growth is shown in Fig.  12. The 
whole process of the crack propagation is visualized in the 
XFEM, which is one of the advantages that XFEM offers. 

Generally in numerical simulation, the crack path vacillates 
at first and then gradually become smooth. As expected, the 
crack path develops roughly at the orientation of principal 
stress.

The stress contour plot of the beam is shown in Fig. 13. 
The elements near the loading points are made much stiffer 
to avoid local excessive stress and deformation. For over-
hanging beam, the stress component σxx plays a dominant 
role. The maximum tensile stress occurs in front of the 
crack tip, and tensile stress at the surfaces of the crack is 
close to zero. The shear stress σxy at both sides of the crack 
tip is negative, which is different from the pure mode I case.

The phase angle φ = arctan(KI/KII) that defines the 
ratio of the stress intensity factor is provided in Fig.  14. 
This parameter is insensitive to the load value. As the fig-
ure shows, the phase angle decreases from 19° and remains 
stable around 0° finally. As a reference simulation, a dif-
ferent yield strength Sy = 240 MPa is used, while all other 
material properties remain the same. The crack growth rate 
against crack length is shown in Fig. 15. In case of nonlin-
ear analysis, a lower yield strength leads to a larger plastic 
zone area and reduced fatigue life. As compared to linear 
analysis, a reduction of 3.13 and 7.53 % in fatigue life is 
observed corresponding to the yield strength of 324 and 
240 MPa, respectively. It indicates that to ensure the reli-
ability of components or structures of low strength metal, 
nonlinear analysis should be carried out.

5 � Conclusions

In the present work, the corrected XFEM has been success-
fully extended to simulate arbitrary crack growth in ductile 
materials. The elastic–plastic behavior is modeled by von 

Fig. 10   Geometry, loading, boundary conditions and meshing (unit: 
mm)

Fig. 11   Deformed geometry 
of overhanging beam specimen 
(scaled by 50)

Fig. 12   Crack paths at different 
stages
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Mises yield criterion and isotropic hardening; incremental 
plasticity theory along with Newton–Raphson technique 
is applied to solve the nonlinear problem. A domain-based 
interaction integral is used to evaluate the SIF values from 
the XFEM solution, and the crack growth rate is evaluated 
using modified Paris law at each stage of crack growth. The 
main contribution of this paper is extending the corrected 

XFEM for arbitrary cracks in ductile materials. On the 
basis of simulations, it can be concluded that XFEM can 
model mixed-mode crack growth in ductile materials with 
ease, as it enables the mesh to be completely independent 
of evolving crack geometry.

Fig. 13   Stress contour plots for 
overhanging beam specimen; a 
σxx; b σxy; c σyy (unit: MPa)
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Fig. 14   Phase angle variation as crack propagates
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The crack growth rate obtained by the nonlinear analy-
sis shows a good agreement with the experimental data and 
traditional ANSYS analysis for the RCT specimen. When 
the maximum load value increases, the difference between 
the results of linear and nonlinear analysis is more signifi-
cant. The fatigue life analysis of overhanging beam shows 
that mixed-mode crack growth problem can be effectively 
modeled by nonlinear XFEM. The commercial FEM has 
the advantage of including various plasticity models. The 
elastic–plastic XFEM can produce acceptable results with 
minimal computational costs. It can be seen that, in the 
case of lower yield strength ductile material, the difference 
in fatigue life predicted by linear and nonlinear analysis is 
more significant as compared to higher yield strength duc-
tile materials. The present method is applicable to large-
scale yielding under constant amplitude loading. It can also 
be extended to situations of variable amplitude loading, if 
retardation effects are taken into account.
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