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Abstract The present article is focused on the study of the

swaying motion of a payload during non-uniform guided

slewing of a crane boom with an emphasis on the Coriolis

effects. A new mathematical model of the motion of the

mechanical system ‘‘guided crane boom–payload’’ has been

derived with an introduction of Blajer’s projection method.

The governing dynamic system has been shown in the form

of an implicit system of differential-algebraic equations. A

time-optimal control problem has been formulated for the

guided system with an open-loop control and with explicit

limitations on payload swaying and on the control input.

The numerical solution of the posed optimization problem

has been found with an introduction of Optimica and

JModelica.org freeware. Verification of numerically

derived results has been realized through the comparison of

computational and experimental absolute trajectories of a

swaying payload. A satisfactory agreement between theo-

retical and experimental results was found. A dynamic

analogy between the governing system of equations and

Foucault pendulum-like systems was found and outlined.

The proposed open code algorithms, derived numerical data

and computational plots enhance and expand our knowl-

edge about the dynamics of guided boom-driven payload

swaying during rotary crane boom slewing.

Keywords Payload swaying � Crane boom slewing �
Open-loop optimal control problem � JModelica.org �
Optimica � Freeware

List of symbols

DAE Differential algebraic equation

point Ast Point of static equilibrium of payload

M at the cable BM

point M Point of position of payload M in the

current moment of time

point D Initial point of crane boom BD and

center of circle for trajectory of

transport and absolute motion for the

point B

point B Terminal point of crane boom BD

m Mass of payload M (kg)

g Scalar value of gravitational

acceleration (m/s2)

u(t) Control input voltage at the windings

of the rotary AC-servo motor (V)

umax Maximum value of control input

voltage (V)

t Current swaying time for payload

M (s)

T Period of slewing for crane boom BD

(s)

tf The final time of rotation of crane

boom BD with attached to

p. B payload M at final angular

displacement ue (s)
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Tu Time constant of rotary AC-servo

motor, where the numerical value of

time constant Tu = 0.015 (s) is

provided in Table 2, page 1181 of

Ref. [10] by Terashima et al. (2007)

(s)

Ku Gain of rotary AC-servo motor,

where the numerical value of gain

Ku = 0.315 [1/(sV)] is provided in

Table 2, page 1181 of Ref. [10] by

Terashima et al. (2007) [1/(sV)]

J Minimized functional for final time

of crane boom rotation (s)

J = tf Notation for time-optimal control

problem (s)

(x1(t), …, x8(t)) The phase variables of dynamic

system, where dimensions of the

phase variables are determined by

formulae (14)–(21) and are as

follows: (x1(t), x3(t) and x5(t)) are in

(m); x7(t) is in (rad); (x2(t), x4(t) and

x6(t)) are in (m/s); x8(t) is in (rad/s)

e The maximum value of payload

swaying during crane boom BD

slewing at the certain final angular

displacement (ue)f, which is

determined by the restrictive

inequality

(x1(t))2 ? (x3(t))2 ? (x5(t))2 B e on

the phase variables (x1(t), x3(t), x5(t))

(m2)

E Motionless fixed on earth inertial

reference frame O2x
�
2y

�
2z

�
2

O2xabsyabszabsð Þ with origin in p. O2

and the orthogonal unit vectors ê1; ê2;

ê3 , where x�2 ¼ xabs; y
�
2 ¼ yabs z

�
2 ¼

zabs are the absolute coordinates of

payload M with respect to Earth (m)

B Non-inertial reference frame

(O1x1y1z1), which is connected with

rotating crane boom BD with origin

in p. O1 (p. Ast) and the orthogonal

unit vectors ẽ1; ẽ2; ẽ3, where x1; y1; z1

are the relative coordinates of

payload M with respect to crane

boom BD (m)

R = BD Boom length in the horizontal plane

(ê1, ê2) (m)

l = lBM = ||rB/M|| Length of the cable BM, i.e., the

magnitude of the position vector

rB/M (m)

rcomp The magnitude of the radius-vector,

connecting point O2 and theoretical

(J = tf)-based computational

absolute trajectory of payload M in

Figs. 6 and 7

rexper = remp The magnitude of the radius-vector,

connecting point O2 and

experimentally (or empirically)

derived absolute trajectory of payload

M in Figs. 6 and 7

rcircle The radius of standard circular

trajectory of p. B (p. Ast) in Figs. 6

and 7

ue ¼ \ ê1; ~e2ð Þ Angle of rotation of non-inertial

reference frame B around axis

O2z
�
2 O2zabsð Þ of inertial reference

frame E, i.e., the angle of transport

rotation for crane boom BD around

the vertical axis O2z
�
2 O2zabsð Þ, i.e.,

crane boom slewing angle (rad)

a1 = \(ẽ3, rB/M) Swaying angle between the vertical

axis O1z1 and the position vector rB/

M, i.e., the first spherical coordinate

of spherical pendulum M (rad)

a2 Swaying angle between the planes

(x1z1) and (BMO1), i.e., the second

spherical coordinate of spherical

pendulum M (rad)

(a1, a2, ue) The angular coordinates of spherical

pendulum M with rotating pivot

center in p. B connect to crane boom

tip (rad)

xB=E Angular velocity vector of reference

frame B with respect to frame E, i.e.,

the vector of slewing velocity of

crane boom BD (rad/s)

xB=E = xe =

due/dt

Scalar of transport angular velocity of

reference frame B with respect to

frame E, i.e., the value of slewing

velocity of crane boom BD (rad/s)

xmax Maximum value of angular velocity

of reference frame B with respect to

frame E, i.e., the maximum value of

slewing velocity of crane boom BD

(rad/s)

xB=E = xe =

(due/dt)ê3

Transport slewing angular velocity

vector of reference frame B with

respect to frame E, i.e., the vector of

slewing velocity of crane boom BD

(rad/s)
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eB=E ¼ aB=E Angular acceleration vector of

reference frame B with respect to

frame E, i.e., the vector of slewing

acceleration of crane boom BD

(rad/s2)

aB=E = ee =

d2ue/dt
2

Scalar of transport angular

acceleration of reference frame B

with respect to frame E, i.e., the value

of slewing acceleration of crane

boom BD (rad/s2)

eB=E = ee =

(d2ue/dt
2)e3

Transport angular acceleration vector

of reference frame B with respect to

frame E, i.e., the vector of slewing

acceleration of crane boom BD

(rad/s2)

VM=E = Vabs Velocity of point M in inertial fixed

on earth reference frame E, i.e.,

absolute velocity of payload M (m/s)

VM=B = Vr Velocity of point M in non-inertial

reference frame B, i.e., relative

velocity of payload M (m/s)

Ve ¼ VO2=E

þxB=E � rO2=M

Transport velocity of point M in

inertial reference frame E, i.e., the

linear velocity of the ‘‘frozen’’ point

M, which being ‘‘frozen’’ to crane

boom BD ‘‘lost its relative velocity’’

and moves together with slewing

non-inertial reference frame B with

respect to inertial reference frame E

(m/s)

Vx1
; Vy1

; Vz1
X1-, y1-, z1- projections of payload M

velocity in non-inertial reference

frame B (m/s)

aM=E = aabs Acceleration of point M in inertial

fixed on earth reference frame E, i.e.,

absolute acceleration of payload

M (m/s2)

aM=B = ar Acceleration of point M in non-

inertial reference frame B, i.e.,

relative acceleration of payload

M (m/s2)

as
e ¼ aB=E � ro2=M Tangential acceleration of

transportation for payload M (m/s2)

an
e ¼ xB=E�
xB=E � ro2=M

� �
Normal or centripetal acceleration of

transportation for payload M (m/s2)

acor ¼ 2xB=E

�VM=B

Coriolis (compound) acceleration of

payload M (m/s2)

mg Gravitational force (N)

N Reaction force of the cable BM (N)

Ue
s = (–m)ae

s Tangential inertial force (tangential

force of moving space) for payload

M (N)

Ue
n = (–m)ae

n Normal or centrifugal inertial force

(normal force of moving space) for

payload M [N]

Ucor = (–m)acor Coriolis inertial force (compound

centrifugal force) for payload M (N)

d Relative dimensionless amplitude

discrepancy between computational

and experimental absolute trajectories

of point M in the inertial reference

frame E

dmax The maximum value of d
JModelica

(JModelica.org)

Computational freeware code for

time-optimal control problem

solution, available at http://www.

jmodelica.org/

Optimica The integrated part of JModelica

(JModelica.org) freeware

1 Introduction

1.1 The state of the art and review

The dynamic problem of guided payload swaying during

controlled slewing of a crane boom is the main priority

inverse problem of crane dynamics for allowable motion

and accurate positioning of loaded boom cranes [1–10].

This problem is closely associated with the primary prob-

lem of inverse dynamics of a pendulum with a rotating

pivot center, where a law of guided rotational motion of the

pendulum pivot center is unknown a priori and depends on

the control input variable u(t). A review of relevant pub-

lished works has identified a number of research efforts,

which have been focused on various aspects of allowable

payload swaying during guided crane boom slewing

[1–10].

The direct solution approach is used by Benson et al. for

the reduction of the optimal control problem to a nonlinear

programming problem through the introduction of the

Gauss pseudospectral method [1]. Use of this method

results in the possibility to achieve rapid convergence with

a small increase in sampling points required for quantiza-

tion and enables easy accounting of limitations on the

control and phase variables [1].

Blajer et al. have addressed the problem of payload

motion control as it applies to payload path definition [2].

The control problem in Blajer’s approach is posed in the

following way. The control variables which ensure the

transportation of a payload along the prescribed trajectory

are determined without minimization of payload motion

time and without taking into account the Coriolis effects.

Blajer et al. get the different control parameters in
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dependence of prescribed trajectory [2]. The principal

fundamental difference between our problem and Blajer’s

is that we don’t know the trajectory of payload motion and

we have to minimize the time of payload transportation

from the initial to final position. Moreover, the Blajer’s

solution does not ensure minimization of payload trans-

portation time during payload transportation from the ini-

tial to final position [2].

Condurache et al. have proposed an exact vector solu-

tion of the driven Foucault pendulum problem and derived

a new conservation law for Foucault pendulum-like

motions through an introduction of differential and vector

computations [3]. This study made a complex compre-

hensive investigation of Foucault pendulum motion in a

central force field with respect to a non-inertial reference

frame fixed on earth [3].

JModelica.org is an open source freeware platform for

optimization, simulation and analysis of complex dynamic

systems [4]. JModelica.org is based on the Modelica sim-

ulation language [4]. The key feature of JModelica.org is

Optimica extension [4]. Optimica provides the user the

capability for the easy formulation of optimization prob-

lems by grounding the problems for optimization on

Modelica’s model for natural determination of the opti-

mization interval, the goal function and constraints [4]. A

very essential benefit from the Optimica extension is

Optimica’s possibility for working with differential equa-

tions, which describe the behavior of dynamic systems and

are written in the unresolved form for the first derivative

[4]. This useful possibility broadens the class of problems

which could be solved with the JModelica.org platform [4].

Palis and Palis have studied open-loop and closed-loop

control strategies for crane boom slewing motion [5]. Both

linear and nonlinear models for slewing cranes and sway-

ing payload motions with open-loop control were studied

[5]. Coriolis and centrifugal effects have been taken into

account in this study for a nonlinear model of a crane

boom–payload system with open-loop control [5]. A time-

optimal control problem was posed and solved by the

authors with a linear model of the crane boom–payload

system with open-loop control [5]. They then found the

absolute trajectory of the payload motion for a nonlinear

model through the use of a linear model-derived solution of

a time-optimal control problem for an open-loop system

[5]. So a linear model-derived optimal control solution was

applied to the nonlinear case for an open-loop system and

an essential discrepancy was found between the linear and

nonlinear models in the final point of payload displacement

[5]. As result, taking into account these discrepancies

between linear and nonlinear models, the authors proposed

a damping strategy for the system with closed-loop control,

which made it possible to reduce payload oscillations after

the crane boom stops [5]. However, they did not solve the

time-optimal control problem for the nonlinear model of a

crane boom–payload system taking Coriolis and centrifu-

gal effects for open-loop control into account. So the work

[5] by Palis and Palis did not allow minimization of pay-

load swaying during crane boom slewing.

Perig et al. derived and confirmed the relative and

absolute trajectories for payload swaying, taking into

account the effect of Coriolis inertia forces [6, 7]. How-

ever, Perig’s approach was mainly focused on the cases of

uniform crane boom slewing and did not properly address

the crane boom control problem [6, 7].

Pontryagin (also written Pontriagin or Pontrjagin) et al.

have formulated Pontryagin’s (Pontriagin’s or Pontr-

jagin’s) maximum principle, which represents a necessary

condition for optimal control problems [8]. This principle

is based on establishing a connection between objective-

optimized functional and process dynamics [8]. This con-

nection is realized through the use of the Hamiltonian

function [8]. According to Pontryagin’s (Pontriagin’s or

Pontrjagin’s) maximum principle for optimal control and

for corresponding coordinates for which the optimum cri-

terion has a minimum, the Hamiltonian function has a

maximum [8]. Pontryagin’s (Pontriagin’s or Pontrjagin’s)

maximum principle is widely used for the solution of

optimal control problems but there are difficulties with its

usage when limitations exist on the phase variables, in

addition to the control variables. The direct solution

method is another computational technique, which is also

used for the solution of optimal control problems [1]. The

direct solution method is reduced to switching the optimal

control problem to a nonlinear programming problem [1].

Sakawa et al. have proposed a model for payload

swaying during crane boom slewing with the introduction

of open-loop control [9]. Sakawa et al. have proposed a

new numerical solution of the optimal control problem for

payload swaying during crane boom slewing through the

introduction of an additional penalty function and cost

functional [9]. However, Sakawa’s computational approach

has some special features [9]. Sakawa’s work [9] is focused

on the determination of optimal control for minimization of

payload swaying both during crane boom slewing, and at

the end of crane boom angular displacement. Sakawa et al.

have proposed the following computational technique in

the search for the optimal control. Sakawa et al. have

converted the optimal control problem to a boundary value

problem for a system of differential equations through an

introduction of the Pontryagin (Pontriagin or Pontrjagin)

maximum principle [8] with further application of different

algorithms for initial conditions assignment. The high

accuracy of the solution and the guarantee that the solution

satisfies optimality conditions of the first order are the

advantages of this method [9]. However, this technique has

a number of shortcomings, namely, the small radius of
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convergence. So there is a need to choose the first initial

approximation to be near the optimum. Moreover, diffi-

culties with this approach have arisen when taking into

account the constraints on the phase and control variables.

Sakawa et al. have applied the hyperplane constraint

technique in order to take into account the available con-

straints on the phase variables. In this way Sakawa et al.

have converted two constraints on the phase variables to

constraints on the phase and control variables. This causes

distortion of the region of permissible values for phase and

control variables. Moreover, the algorithm of control time

minimization in Sakawa’s work is different from the

algorithm of optimal control search with fixed time. This

fact rather complicates the usage of Sakawa’s algorithm in

other applications. Moreover, Sakawa addressed the

method of penalty functions in order to take into account

the one remaining constraint. And this Sakawa’s approach

complicates the form of the minimized functional. How-

ever, the proposed computational technique is a quite

abstract and complex one. Sakawa’s approach has no

adaptation to engineering practice due to the absence of

simple engineering formulae for payload swaying values.

Moreover, the absolute swaying trajectories have not been

derived for crane boom slewing angles [0� … 180�] in

Fig. 3 at p. 552, in Fig. 5 at p. 554, in Fig. 7 at p. 555, and

in Fig. 8 at p. 555 of Sakawa’s work [9].

Terashima et al. determined the necessary control for

crane boom rotation, crane boom lifting, and cable length

change for payload displacement from initial to final

positions with minimum time [10]. However, Terashima’s

dynamic model for payload motion does not properly

account for the influence of the Coriolis inertia force on

payload swaying [10].

1.2 Aims and scopes of the present research

The above-mentioned literature review has shown that the

nonlinear problem of payload swaying during guided crane

boom slewing, taking nonlinear Coriolis effects into

account, has not been properly addressed in previous

known research [1–10]. This fact emphasizes the prime

novelty and actuality of the present article, which is

focused on formulation and proposing a freeware-based

numerical solution of open-loop time-optimal control

nonlinear problem with accent on Coriolis force-influence

effects on relative and absolute payload motion.

The main goal of the present article is focused on the

formulation, posing and freeware-based numerical solution

of an open-loop time-optimal control nonlinear problem of

payload swaying during crane boom-guided slewing with

proper accounting of nonlinear Coriolis effects.

The object of this research is the process of payload

swaying along the Coriolis force-influenced trajectory

during crane boom-guided slewing for an open-loop crane

boom drive system.

The subject of research is focused on the general

trends of open-loop time-optimal control derived relative

and absolute trajectories of swaying payload with respect

to non-uniform unknown law of crane boom slewing,

and nonlinear Coriolis effects during payload swaying

motion.

1.3 Prime novelty statement of research (highlights)

The main contribution of this article to the field is as

follows.

The present article is focused on the mathematical for-

mulation and the derivation of a numerical solution of the

DAE-based open-loop optimal control problem for pay-

load-guided swaying during crane boom non-uniform

slewing.

The prime novelty of this article is as follows.

For the first time a numerical solution of the open-loop

optimal control problem for boom-driven payload trans-

portation during crane boom slewing from the initial to the

final position with minimum transportation time has been

derived with an application of Optimica and JModelica.org

open source freeware, where a dynamic model of the

guided payload swaying takes into account the effects of

Coriolis force influence on the relative and absolute tra-

jectories of the guided swaying payload. The influence of

the allowable payload swaying e on the control parameter

of the crane boom drive has been clarified. The present

article extends the ideas about adaptability of Foucault

pendulum-like systems for the problems of open-loop

optimal control for swaying of the spherical pendulum with

rotating pivot center. The complex of authors-proposed

computational algorithms was implemented with free sci-

entific software Optimica and JModelica.org. The proposed

open code algorithms derived numerical data and compu-

tational plots for open-loop optimal control problem

enhance and expand our knowledge about the dynamics of

guided boom-driven payload swaying during rotary crane

boom slewing.

The present paper has the possible industrial applica-

tions in R&D-related fields of transport engineering and

carrying-and-lifting machinery.

2 Computational approach

2.1 Mechanical formulation of the problem

and the governing equations

We will study a 3D model of the boom crane shown in

Fig. 1. This model is a 3DOF mechanical system, which
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includes slewing boom BD, cable BM, connected to the

boom tip B, and swaying payload M, suspended to cable

BM (Fig. 1). The motion of a dynamic mechanical system

‘‘crane boom–payload’’ is described in Fig. 1. This system

has the following three degrees of freedom: crane boom

BD slewing angle u e(t) [rad], and relative angular coor-

dinates a1(t) [rad] and a2 (t) [rad] for swaying payload M,

where the one control input parameter u(t) [V] is the rotary

AC-servo motor winding voltage and the one control input

u(t) determines the first (d(ue (t))/dt) [rad/s] and the second

(d2(ue (t))/dt2) [rad/s2] derivatives of crane boom BD

slewing angle ue (t) [rad], as well as the angle ue = ue (t)

of crane boom slewing (detailed description of ue (t), (d(ue

(t))/dt), (d2(ue (t))/dt2), a1 (t) and a2 (t) is shown in the

Nomenclature chapter). It is possible to describe the posi-

tion of payload M, attached to the boom crane BD with

four dependent coordinates

p tð Þ ¼ ue tð Þ; x1 tð Þ; y1 tð Þ; z1 tð Þ½ ��T; ð1Þ

where p(t) is the positional vector of payload M, u e (t) is

the crane boom BD slewing angle and (x1(t), y1(t), z1(t)) are

Cartesian relative coordinates of payload M in the non-

inertial reference frame B, connected with the crane boom

BD tip B (Fig. 1).

The coordinate ue (t) also determines crane boom BD

position without payload M as if payload M is non-ex-

istent. There is the following geometric constraint,

imposed on the relative coordinates (x1(t), y1(t), z1(t)) of

payload M and the transport coordinate ue (t) of crane

boom BD:

U x1 tð Þ; y1 tð Þ; z1 tð Þ; tð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 tð Þð Þ2þ y1 tð Þð Þ2þ z1 tð Þ � lð Þ2

q
� l ¼ 0:

ð2Þ

We will derive the dynamic equations of motion of

mechanical system ‘‘crane boom BD–payload M’’ using

the projection method, proposed by Blajer et al. [2]. We

will write equations of unconstrained motion of crane

boom BD and payload M without taking into account the

geometric constraint (2). The first equation of the govern-

ing system is Terashima’s [10] equation, which establishes

the relationship between crane boom BD angular

H

R

l

φe

α1

D B

NAstO2

ẽ1
ẽ2

ẽ3

O1

mg

Фe
τ

Ve

Vr
Фe

n

Фcor

acor

aeτ
M

aenê1

ê2

ê3

ω / = ωe = dφe/dt

α2

1x

1z

1y

*
2y

*
2x

*
2z

α / = εe = dωe/dt

Fig. 1 The computational

scheme of payload M swaying

during guided crane boom DB

slewing accounting for

nonlinear effects, caused by

inertia forces Ue
s
, Ue

n and Ucor
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acceleration (d2(ue (t))/dt2), crane boom BD angular

velocity (d(ue (t))/dt) and control input voltage u(t):

d2 ue tð Þð Þ
dt2

� �
¼ � 1

Tu

� �
d ue tð Þð Þ

dt

� �
þ Ku

Tu

� �
u tð Þð Þ; ð3Þ

where Eq. (3) and numerical values of Tu = 0.015 [s] and

Ku = 0.315 [1/(sV)] in Eq. (3) are written on the basis of

Terashima’s Eqs. (1)–(2) and Terashima’s Table 2 at

page 1181 of Ref. [10] by Terashima et al., and u(t) is the

control input voltage at the windings of the rotary AC-

servo motor.

The second equation of the governing system is the

dynamic equation of relative unconstrained motion of pay-

load M with respect to the non-inertial reference frame B.

This equation does not coincide with the dynamic Coriolis

theorem in the absence of reaction of constraint (2) in it, i.e.,

as if constraint (2) is not imposed on payload M at all:

mar ¼ mg þ �mas
e

� �
þ �man

e

� �
þ �macorð Þ; ð4Þ

where g is the vector of gravitational acceleration, ar ¼
aM=B is the vector of relative acceleration of payload M in

the non-inertial reference frame B, as
e ¼ aB=E � ro2=M and

an
e ¼ xB=E � xB=E � ro2=M

� �
are tangential and normal

accelerations for the motion of the non-inertial reference

frame B with respect to the motionless fixed on earth

inertial reference frame E, and acor ¼ 2xB=E � VM=B is the

Coriolis acceleration of payload M, caused by the slewing

motion of the non-inertial reference boom-connected frame

B with respect to the inertial reference frame E, where

ar ¼ aM=B ¼ d2 x1 tð Þð Þ
dt2

� �
~e1 þ

d2 y1 tð Þð Þ
dt2

� �
~e2

þ d2 z1 tð Þð Þ
dt2

� �
~e3;

ð5Þ

as
e ¼ aB=E � rO2=M ¼ � d2 ue tð Þð Þ

dt2

� �
Rþ y1 tð Þð Þ

� �
~e1

þ d2 ue tð Þð Þ
dt2

� �
x1 tð Þ

� �
~e2; ð6Þ

an
e ¼ xB=E � ðxB=E � rO2=MÞ ¼ � d ue tð Þð Þ

dt

� �2

x1 tð Þ
 !

~e1

� d ue tð Þð Þ
dt

� �2

Rþ y1 tð Þð Þ
 !

~e2; ð7Þ

acor ¼ 2xB=E � VM=B ¼ �2
d ue tð Þð Þ

dt

� �
d y1 tð Þð Þ

dt

� �� �
~e1

þ 2
d ue tð Þð Þ

dt

� �
d x1 tð Þð Þ

dt

� �� �
~e2: ð8Þ

The distinctive key feature of the present work is

accounting for the Coriolis inertia force Ucor = (–

m)acor [N] and the assumption about fixed cable BM

length l = const [m] during crane boom BD transport

slewing motion with an arbitrary angular velocity

xB=E = xe = const [rad/s] and with simultaneous relative

swaying of payload M in Fig. 1 [detailed description of

inertia forces Ue
s = (–m)ae

s [N], Ue
n = (–m)ae

n [N] and

Ucor = (–m)acor [N] is shown in the Nomenclature chap-

ter and in the above listed formulae (6)–(8)].

It is possible to project a vector Eq. (4) for uncon-

strained motion of payload M to the coordinate axes (x1, y1,

z1) of the non-inertial reference frame B by taking into

account vector Eqs. (5)–(8) for accelerations:

m
d2 x1 tð Þð Þ

dt2

� �
¼ m

d2 ue tð Þð Þ
dt2

� �
Rþ y1 tð Þð Þ

� �

þ m
d ue tð Þð Þ

dt

� �2

x1 tð Þ
 !

þ 2m
d ue tð Þð Þ

dt

� �
d y1 tð Þð Þ

dt

� �� �
;

ð9Þ

m
d2 y1 tð Þð Þ

dt2

� �
¼ �m

d2 ue tð Þð Þ
dt2

� �
x1 tð Þ

� �

þ m
d ue tð Þð Þ

dt

� �2

Rþ y1 tð Þð Þ
 !

� 2m
d ue tð Þð Þ

dt

� �
d x1 tð Þð Þ

dt

� �� �
; ð10Þ

m
d2 z1 tð Þð Þ

dt2

� �
¼ �mg: ð11Þ

According to Blajer’s approach [2], it is possible to

write the system of ordinary differential Eqs. (3), (9)–(11)

for unconstrained crane boom BD and unconstrained pay-

load M in the following matrix form:

M
d2 p tð Þð Þ

dt2

� �
¼ f tð Þ � BTu tð Þ; ð12Þ

where M is the diagonal 4 9 4 generalized mass matrix,

(d2(p(t))/dt2) is the 4-component vector of acceleration of

payload M, f(t) is the 4-component vector of generalized

applied active and inertia forces, BT is the 4-component

control vector, and u(t) is the control input voltage,

where

M ¼

1 0 0 0

0 m 0 0

0 0 m 0

0 0 0 m

2

664

3

775; ð13Þ
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BT ¼ � Ku

Tu

� �� �
; 0; 0; 0

� �T

: ð16Þ

However, the real mechanical system ‘‘crane boom BD–

payload M’’ contains the imposed geometric constraint (2) in

the shape of the cable BM. So the real problem of payload M

swaying during crane boom BD slewing requires us to take

into account the presence of an imposed geometric constraint

(2) by imposition of geometric constraint (2) at divided

subsystems ‘‘crane boom BD’’ and ‘‘payload M’’. In this case

Blajer’s dynamic Eq. (12) for an unconstrained system

should be written in modified form to take into account the

presence of reaction k(t) of cable BM constraint. Blajer et al.

have proposed the following modified dynamic equation:

M
d2 p tð Þð Þ

dt2

� �
¼ f tð Þ � BTu tð Þ � CT pð Þ

� �
k tð Þ; ð17Þ

where CT(p) = qU/qp is the 4-component constraint vec-

tor, and k(t) is the undetermined Lagrange multiplier,

where

CT pð Þ ¼ 0;
x1 tð Þ
l

� �
;

y1 tð Þ
l

� �
;

z1 tð Þ � l

l

� �� �T

: ð18Þ

The scalar form of Blajer’s matrix Eq. (17) for the

motion of constrained system ‘‘crane boom BD–payload

M’’ can be formulated by taking into account the above

written formulae (3), (9)–(18) and in our case is as follows:

d2 ue tð Þð Þ
dt2

� �
¼� 1

Tu

� �
d ue tð Þð Þ

dt

� �
þ Ku

Tu

� �
u tð Þð Þ; ð19Þ

m
d2 x1 tð Þð Þ

dt2

� �
¼ m

d2 ue tð Þð Þ
dt2

� �
Rþ y1 tð Þð Þ

� �

þ m
d ue tð Þð Þ

dt

� �2

x1 tð Þ
 !

þ 2m
d ue tð Þð Þ

dt

� �
d y1 tð Þð Þ

dt

� �� �

� k tð Þð Þ x1 tð Þ
l

� �
; ð20Þ

m
d2 y1 tð Þð Þ

dt2

� �
¼� m

d2 ue tð Þð Þ
dt2

� �
x1 tð Þ

� �

þ m
d ue tð Þð Þ

dt

� �2

Rþ y1 tð Þð Þ
 !

� 2m
d ue tð Þð Þ

dt

� �
d x1 tð Þð Þ

dt

� �� �

� k tð Þð Þ y1 tð Þ
l

� �
; ð21Þ

m
d2 z1 tð Þð Þ

dt2

� �
¼ �mg� k tð Þð Þ z1 tð Þ � l

l

� �
; ð22Þ

where k(t) = N(t) is the reaction of the constraint BM, i.e.,

the cable BM tension force.

It is possible to eliminate k(t) from (17), (19)–(22)

through the use of Blajer’s projection method. For this

purpose we will project the Blajer’s dynamic Eq. (17) in

the instantaneous direction, perpendicular to the surface of

the constraint (2). The perpendicular direction to the sur-

face of the constraint (2) is determined by the vector CT(p)

(18). Following Blajer’s approach we will compute the

scalar product of Eq. (17) at the vector C(p) (18). As result

we will get the following dynamic expression:

C pð Þð Þ;M
d2 p tð Þð Þ

dt2

� �� �
¼ C pð Þð Þ; f tð Þð Þ

� C pð Þð Þ;BTu tð Þ
� �

� C pð Þð Þ; CT pð Þ
� �

k tð Þ
� �

;

ð23Þ

where (C(p), CT(p)) = 1.

So dynamic expression (23) yields the following for-

mula for cable tension k(t) = N(t):

k tð Þ ¼ C pð Þð Þ; f tð Þð Þ � C pð Þð Þ;BTu tð Þ
� �

� C pð Þð Þ;M d2 p tð Þð Þ
dt2

� �� �
: ð24Þ

The coordinate form of the Eq. (24) in our case is as

follows:

d2 p tð Þð Þ
dt2

� �
¼ d2 ue tð Þð Þ

dt2

� �
;

d2 x1 tð Þð Þ
dt2

� �
;

d2 y1 tð Þð Þ
dt2

� �
;

d2 z1 tð Þð Þ
dt2

� �� �T

; ð14Þ

f tð Þ ¼

� 1

Tu

� �
d ue tð Þð Þ

dt

� �

m
d2 ue tð Þð Þ

dt2

� �
Rþ y1 tð Þð Þ

� �
þ m

d ue tð Þð Þ
dt

� �2

x1 tð Þ
 !

þ 2m
d ue tð Þð Þ

dt

� �
d y1 tð Þð Þ

dt

� �� �

�m
d2 ue tð Þð Þ

dt2

� �
x1 tð Þ

� �
þ m

d ue tð Þð Þ
dt

� �2

Rþ y1 tð Þð Þ
 !

� 2m
d ue tð Þð Þ

dt

� �
d x1 tð Þð Þ

dt

� �� �

�mg

0

BBBBBBBBBB@

1

CCCCCCCCCCA

; ð15Þ
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k tð Þ ¼ x1 tð Þ
l

� �
m

d2 ue tð Þð Þ
dt2

� �
Rþ y1 tð Þð Þ

� ��

þm
d ue tð Þð Þ

dt

� �2

x1 tð Þ
 !

þ 2m
d ue tð Þð Þ

dt

� �
d y1 tð Þð Þ

dt

� �� �
� m

d2 x1 tð Þð Þ
dt2

� ��

þ y1 tð Þ
l

� �
�m

d ue tð Þð Þ
dt2

� �
x1 tð Þ

� ��

þm
d ue tð Þð Þ

dt

� �2

Rþ y1 tð Þð Þ
 !

� 2m
d ue tð Þð Þ

dt

� �
d x1 tð Þð Þ

dt

� �� �
� m

d2 y1 tð Þð Þ
dt2

� ��

� z1 tð Þ � l

l

� �
mgþ m

d2 z1 tð Þð Þ
dt2

� �� �
: ð25Þ

After substitution of derived expression (25) for cable

tension force k(t) = N(t) into dynamic Eqs. (20)–(22), we

will get a new system of equations, which does not depend

on k(t). So it is possible to formulate the time-optimal

control problem for dynamic system of Eqs. (19)–(22),

(25) with eliminated cable tension force k(t) = N(t).

The present control problem is focused on the nonlinear

character of the mechanical problem in Fig. 1, where sys-

tem nonlinearities are determined by the nonlinear nature

of cable tension force N(t) and the nonlinear effect of

Coriolis inertia force Ucor.

2.2 Mathematical formulation of the time-optimal

control problem

We will determine the phase variables in the following

way:

x1 tð Þ ¼ x1 tð Þ; ð26Þ

x2 tð Þ ¼ d x1 tð Þð Þ
dt

; ð27Þ

x3 tð Þ ¼ y1 tð Þ; ð28Þ

x4 tð Þ ¼ d y1 tð Þð Þ
dt

; ð29Þ

x5 tð Þ ¼ z1 tð Þ; ð30Þ

x6 tð Þ ¼ d z1 tð Þð Þ
dt

; ð31Þ

x7 tð Þ ¼ ue tð Þ; ð32Þ

x8 tð Þ ¼ d ue tð Þð Þ
dt

: ð33Þ

Using this notation, we formulate the optimal control

problem.

It is necessary to find the optimal control input u(t) that

gives the minimum for the function

J ¼ tf ; ð34Þ

and takes the state from the initial position to the final one

for the system, subjected to the following constraints:

d x1 tð Þð Þ
dt

¼ x2 tð Þ; ð35Þ

d x2 tð Þð Þ
dt

¼ x2
8 tð Þ � x1 tð Þ þ K1 � x8 tð Þ þ K2 � u tð Þð Þ

� Rþ x3 tð Þð Þ þ 2 � x8 tð Þ � x4 tð Þ � N tð Þ
m

� �

� x1 tð Þ
l

� �
; ð36Þ

d x3 tð Þð Þ
dt

¼ x4 tð Þ; ð37Þ

d x4 tð Þð Þ
dt

¼ x2
8 tð Þ � Rþ x3 tð Þð Þ � K1 � x8 tð Þ þ K2 � u tð Þð Þ

� x1 tð Þ � 2 � x8 tð Þ � x2 tð Þ � N tð Þ
m

� �
� x3 tð Þ

l

� �
;

ð38Þ
d x5 tð Þð Þ

dt
¼ x6 tð Þ; ð39Þ

d x6 tð Þð Þ
dt

¼ �gþ N tð Þ
m

� �
� l� x5 tð Þð Þ

l

� �
; ð40Þ

d x7 tð Þð Þ
dt

¼ x8 tð Þ; ð41Þ

d x8 tð Þð Þ
dt

¼ K1 � x8 tð Þ þ K2 � u tð Þ; ð42Þ

x1 tð Þð Þ2þ x3 tð Þð Þ2þ x5 tð Þð Þ2 � e; ð43Þ

x1 0ð Þ ¼ 0; x2 0ð Þ ¼ 0; x3 0ð Þ ¼ 0; x4 0ð Þ ¼ 0;

x5 0ð Þ ¼ 0; x6 0ð Þ ¼ 0; x7 0ð Þ ¼ 0; x8 0ð Þ ¼ 0; ð44Þ

x1 tf
� �

¼ 0; x2 tf
� �

¼ 0; x3 tf
� �

¼ 0; x4 tf
� �

¼ 0;
x5 tf
� �

¼ 0; x6 tf
� �

¼ 0; x7 tf
� �

¼ p; x8 tf
� �

¼ 0;

ð45Þ
u tð Þj j � umax; x8 tð Þj j �xmax; ð46Þ

where

K1 ¼ 1

tf
; ð47Þ
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K2 ¼ Kf

tf
; ð48Þ

The initial position is determined by (44), the final

position is determined by (45), Eqs. (35)–(42) of this sys-

tem (35)–(46) have been derived from (19) to (20) by

reducing the second order ordinary differential equation

system to the system of first order equations.

The inequality (43) defines a restriction on the allowable

value of payload swaying. The condition (46) defines a

restriction on the control voltage value and the allowable

angular velocity of the crane boom slewing.

The absolute coordinates xabs(t); yabs(t); zabs(t) of

swaying payload M in the fixed inertial reference frame E

may be computed as:

xabs tð Þ ¼ x�2 tð Þ ¼ Rþ y1 tð Þð Þ � cos ue tð Þð Þ þ x1 tð Þ � sin ue tð Þð Þ;
yabs tð Þ ¼ y�2 tð Þ ¼ Rþ y1 tð Þð Þ � sin ue tð Þð Þ � x1 tð Þ � cos ue tð Þð Þ;
zabs tð Þ ¼ z�2 tð Þ ¼ z1 tð Þ:

8
<

:

ð50Þ

Differential Eqs. (35)–(42), which are proposed in the

present work, describe the behavior of the mechanical

system ‘‘crane boom–payload’’. These differential equa-

tions are written in implicit form, i.e., they have not been

resolved with respect to the first derivatives in contrast to

the optimal control problems addressed by Sakawa [9] and

Terashima [10].

JModelica’s [4] extension Optimica was used in the

present work for a numerical solution of the open-loop

optimal control problem. The direct method for numerical

solution of the open-loop optimal control problem in

Optimica is based on the conversion of the open-loop

optimal control problem to the problem of nonlinear pro-

gramming [1]. This approach allowed us to easily take into

account the limitations on the phase and control variables

in contrast to the indirect methods, which are grounded on

the use of Pontryagin’s maximum principle and addressed

by Sakawa [9] and Terashima [10]. Sakawa et al. have

addressed the Constraining Hyperplane Technique and

penalty function approach in order to take into account the

limitations on the phase and control variables [9].

Terashima et al. addressed the ‘‘clipping-off’’ gradient

algorithm in order to take into account the limitations on

the control variables [10].

The JModelica and Optimica codes are listed in

Appendices 1, 2. The first lines of the *.mop Optimica-file

in Appendix 1 determine the minimized function. In the

present problem we optimize the time of payload trans-

portation from the initial to the final position of the crane

boom. Then we define the phase variables (x1(t), … , x8(t)),

which determine the system position at every time t and

depend on the control input variable u(t). Further we

determine constant parameters of the model which include

payload mass, crane boom length, cable length, and the

values of limitations on the control and phase variables.

The differential equations, which determine dynamic

Begin

Determination of the 
differential equations for 

dynamic system description

Goal function 
assignment

Determination of the constant 
parameters of the model

Determination of the 
constraints on the control and 

phase variables

End

Begin

The conversion of payload’s 
relative coordinates to 

absolute ones

Connection to the 
graphical library 
pyplot of Python

The call of the procedure for 
solution of optimal control 

problem

Print of results

End

(a) (b)

Fig. 2 The block diagrams of computational data flow within

freeware codes Optimica (a) and JModelica.org (b)

N tð Þ ¼ml
x1 tð Þ � dx2 tð Þ

dt

	 

þ x2

2 tð Þ þ x3 tð Þ � dx4 tð Þ
dt

	 

þ x2

3 tð Þ
	 


l2 � x2
1 tð Þ � x2

3 tð Þ
� �

0

@

1

Aþ x1 tð Þ � x2 tð Þ þ x3 tð Þ � x4 tð Þð Þ2

l2 � x2
1 tð Þ � x2

3 tð Þ
� �2

 !2

4

3

5

þ mgl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2

1 tð Þ � x2
3 tð Þ

� �q

ð49Þ
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system behavior, are written in the equation block of *.mop

file (Appendix 1). In the constraint block we define limi-

tations on the control and phase variables. The first eight

limitations determine the final position of payload. The

limitation (x1(t))2 ? (x3(t))2 ? (x5(t))2 B e determines the

maximum value of payload swaying during crane boom

rotation at the required angular displacement. This limita-

tion means that during the motion the swaying of the

payload must not be too large in order to keep the payload

safe. The limitation on the control input variable u(t),

which is the voltage supplied to the electrical drive, is

determined by hardware specifications. The last limitation

on the value of crane boom angular velocity is also

determined by electrical drive specifications.

The structure of Optimica’s *.mop file in Appendix 1 is

shown in Fig. 2a and the structure of JModelica’s *.py file

in Appendix 2 is shown in Fig. 2b.

2.3 Results of numerical solution of time-optimal

control problem

Computational plots in Figs. 3, 4, 5, 7, 8 have been derived

for the following numerical values of system parameters,

listed in Appendix 1: m = 0.1 (kg); l = 0.825 (m);

R = 0.492 (m); g = 9.81 (m/s2); umax = 10 (V);

xmax = 0.15 (rad/s); Tu = 0.015 (s);Ku = 0.315 (1/(sV)).

Computational plots in Figs. 3 and 5a, b show that all

six phase variables (x1(t), …, x6(t)) show oscillation

graphics of their change with time t. The oscillating nature

of these plots is assumed to be dynamic effects resulting

from action of d’Alembert inertial forces Ue
s (6), Ue

n (7)

and Coriolis inertia force Ucor (8).

The computational plot in Fig. 4b shows that crane

boom BD slewing angle ue (t) changes with time t

according to an almost linear law. This results in the fact

Fig. 3 The numerical plots for payload M computational relative

coordinates x1 = x1(t) (m) a and y1 = y1(t) (m) c and relative velocity

components Vx1 = d(x1(t))/dt (m/s) b and Vy1 = d(y1(t))/dt (m/s) d

with respect to time t (s) in the non-inertial reference frame B,

derived with JModelica.org and Optimica for the codes in Appendices

1, 2
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Fig. 4 The numerical plots for payload M computational relative trajectory y1 = y1(x1) (m) in the non-inertial reference frame B a and crane

boom BD (Fig. 1) slewing angle ue = ue (t) (rad) b derived with JModelica.org and Optimica for the codes in Appendices 1, 2

Fig. 5 The numerical plots for payload M computational relative

coordinate z1 = z1(t) (m) a and relative velocity component Vz1 =

d(z1(t))/dt (m/s) b in the non-inertial reference frame B, and time curves

(t, [s]) for control variable u = u(t) (V) c and angular velocity

xe = d(ue (t))/dt (rad/s) d of crane boom BD (Fig. 1) transport slewing,

derived with JModelica.org and Optimica for the codes in Appendices 1, 2
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that crane boom BD slewing angular velocity xe (t) in

Fig. 5d remains almost constant (xe (t) & const). How-

ever, Fig. 5c, d have two peak values at the beginning and

at the end of crane boom BD slewing motion. The source

of these peaks in Fig. 5c, d is associated with additional

crane boom accelerations at the starting and stopping of

rotary AC-servo motor.

3 Discussion, comparison and experimental
verification of derived results

3.1 Physical simulation approach to experiment

For experimental verification of computational results an

experimental setup was designed and installed (Fig. 6).

The experimental measurement system in Fig. 6 uses a

subscale physical simulation approach.

The upper digital camera has the large exposure time

and camera’s objective lens was opened up for 90 s

(Figs. 7, 8). This time was enough to write the absolute

trajectory of payload M swaying in an obscured room with

the experimental setup (Fig. 6). A laser pointer was fixed

on the boom tip B. The point O1 was the horizontal point-

projection of laser beam BO1. Laser point O1 drew the

standard circular trajectory (–– –– –– ––) in Figs. 6, 7

and 8. The physical model of payload M was a light-

emitting diode with diameter 2 mm and with the battery

voltage 3 V. The luminous trace of payload M in the

inertial reference frame E is shown as solid line

(▬▬▬▬▬) in Fig. 6 and as a bold dashed line

(▬ ▬ ▬ ▬) in Figs. 7 and 8.

The experimental swaying results in Fig. 6

(▬▬▬▬▬) and (▬ ▬ ▬ ▬) in Figs. 7 and 8

clearly show us that the forms of these experimental curves

are shaped by Coriolis effects. So it is principally important

to properly take into account Coriolis effects in mathe-

matical models of payload M swaying during guided crane

boom BD slewing.

3.2 Discussion and comparison of derived results

with experiment

Small levels of payload swaying could be reached for the

small angular velocities of crane boom slewing. So it is

possible to show good agreement between theoretical and

Fig. 6 The scheme of the experimental setup, designed for identi-

fication and measurement of absolute payload M trajectory in the

inertial reference frame E

Fig. 7 The comparison of time-optimal control (J = tf)-derived

theoretical (filled dashed line) and experimental (space filled dashed

line) absolute trajectories yabs = yabs (xabs) of payload M in the

inertial reference frame E for the fixed cable lengths

l = 0.206 (m) (a), l = 0.412 (m) (b), and l = 0.618 (m) (c)
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computational results by the assignment of a small value of

payload swaying into the mathematical model.

The comparison of theoretical numerical solution of

time-optimal control problem (34)–(46)

(▬▬▬▬▬, yabs = yabs (xabs) or y2
* = y2

* (x2
*)) and

experimental (▬ ▬ ▬ ▬, yabs = yabs (xabs) or

y2
* = y2

* (x2
*)) results is shown in Figs. 7 and 8. In order to

estimate the relative disagreement of the derived time-op-

timal control-solution based computational

(▬▬▬▬▬) and experimental (▬ ▬ ▬ ▬) pay-

load M absolute trajectories in the inertial reference frame

E we have computed the amplitude discrepancy d in the

polar coordinate system by the following formula:

d ¼ 1

2

rcomp � rexper

�� ��

rcomp

� �
þ

rcomp � rexper

�� ��

rexper

� �� �� 

;

ð51Þ

where rcomp and rexper are the magnitudes of the radius-

vectors, connecting point O2 and theoretical (J = tf)-based

computational (▬▬▬▬▬) and experimental

(▬ ▬ ▬ ▬) curves, and computed for the same fixed

polar angle ue, and rcircle is the radius of standard circular

trajectory (–– –– –– ––) of p. B (p. A st) in Figs. 1 and 6.

The amplitude discrepancies d have the following val-

ues: d = 3.86 % and dmax = 8.47 % for l = 0.206 (m) in

Fig. 7a; d = 5.01 % and dmax = 11.93 % for

l = 0.412 (m) in Fig. 7b; d = 5.67 % and dmax = 18.88 %

for l = 0.618 (m) in Fig. 7c; d = 2.33 % and

dmax = 6.79 % for l = 0.825 (m) and T = 30 (s) in

Fig. 8a and d = 4.36 % and dmax = 11.94 % for

l = 0.825 (m) and T = 44 (s) in Fig. 8b.

For further estimation of the relative disagreement of

derived time-optimal control-solution based (J = tf) com-

putational (▬▬▬▬▬) absolute trajectory of payload

M, experimental (▬ ▬ ▬ ▬) payload M absolute tra-

jectory and standard circular trajectory (–– –– –– ––) of

p. B (p. A st) (Figs. 1, 6) in the inertial reference frame E

we have computed the confidence intervals in Figs. 7 and 8

for the dimensionless radii parameters rcircle/rexper; rcircle/

rcomp; rcomp/rexper, and confidence probabilities 0.95 and

0.99. The Student’s t test results yield the following con-

fidence intervals, shown in Table 1. Both the relative dis-

crepancy d and the confidence intervals in Table 1 show

the satisfactory agreement between the absolute payload

trajectories (Figs. 7, 8) in the inertial reference frame E,

that have been computed with theoretical numerical solu-

tion of time-optimal control problem (34)–(46)

(▬▬▬▬▬, yabs = yabs (xabs) or y2
* = y2

* (x2
*)), and

measured experimentally (▬ ▬ ▬ ▬, yabs = yabs (xabs)

or y2
* = y2

* (x2
*)) as shown in Figs. 7 and 8.

3.3 Discussion and comparison of derived results

with known published results

The computational results in Figs. 7 and 8, derived with a

numerical solution of the time-optimal control problem

(34)–(46) were also compared with known published

Sakawa’s [9] result. The graphical result of the comparison

is shown in Fig. 9.

Comparative analysis of Fig. 9 shows the essential dis-

crepancies between our derived result (▬▬▬▬▬) and

Sakawa’s [9] published result (▬ ▬ ▬ ▬). The

amplitude discrepancies d, which were computed with

formula (51), have the following values: d = 5 % and

dmax = 12.37 % for two curves in Fig. 9. The Student’s

t test results yield the following confidence intervals for the

amplitude discrepancies d: for confidence probability 0.90

we have the confidence interval 3.29 % B d B 6.75 %; for

confidence probability 0.95 we have the confidence interval

2.96 % B d B 7.08 %; and for confidence probability 0.95

we have the confidence interval 2.31 % B d B 7.73 %.

The differences between these curves result from taking

into account the Coriolis effects in our (J = tf) theoretical

solution. Coriolis effects cause additional changes of shape

in our absolute trajectory (▬▬▬▬▬) in the inertial

reference frame E. Our experimental results in Figs. 7 and

Fig. 8 The comparison of time-optimal control (J = tf)-derived

theoretical (filled dashed line) and experimental (space filled dashed

line) absolute trajectories yabs = yabs (xabs) of payload M in the

inertial reference frame E with the fixed cable length

l = 0.825 (m) for T = 30 (s) (a) and T = 44 (s) (b)
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8 additionally indicate that it is necessary to take Coriolis

effects into account for a correct simulation of swaying

payload dynamics during crane boom BD slewing.

4 Discussion

I. The present work is focused on a study of payload swaying

during guided crane boom slewing, taking into account the

Coriolis effects. The formulation of the dynamic problem

was made with the use of Blajer’s [2] mathematical for-

malism. Introduction of Blajer’s approach provided us with a

useful and physically clear mathematical technique for

derivation of motion equations for payload swaying and with

a simple way for determination of constraint reaction

k(t) = N(t). Blajer’s projection’s method was used in this

work for derivation of dynamic Eqs. (19)–(22), (25).

Application of Blajer’s projection’s technique was based on

the projection of Blajer’s governing Eq. (17) for the motion

of the constrained mechanical system ‘‘crane boom BD–

payload M’’ in orthogonal and tangential directions to the

surface of the geometric constraint (18). It is possible to

obtain an expression of the constraint reaction k(t) = N(t)

with projection of the dynamic governing Eq. (17) in the

orthogonal direction to the surface of the geometric con-

straint (18). It is possible to derive the motion equations,

which are free from constraint reaction forces k(t) = N(t),

with projection of the dynamic governing Eq. (17) in the

tangential direction to the surface of the geometric constraint

(18). Blajer et al. have applied their approach for building a

control of boom cranes, which has to provide the prescribed

motion for the payload during crane boom transportation. In

contrast to Blajer’s approach, our dynamic Eqs. (9)–(11)

were written in the non-inertial reference frameB in order to

take into account the Coriolis inertia force. Introduction of

Blajer’s mathematical formalism in the present article

demonstrates the success and sustainability of Blajer’s

approach to the formulation of the dynamic problem of

T
a

b
le

1
T

h
e

co
n

fi
d

en
ce

in
te

rv
al

s
fo

r
co

m
p

ar
is

o
n

o
f

(J
=

t f
)-

d
er

iv
ed

th
eo

re
ti

ca
l

an
d

ex
p

er
im

en
ta

l
ab

so
lu

te
tr

aj
ec

to
ri

es
y a

b
s
=

y a
b
s

(x
a
b
s)

o
f

p
ay

lo
ad

M
in

th
e

in
er

ti
al

re
fe

re
n

ce
fr

am
e
E

C
o

n
fi

d
en

ce
p

ro
b

ab
il

it
y

0
.9

5
C

o
n

fi
d

en
ce

p
ro

b
ab

il
it

y
0

.9
9

r c
ir

r e
m

p

	

 0

:9
5

r c
ir

r e
m

p

	

 0

:9
5

r c
ir

r e
m

p

	

 0

:9
5

r c
ir

r e
m

p

	

 0

:9
9

r c
ir

c

r c
o

m
p

	

 0

:9
9

r c
o

m
p

r e
m

p

	

 0

:9
9

l
=

0
.2

0
6

(m
)

an
d

T
=

1
4

(s
)

in
F

ig
.

6
a

0
.9

8
8

2
6

5
5
B

(r
c
ir

c
le

/

r e
x
p
e
r)

0
.9

5
B

0
.9

8
9

0
7

5
4

0
.9

9
4

4
1

0
4
B

(r
c
ir

c
le

/

r c
o
m

p
) 0

.9
5
B

0
.9

9
4

7
1

4
7

0
.9

9
4

0
5

9
8
B

(r
c
o
m

p
/

r e
x
p
e
r)

0
.9

5
B

0
.9

9
5

2
7

7
1

0
.9

8
8

1
3

0
2
B

(r
c
ir

c
le

/

r e
x
p
e
r)

0
.9

9
B

0
.9

8
9

2
1

0
7

0
.9

9
4

3
5

9
6
B

(r
c
ir

c
le

/

r c
o
m

p
) 0

.9
9
B

0
.9

9
4

7
6

5
5

0
.9

9
3

8
5

6
5
B

(r
c
o
m

p
/

r e
x
p
e
r)

0
.9

9
B

0
.9

9
5

4
8

0
5

l
=

0
.4

1
2

(m
)

an
d

T
=

1
4

(s
)

in
F

ig
.

6
b

0
.9

8
1

3
9

0
4
B

(r
c
ir

c
le

/

r e
x
p
e
r)

0
.9

5
B

0
.9

8
2

3
1

0
0

0
.9

9
0

6
2

4
6
B

(r
c
ir

c
le

/

r c
o
m

p
) 0

.9
5
B

0
.9

9
1

1
9

0
1

0
.9

9
1

3
0

1
6
B

(r
c
o
m

p
/

r e
x
p
e
r)

0
.9

5
B

0
.9

9
3

3
0

3
6

0
.9

8
1

2
3

7
4
B

(r
c
ir

c
le

/

r e
x
p
e
r)

0
.9

9
B

0
.9

8
2

4
6

3
0

0
.9

9
0

5
3

0
6
B

(r
c
ir

c
le

/

r c
o
m

p
) 0

.9
9
B

0
.9

9
1

2
8

4
2

0
.9

9
0

9
6

8
5
B

(r
c
o
m

p
/

r e
x
p
e
r)

0
.9

9
B

0
.9

9
3

6
3

6
7

l
=

0
.6

1
8

(m
)

an
d

T
=

2
0

(s
)

in
F

ig
.

6
c

1
.0

2
5

7
2

5
3
B

(r
c
ir

c
le

/

r e
x
p
e
r)

0
.9

5
B

1
.0

2
8

0
4

5
9

0
.9

8
6

7
8

8
1
B

(r
c
ir

c
le

/

r c
o
m

p
) 0

.9
5
B

0
.9

8
6

9
4

4
9

1
.0

3
9

5
8

6
6
B

(r
c
o
m

p
/

r e
x
p
e
r)

0
.9

5
B

1
.0

4
2

2
7

4
1

1
.0

2
5

3
3

7
7
B

(r
c
ir

c
le

/

r e
x
p
e
r)

0
.9

9
B

1
.0

2
8

4
3

3
4

0
.9

8
6

7
6

2
0
B

(r
c
ir

c
le

/

r c
o
m

p
) 0

.9
9
B

0
.9

8
6

9
7

1
1

1
.0

3
9

1
3

7
8

B
(r

c
o
m

p
/

r e
x
p
e
r)

0
.9

9
B

1
.0

4
2

7
2

2
9

l
=

0
.8

2
5

(m
)

an
d

T
=

3
0

(s
)

in
F

ig
.

7
a

1
.0

0
4

8
5

9
4
B

(r
c
ir

c
le

/

r e
x
p
e
r)

0
.9

5
B

1
.0

0
5

3
2

5
0

0
.9

9
2

1
1

8
5
B

(r
c
ir

c
le

/

r c
o
m

p
) 0

.9
5
B

0
.9

9
2

2
3

2
6

1
.0

1
2

8
8

1
1
B

(r
c
o
m

p
/

r e
x
p
e
r)

0
.9

5
B

1
.0

1
3

4
4

0
5

1
.0

0
4

7
7

9
9
B

(r
c
ir

c
le

/

r e
x
p
e
r)

0
.9

9
B

1
.0

0
5

4
0

4
6

0
.9

9
2

0
9

8
9
B

(r
c
ir

c
le

/

r c
o
m

p
) 0

.9
9
B

0
.9

9
2

2
5

2
1

1
.0

1
2

7
8

5
5
B

(r
c
o
m

p
/

r e
x
p
e
r)

0
.9

9
B

1
.0

1
3

5
3

6
0

l
=

0
.8

2
5

(m
)

an
d

T
=

4
4

(s
)

in
F

ig
.

7
b

1
.0

0
7

1
2

2
1
B

(r
c
ir

c
le

/

r e
x
p
e
r)

0
.9

5
B

1
.0

0
8

8
4

3
5

0
.9

8
9

2
0

1
1
B

(r
c
ir

c
le

/

r c
o
m

p
) 0

.9
5
B

0
.9

8
9

4
1

7
6

1
.0

1
8

1
1

6
0
B

(r
c
o
m

p
/

r e
x
p
e
r)

0
.9

5
B

1
.0

1
9

6
8

7
4

1
.0

0
6

8
3

3
8
B

(r
c
ir

c
le

/

r e
x
p
e
r)

0
.9

9
B

1
.0

0
9

1
3

1
8

0
.9

8
9

1
6

4
9
B

(r
c
ir

c
le

/

r c
o
m

p
) 0

.9
9
B

0
.9

8
9

4
5

3
9

1
.0

1
7

8
5

2
9
B

(r
c
o
m

p
/

r e
x
p
e
r)

0
.9

9
B

1
.0

1
9

9
5

0
5

Fig. 9 Graphical comparison of computational absolute trajectories

of payload M in the inertial reference frame E, where (filled dashed

line) is (J = tf)-derived result (26)–(63) and (space filled dashed line)

is Sakawa’s [9] published solution
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payload swaying during guided crane boom slewing, taking

into account the Coriolis effects.

II. For small values of payload swaying restriction e the

numerical solution of the time-optimal control problem

results in the fact that the optimum motion for the crane

boom is the slewing motion with constant angular veloc-

ity. For larger values of payload swaying e the angular

velocity of the crane boom is not constant and changes

with time according to a nonlinear law. Coriolis effects on

the relative (Fig. 4a) and absolute (Figs. 6, 7, 8) trajecto-

ries of guided payload M are especially essential for small

slewing velocities in controlled crane boom rotation.

Small values of crane boom BD-guided angular rotation

have large importance for all practical applications in the

field of guidance and accurate positioning with lifting-and-

handling machinery. Indeed, large slewing velocities of a

crane boom are outside the aims and scopes of boom

crane-assisted practical problems. The absolute computa-

tional trajectories in Figs. 6, 7, 8 are the numerical

JModelica.org-derived solutions of the time-optimal con-

trol problem.

III. The solution of the open-loop optimal control

problem in Figs. 3, 4, 5, 7, 8 shows that under the given

problem conditions the crane boom BD rotates nearly

uniformly in Fig. 4b (i.e., angular velocity of crane boom

BD transport slewing is almost constant in Fig. 5c, d). In

this case the trajectory of the relative payload M swaying

with respect to the uniformly rotating crane boom BD is the

so-called Foucault pendulum-like curve (Fig. 4a). So the

present article extends the ideas about adaptability of

Foucault pendulum-like systems for the problems of open-

loop optimal control for swaying of the spherical pendulum

with rotating pivot center. For the solution of the time-

optimal control problem the constancy of angular crane

boom slewing velocity takes place for small values of the

restriction e on payload swaying in formulae (43) and small

values of the crane boom slewing velocity xe = d(ue)/dt

(limitation at x8(t)) in formulae (46). Increase in the limi-

tation xmax on the value of x8(t) results in large swaying of

the payload, resulting from large accelerations in the

beginning and at the end of payload motion. The relative

trajectory of payload M swaying with respect to non-uni-

formly rotating crane boom BD, associated with non-in-

ertial reference frame B in Fig. 1, has been numerically

derived in the present work through the JModel-

ica.org and Optimica-based solution of J = t f time-opti-

mal control problem (34)–(46) and Appendices 1, 2 and is

shown in Fig. 4a. The relative trajectories of a Foucault

pendulum swaying with respect to a uniformly rotating

Earth-associated non-inertial reference frame E have been

shown by Condurache and Martinusi (2008) in

Eq. (4.33) and Fig. 16, p. 755 of [3]. Comparison of

computational relative trajectories in the present work and

in Ref. [3] describes the similarity between these relative

trajectories. So it is possible to conclude that the relative

swaying motion of a spherical pendulum with guided non-

uniform rotation of the pivot center in Figs. 1, 4a and 6 of

the present study can be described as Foucault pendulum-

like motion.

5 Conclusions

I. The present work has developed and studied a dynamic

model of payload motion during non-uniform crane boom

slewing with an emphasis on Coriolis effects. The deriva-

tion of the governing dynamic equations was made with the

use of Blajer’s mathematical formalism and Blajer’s pro-

jection method. Time-optimal control problem was for-

mulated with the use of derived governing equations for the

motion of the system ‘‘crane boom–payload’’. By solving

the time-optimal control problem we find the control input

function u(t), which allows the transport of the payload

from the initial to the final position with minimum trans-

portation time.

II. The numerical solution of the time-optimal control

problem has been derived with an introduction of Optimica

and JModelica.org freeware. The graphical results of

numerical simulation of the absolute trajectories of payload

swaying were compared with experimental results. The

comparison of theoretical and experimental results showed

a satisfactory agreement between numerically derived and

empirical data. The results of numerical analysis have

extended our ideas about dynamics of the guided Foucault

pendulum-like systems.

III. Further analysis of pendulum swaying problems

during controlled crane boom slewing is promising through

the building of closed-loop control, the introduction of

additional degrees of freedom into the model of guided

payload motion (variable cable length, an arbitrary recti-

linear motion of pendulum pivot center B along crane

boom BD, etc.) and by taking into account random wind

load, as well as additional forced vibrations, generated

from the oscillating foundation (point O2 in Figs. 1 and 6)

in offshore- and ocean-engineering related problems.
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optimization RcraneOne(objective = finalTime,
startTime = 0,finalTime(free=true,min = 1,max = 45,
initialGuess=6))
Real x1(start=x1_0,fixed=true);
Real x2(start=x2_0,fixed=true);
Real x3(start=x3_0,fixed=true);
Real x4(start=x4_0,fixed=true);
Real x5(start=x5_0,fixed=true);
Real x6(start=x6_0,fixed=true);
Real x7(start=x7_0,fixed=true);
Real x8(start=x8_0,fixed=true);

input Real u;

parameter Real x1_0=0;
parameter Real x2_0=0;
parameter Real x3_0=0;
parameter Real x4_0=0;
parameter Real x5_0=0;
parameter Real x6_0=0;
parameter Real x7_0=0;
parameter Real x8_0=0;

parameter Real m=0.1;
parameter Real R=0.492;
parameter Real g=9.81;
parameter Real l=0.825;
parameter Real n_0=m*g;
parameter Real u_max=10;
parameter Real v_max=0.15;

parameter Real TS=0.015;
parameter Real KS=0.315;

parameter Real K1=-1/TS;
parameter Real K2=KS/TS;

parameter Real x1_N=0;
parameter Real x2_N=0;
parameter Real x3_N=0;
parameter Real x4_N=0;
parameter Real x5_N=0;
parameter Real x6_N=0;
parameter Real x7_N=3.1415926;

Appendix 1: Listing of the *.mop Optimica’s file
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der(x2)=x8^2*x1+(K1*x8+K2*u)*(R+x3)+2*x8*x4-
((m*l*((x1*der(x2)+x2^2+x3*der(x4)+x3^2)*(l^2-x1^2-x3^2)+(x1*x2+x3*x4)^2)/(l^2-x1^2-
x3^2)+m*g*l/sqrt(l^2-x1^2-x3^2))/m)*(x1/l);

der(x3)=x4;
der(x4)=x8^2*(R+x3)-(K1*x8+K2*u)*x1-2*x8*x2-

((m*l*((x1*der(x2)+x2^2+x3*der(x4)+x3^2)*(l^2-x1^2-x3^2)+(x1*x2+x3*x4)^2)/(l^2-x1^2-
x3^2)+m*g*l/sqrt(l^2-x1^2-x3^2))/m)*(x3/l);

der(x5)=x6;
der(x6)=-g+((m*l*((x1*der(x2)+x2^2+x3*der(x4)+x3^2)*(l^2-x1^2-

x3^2)+(x1*x2+x3*x4)^2)/(l^2-x1^2-x3^2)+m*g*l/sqrt(l^2-x1^2-x3^2))/m)*(l-x5)/l;
der(x7)=x8;
der(x8)=K1*x8+K2*u;

constraint
x1(finalTime)=0;
x2(finalTime)=0;
x3(finalTime)=0;
x4(finalTime)=0;
x5(finalTime)=0;
x6(finalTime)=0;
x7(finalTime)=3.1415;
x8(finalTime)=0;
x1^2+x3^2+x5^2<=0.01;
-u_max<=u;
u<=u_max;
-v_max<=x8;
x8<=v_max;

end RcraneOne;

parameter Real x8_N=0;

equation

der(x1)=x2;

754 J Braz. Soc. Mech. Sci. Eng. (2017) 39:737–756

123



Appendix 2: Listing of the *.py JModelica’s file

from pyjmi import transfer_optimization_problem
import matplotlib.pyplot as plt
import math
import numpy as N
def f(t):

return N.sqrt(0.492*0.492-t*t)
op = transfer_optimization_problem('RcraneOne',
'RCraneOne9.mop')
res = op.optimize()
t = res['time']
x1 = res['x1']
x2 = res['x2']
x3 = res['x3']
x4 = res['x4']
x5 = res['x5']
x6 = res['x6']
x7 = res['x7']
x8 = res['x8']
u = res['u']
r1=0.492
p1=(r1+x3)*N.cos(x7)+x1*N.sin(x7)
p2=(r1+x3)*N.sin(x7)-x1*N.cos(x7)
y=f(p1)
with open("out.txt","w") as out:
for i in range(len(p1)):
print(str(p1[i])+' '+str(p2[i]))

#f = open("out.txt",'w')

#f.close
plt.figure(1)
plt.clf()

plt.subplot(421)
plt.plot(p1,p2)
plt.grid()
plt.ylabel('p1')
plt.xlabel('p2')

plt.subplot(422)
plt.plot(t,x1)
plt.grid()
plt.ylabel('x1')
plt.xlabel('time')

plt.subplot(423)
plt.plot(t,x3)
plt.grid()
plt.ylabel('x3')
plt.xlabel('time')

plt.subplot(424)
plt.plot(t,x5)
plt.grid()
plt.ylabel('x5')
plt.xlabel('time')

plt.subplot(425)
plt.plot(t,x7)
plt.grid()
plt.ylabel('x7')
plt.xlabel('time')

plt.subplot(426)
plt.plot(t,u)
plt.grid()
plt.ylabel('u')
plt.xlabel('time')

plt.subplot(427)
plt.plot(t,x8)
plt.grid()
plt.ylabel('x8')
plt.xlabel('time')
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plt.subplot(428)
plt.plot(x1,x3)
plt.grid()
plt.ylabel('x1')
plt.xlabel('x3')

plt.figure(3)
plt.clf()

plt.subplot(111)
plt.plot(p1,p2,linewidth=2.0)
plt.plot(p1,y,'g--')
plt.xlim(-0.6,0.6)
plt.ylim(0.0,0.948)
plt.grid()
plt.ylabel('p1')
plt.xlabel('p2')

plt.figure(2)
plt.clf()
plt.subplot(111)

plt.plot(p1,p2,linewidth=2.0)
plt.xlim(-0.6,0.6)
plt.ylim(0.0,0.948)
plt.grid()
plt.ylabel('p1')
plt.xlabel('p2')

plt.figure(4)
plt.clf()

plt.subplot(111)
plt.plot(x1,x3)

plt.grid()
plt.ylabel('x3')
plt.xlabel('x1')
plt.show()

References

1. Benson DA, Huntington GT, Thorvaldsen TP, Rao AV (2006)

Direct trajectory optimization and costate estimation via an

orthogonal collocation method. J Guid Control Dyn

29(6):1435–1440. doi:10.2514/1.20478

2. Blajer W, Kołodziejczyk K (2006) Dynamics and control of

rotary cranes executing a load prescribed motion. J Theor Appl

Mech 44(4):929–948

3. Condurache D, Martinusi V (2008) Foucault pendulum-like

problems: a tensorial approach. Int J Nonlinear Mech

43:743–760. doi:10.1016/j.ijnonlinmec.2008.03.009

4. Modelon AB (2015) JModelica.org user guide: Version 1.17.

175 pp. Available from internet http://www.jmodelica.org/api-

docs/usersguide/JModelicaUsersGuide-1.17.0.pdf. Accessed 28

May 2016

5. Palis F, Palis S (2008) High performance tracking control of

automated slewing cranes. In: Balaguer C, Abderrahim M (eds)

Robotics and automation in construction, InTech, pp 187–198.

doi: 10.5772/5851

6. Perig AV, Stadnik AN, Deriglazov AI (2014) Spherical pendu-

lum small oscillations for slewing crane motion. Scien-

tificWorldJournal, p 10 (Article ID 451804). doi: 10.1155/2014/

451804

7. Perig AV, Stadnik AN, Deriglazov AI, Podlesny SV (2014) 3

DOF spherical pendulum oscillations with a uniform slewing

pivot center and a small angle assumption. Shock Vib, p 32

(Article ID 203709). doi: 10.1155/2014/203709

8. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko

EF (1962) The mathematical theory of optimal processes. Wiley,

New York, p 360

9. Sakawa Y, Shindo Y, Hashimoto Y (1981) Optimal control of a

rotary crane. J Optim Theory Appl 35(4):535–557. doi:10.1007/

BF00934931

10. Terashima K, Shen Y, Yano K (2007) Modeling and optimal

control of a rotary crane using the straight transfer transformation

method. Control Eng Pract 15(9):1179–1192. doi:10.1016/j.con

engprac.2007.02.008

756 J Braz. Soc. Mech. Sci. Eng. (2017) 39:737–756

123

http://dx.doi.org/10.2514/1.20478
http://dx.doi.org/10.1016/j.ijnonlinmec.2008.03.009
http://www.jmodelica.org/api-docs/usersguide/JModelicaUsersGuide-1.17.0.pdf
http://www.jmodelica.org/api-docs/usersguide/JModelicaUsersGuide-1.17.0.pdf
http://dx.doi.org/10.5772/5851
http://dx.doi.org/10.1155/2014/451804
http://dx.doi.org/10.1155/2014/451804
http://dx.doi.org/10.1155/2014/203709
http://dx.doi.org/10.1007/BF00934931
http://dx.doi.org/10.1007/BF00934931
http://dx.doi.org/10.1016/j.conengprac.2007.02.008
http://dx.doi.org/10.1016/j.conengprac.2007.02.008

	Numerical JModelica.org-based approach to a simulation of Coriolis effects on guided boom-driven payload swaying during non-uniform rotary crane boom slewing
	Abstract
	Introduction
	The state of the art and review
	Aims and scopes of the present research
	Prime novelty statement of research (highlights)

	Computational approach
	Mechanical formulation of the problem and the governing equations
	Mathematical formulation of the time-optimal control problem
	Results of numerical solution of time-optimal control problem

	Discussion, comparison and experimental verification of derived results
	Physical simulation approach to experiment
	Discussion and comparison of derived results with experiment
	Discussion and comparison of derived results with known published results

	Discussion
	Conclusions
	Acknowledgments
	Appendix 1: Listing of the *.mop Optimica’s file
	Appendix 2: Listing of the *.py JModelica’s file
	References




