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Abstract In this research, the buckling analysis of ortho-
tropic rectangular plate resting on Pasternak elastic founda-
tion was studied, using Frobenius exact solution method.
The plate is subjected to biaxial in-plane loading with non-
uniform distribution. It is assumed that it is simply supported
by two opposite sides, and the remaining two edges can have
any arbitrary conditions. To extract the governing equations
on the buckling of the plate, the classical plate theory based
on Kirchhoff hypothesis is employed. According to Levy
solution, the buckling equation is reduced to an ordinary
differential equation. Frobenius method is exploited in the
governing equation, and the eigenvalue equation is obtained,
imposing the boundary conditions on the other two sides. By
solving the eigenvalue equation, the dimensionless critical
buckling loads are determined. The accuracy of presented
results is validated by comparing with available results in
previous studies and also finite element method. Further-
more, the influences of some parameters such as aspect ratio,
the ratio of elasticity modulus of the plate in two in-plane
directions, the type of non-uniform loading in two states
of uniaxial and biaxial loadings, various combinations of
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boundary conditions, lateral and shear stiffness coefficients
of elastic foundation are examined on critical buckling.
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1 Introduction

The applied structures in buildings, bridges, reservoir
foundations, swimming pools, and various economic and
industrial designs are formed from different components,
of which the most important parts are plates. The plates in
many structures are subjected to various tensile, bending,
and compressive and shear loadings in various working
conditions. In safe conditions, such loads cause buckling
or static instability, which is very important in practice. A
plate may be subjected to non-uniform load at the edges
that can be applied as linear or nonlinear [1]. A compre-
hensive analysis was presented by Timoshenko and Gere
[2] in which the linear and nonlinear buckling problems
for plates with different forms under a variety of load-
ings and substantial presentation of the results of critical
loads and buckling modes that are widely used in practi-
cal engineering design. Extensive studies about buckling
of rectangular plates, being subjected to uniform in-plane
loading, have been performed by Michelussi [3]. Leissa
and Kang presented an exact solution for buckling analy-
sis of a thin rectangular plate with two opposite simply-
supported edges, using power series of Frobenius. In their
work, the in-plane loading varies linearly along the edges.
Additionally, they examined the vibration of an isotropic
rectangular plate under linear load in another research [4,
5]. Javaheri and Eslami investigated the buckling of FGM
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plates under compressive plane load. They concluded that
the critical buckling load for FGM plates increases as the
ratio of width per length rises, and on the other hand, the
critical load decreases as the ratio of width per thickness
grows [6]. Bret and Devarakonda examined the buckling of
rectangular plates with simply-supported boundary condi-
tions at the edges which are subjected to sinusoidal load-
ing, using Galerkin method [7]. The buckling of rectangu-
lar plates subjected to a variety of non-uniform loadings
such as concentrated, local, sinusoidal, and other loadings
was studied by Jana and Bhaskar [8, 9]. Wang et al. utilized
the differential quadrature method to calculate the buck-
ling load of rectangular plates which are subjected to non-
uniform load at the edges. They examined cosine, linear,
and parabolic shaped loads in the buckling load [10-12].
Hosseini-Hashemi applied Mindlin’s plate theory to study
isotropic rectangular plate buckling under in-plane loading
with different boundary conditions [13]. Kumar Panda and
Ramachandra investigated the buckling of composite plates
subjected to non-uniform linear and parabolic shaped load-
ings at the edges, using shear deformation theory [14]. Lat-
ifi et al. examined the buckling of rectangular plates made
of FGM in different boundary conditions and under biaxial
compressive loading. The analysis is based on the classi-
cal plate theory with large deformations [15]. Abolgha-
semi et al, investigated the buckling of rectangular plates
under non-uniform in-plane load, using the first-order shear
deformation theory. The results were compared with the
numerical solutions and those of the classical theory [16].
Orthotropic plates had high efficiency in civil infrastructure
and other structural applications, because, they had such
advantages as high stiffness ratio and resistance versus
weight. Concrete slabs with reinforced asymmetric steel
on both sides are examples of orthotropic plates. Harris
presented the buckling analysis of orthotropic rectangular
plates which were subjected to uniaxial and in-plane load-
ings in two directions [17]. Hwang and Lee analyzed the
buckling of orthotropic plates under optional in-plane load.
They examined the behavior of the plate under non-uni-
form loading with various boundary conditions, using the
finite element method [18]. Lopatin and Morozov investi-
gated the buckling analysis of orthotropic plate with CCFF
boundary conditions. The problem was solved via partial
differential equations and Galerkin method [19, 20]. Thai
and Kim applied Levy solution to the buckling analysis of
orthotropic plates, using two-variable refined plate theory
[21]. Jafari and Eftekhari analyzed the buckling load and
the natural frequencies of rectangular orthotropic plates
located on elastic foundation for various types of loadings
and boundary conditions, using a combination of Ritz and
differential quadrature methods [22]. It is observed that one
of the main conditions of the stability of a structure is pro-
viding appropriate support for the structure, the reaction of

@ Springer

the structures on the foundation has long been considered.
In Winkler model, the elastic foundation is independently
modeled, using a series of springs. Despite the effective-
ness of this model, the behavior of the elastic foundation is
actually continuous, but it models the independent springs
to analyze the behavior of the elastic foundation [23]. To
correct this deficiency, researchers used Pasternak model,
which is the most common one in this area, by adding a
beam or plate with lateral shear stiffness [24]. Kim exam-
ined the stability and dynamic response of a thin infinite
plate resting on Pasternak foundation [25]. Saeidifar and
Sadeghi presented an analytical solution for the buckling
analysis of rectangular plate under uniaxial compressive
loading with changes in the thickness and modulus of elas-
ticity in the y direction [26]. Akhavan et al. introduced an
exact solution for the buckling analysis of Mindlin rectan-
gular plates under uniform in-plane linear loading on elas-
tic foundation, assuming two opposite simply-supported
edges. To extract the governing equations, the analysis
method is based on Mindlin theory, considering the effect
of first-order shear deformation and interaction of plate-
foundation. Moreover, in two other papers, they examined
the analysis of free vibration of Mindlin rectangular plates
under uniform in-plane linear loading [27, 28]. Hosseini-
Hashemi et al. investigated hydrostatic vibration and
buckling analysis of rectangular plates resting on Paster-
nak foundation and subjected to in-plane loads with linear
variation for different boundary conditions [29]. Bodaghi
and Saidi examined the buckling behavior of rectangular
plates made of FGM materials on elastic Pasternak foun-
dation under in-plane uniaxial linear and nonlinear load-
ings, based on the classical theory. Using Levy solution,
the buckling equation was transformed to an ordinary dif-
ferential equation with variable coefficients and then was
solved exactly using power series of Frobenius method
[30]. Panahandeh Shahraki et al., studied the buckling of
FGM cracked plates supported by Pasternak foundation
[31]. Foroughi and Azhari presented the buckling and free
vibration of thick FGM plates resting on Pasternak elastic
foundation, using finite strip method. The buckling analy-
sis was carried out by normal finite strip method [32]. Yag-
hoobi and Fereidoon presented the analysis of mechanical
and thermal buckling of FGM plate on elastic foundation,
supposing shear deformation theory [33]. Viswanathana
and Navaneethakrishnan investigated the buckling analysis
of rectangular plate with variable thickness resting on elas-
tic foundation, using spline approximation method [34].
Lam and Wang presented common exact solutions for elas-
tic bending, buckling, and vibration of rectangular plate,
using Levy solution on two-parametric elastic foundation
via Green functions [35].

According to the abovementioned literature review, sev-
eral works have been published on isotropic plate buckling
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under uniform uniaxial or biaxial loadings, whereas the
buckling of orthotropic plate with non-uniform nonlinear
loading is less considered, mainly due to the complexity of
the solution process. This study introduces an exact analy-
sis for the buckling of orthotropic rectangular plates based
on the classical plate theory. It is assumed that a rectangu-
lar plate is resting on Pasternak (two-parametric) elastic
foundation and is subjected to non-uniform in-plane biaxial
loading. Using Levy resolution, the buckling equation is
reduced to an ordinary differential equation with variable
coefficients. It is solved using power series of Frobenius.
By applying different combinations of boundary conditions
along the opposite edge of the plate, the critical buckling
load is obtained. The accuracy of results is confirmed by
comparing them with those of previous studies as well as
the finite element method. Also, the influences of parame-
ters such as aspect ratio, the ratio of modulus of elasticity in
two different directions, the type of non-uniform loading in
both uniaxial and biaxial states, the various types of bound-
ary conditions, the foundation coefficients on the critical
buckling load of plate are examined.

2 Formulation presentation

Assume a rectangular thin plate with lateral dimensions of
a x b and uniform thickness of %, as shown in Fig. 1, which
is simply supported at x = 0, a while the other two edges of
y = 0, b have any arbitrary conditions such as the clamped
(C), and simply (S) or free support (F). It is assumed that
the material is orthotropic, and the main orthotropic direc-
tions are in the directions of x and y-axes. Shear modulus
G of the plate and the relationship between four independ-
ent elastic constants can be expressed as follows [1]:

v/ ExEy Uy Uy
Grn oV o ()
2+ ow) BB

In the plane stress condition, bending and torsional stiff-
ness of the orthotropic plate is defined as follows [1]:

E.h3 Eovyh?
Dj=——————~, Dp=Dy=—r>—
12(1 = vyyvyx) 12(1 = vyyvyx) )
Eh3 Goh? 2)
y y
Dy =———————-, D¢ = .
12(1 — vyyvyx) 12

The governing equation in the buckling of orthotropic
rectangular plate under biaxial in-plane loading, regardless
of the shear force ny per unit of the length, which rests on
Pasternak elastic foundation is as follows [30]:

— ks

‘:_’l\'h‘

X, ¢

Rigid substrate

Fig. 1 Orthotropic rectangular plate resting on Pasternak elastic
foundation

d*w 4
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where K, and K| are the coefficients of lateral and shear
stiffness of the foundation, respectively. W, N,, Ny are out-
plane displacement, and the normal forces per unit of the
length along x and y directions, respectively. To make a
dimensionless form of the governing Eq. (3), the following
parameters are defined as follows:

X y & 1 an 1
‘f:—, n==:= = =, L A—
a b ox a dy b
ow dwdE  ow (1 ow dwadn 0w (1
ax ~ 9& dx 3t \a dy  dndy on\b @)

Based on Levy approach, the following expansions of
displacements are chosen as follows by considering that the
two opposite sides of the plate are simply supported in x
direction:

w(n,§) = Yu(n)sin(mné), 5)

where Y,, is a function of 1, and m is the number of half-
waves of the shape modes in x direction. This function
satisfies boundary conditions in £ = 0, 1. Substituting the
parameters of Egs. (4) and (5) in (3), and arranging it based
on the order of Y,,, the following equation can be obtained:

D G)AY,{Y + [—zmn + 2060 (") - K<bi2) —N(b%)] v,
o () ke () () =

(6)
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Fig. 2 Schematic of non-uni- »i
form loading cases of in-plane
loading with boundary condi-
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2.1 Orthotropic rectangular plate under biaxial
loading

In this section, various types of non-uniform loading are
examined, and the governing differential equations of plate
buckling are solved by Frobenius method. The distribution
of in-plane loading per unit length in direction x is consid-
ered as follows:

N = —uNo (a0 + arn + ax? + ayi +agn’* + a5’ (7)

where a;, a,, a;, a,, and as are determined as dependent
on the type of loading. N, is the maximum intensity of the
in-plane load per unit length. The loading in y direction is
defined in the form of the mean function of loading in x
direction with proportion coefficient (R) as Eq. (8):

I mr\2 Ky NoRp
Du(~) ¥V + | =202 +2D (—) B e
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a+ 5 +—=+—+—-
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—
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(CASE-E): N, ==N, (2n-1")
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_ _ 1
Ny =RN,;, N;= b /Nxdy = /Nxdn
0 0

®)

Ny=—RuNo(ao+ 2+ S+ 2+ 24+ 2)
= — awt+—+—+—+—+—).
S N T T R

In this study, five cases of loading are examined accord-
ing to Fig. 2. Also, the coefficients of a; and 1 can be seen
for each case in Table 1.

2.2 Applying Frobenius method to governing equations

Suppose that the rectangular plate is under in-plane loading
according to Fig. 2 in both x and y directions. N, is the inten-
sity of compressive force (load factor per length unit). In gen-
eral, to solve the governing equation by substituting Eqgs. (7)
and (8) in (6), the following equation can be obtained:

al an as ay

as 1"
— Y
273y 5+6)}m

mm\4 mi \ 2 ’ 3 4 5\ /mm\2
+ D“(T) +KW+KS(7) —MNo(ao+a1n+a2n +asn’ + a4n” + asn )(7> Y, =0. 9)
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Table 1 Different types of loading rectangular plate

Load case yZ ap a as a; s s
CASE -B 1 1 i) 1 0 0 0
CASE -C 3 1 4 4 0 0 0
CASE -D 2 0 -1 2 0 0 0
CASE -E 1 0 2 1 0 0 0

The differential Eq. (9) can be solved exactly by the
power series solution, using Frobenius method:

o0
Y= Coun™. (10)
n=0

By substituting the power series of Eq. (10) in (9), the
result is as follows:

N [
D (b) (Z n(n = 1)(n = 2)(n - 3)Cm,nn"“‘>
n=4
m\2 1
+ |:—2(D12+2D66)(ab> —Ks<bz>

R al ar az aq as
S\ un ( i, 4 u —)

o (11
(Z n(n — 1>cm,nn”—2>

n=2

mm \4 mi \ 2 mr\2] [
+ [Dn (7) + Ky + K <7> — No <ao +an+am® +an’ +ain’ + asns) <7) ] (Z Cm,nn"> =0
n=0

By collecting the indexes of Eq. (11), multiplying two According to the same indexes for coefficient °, the fol-
equal sides of the equation in 5*/D,, and considering the fol-  lowing equation is obtained:
lowing dimensionless parameters, Eq. (12) results as follows:

Dyy =Dy, Dx=D; (Di2+2D¢)=D3

0-% & _Kb* & _ Kb? N _ Nob? 5T
T T T T o P o
(12)
After rearranging, Eq. (13) is obtained in the following
way:

e D> D3 = aj a a3 a4 as _
S (20 490+ 30+ 20+ DCia + |22 B? =Ko+ (a0 + 5+ 5+ F+ 5+ ) uriy
o \\Di D, 2 3 456

X (1421 + DCii2+| (B + K + Ki(B)? = aouNo(B)?| Co )"
— (a11No(BY o ) 1" " = (a2No(BY o ) 1" = (a31No (B o ) 1"+

— (asuNo(BY2Con )"+ = (asitNo(B) Con )™+ ) = 0.

13)
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a a3 ay as) -
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and for coefficient 771, it can be calculated that:

Cps = D1 —6—2&(ﬂ)2—k;+(ao+—+—+—+—+ )RuNo Cn3
’ 120D, D ‘ 2 3 4 5 6

— [®" + Ky + B(B)? — aouNo(B)?| Cona +(a18N0(BYCino ) )

and for coefficient 7%,

D Dy 5 - ay  a a3
Cor = 12|23 — K ( a,n, B )R No| Cun
m6 <360D2>( [ D](,B) s+ ao+2+3+4+5+6 Mo]
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and for the coefficient n3,
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" 840D, D, : 2 3 4 5 6
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and for coefficient n4,
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Cms = (1680D2)< 30{ 2p, B Kt (“°+ 2 +5 3 4 5
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4
6
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and for " n=>5,6,7, ... equals:

D,
Dyin+4)(n+3)(n+2)(n+1)

(— [_21)3(5)2 -

+<a0+ 3 ? + I + g + 2 )R/LNO}(n+2)(n+ 1)Cponia
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(14)
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@ Springer



J Braz. Soc. Mech. Sci. Eng. (2017) 39:953-967

959

Table 2 Convergence test of
the critical buckling load factors
for orthotropic rectangular thin
plate under biaxial non-uniform
in-plane loading resting on
Pasternak elastic foundation for
CASE-A

Boundary conditions N

20 30 40 45 50 55
scsc 45.923M 44.617% 44.831? 44.831% 44.831® 44.831®
SSsC 32.934M 33.1020 33.1020 33.102 33.102M 33.102M
SSSS 26.6951 26.4731 26.4740 26.4741 26.4741 26.4741
SSSF 257171 24.982() 24.9830 24.983M 24.983M 24.983(M

0=2,R=1,K,.K,=10,E/E, =2

Equations (14)—(19) are reversibility equations for C,, ,
as arbitrary coefficients when n > 4.

2.3 Types of loading

Once the rectangular plate is subjected to in-plane CASE-
A loading according to Fig. 2, —N,, (load factor per length
unit) is the intensity of compressing force in n = 1/2. Based

on Eq. (20) to solve this state, Cosine Taylor polynomial
expansion is used.

1
Ny = —Nycosm <n — 2) (20)

and,

2n
Nx:—N()COSﬂ<n_%) :_N()i(il) (n—(ni%)) ‘
n=0

(2n)!

(20-a)

By expanding and arranging the abovementioned series,

and as regards the sum of the first three terms has sufficient
accuracy:

Ny = —No[1 - 2x? : 2—% Lo A
=— — -7 (n—= A
x 0 2T\ 3 247 \"7 3

(20-b)

1 1 1 1
Ny = —No <7T4774 — —n4n3 + (16714 - 2712)772 + (

Generally, for the other kinds of loadings of A, B, C, D,
and E, the values of ¢; and p can be replaced in Eq. (9) and
can be solved by Frobenius method.

3 Boundary conditions

So far, different values of C,,, are obtained by reversible
relationships in terms of C, o, C,,;, C,,,, and C,, ;. To cal-
culate the values of these coefficients, it is required to have
the equations that can be achieved by applying the bound-
ary conditions. For each edge of the plate n = 0, 1 accord-
ing to the boundary conditions, two equations can be writ-
ten. These two edges may admit any boundary condition
(including simply, clamped, and free-edged support). For
dimensionless boundary conditions, we give:

Simply w=0, — =0

ow
Clamped w=0, — =0
an
92w . 92w
an? 9£2
3 83

Py
an’ anog?

Free =0,

_ 0w
+ K

s — = 0.
v (23)

By substituting Eq. (5) in (23), the following equations
can be obtained:

By naming the terms like Table 1 as follows, the values
of g; are obtained:

1
ISR S
a0 s7 T34
a) = -nm° — —T
T 22)
R R
2= 2
1, 1,
- = 7% =0
B=TT" “=ym B

1 1 1
2 4 2 4
S 1= om? o — .

T )”+( 87 Taga” )) @D

Simply Y, =0,Y, =0

Clamped Y, =0,Y,, =0

2
Free Y, — v(ng> Y =0, (24)
mr\? -
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Table 3 Comparison of the

critical buckling load parameter (I_(W’ KS) o References Boundary conditions

(Ny) for a thin square plate SCSC SSSC SSSS SSSF

(Q = 1) subjected to uniformly

and linearly distributed in-plane (10,100) 0.5 Bodaghi and Saidi [30] present study 270.562% 251.325@ 245.480? 215.029V

compressive loading resting on 270.562®  251.325@ 245.480? 215.028Y

Pasternak elastic foundation (100,10) 0  Akhavan et al. [27] present study 913632 829022  69.610" —
91.365%  82.903?®  69.6101" 36.801"

(1000, 100) O  Akhavan et al. [27] present study 229.971® 219.968% 212.014% -

229.973?  219.969?® 212.015® 175.260"

Nx = (1 - 0”7)7 Ex/E\ =1
4 Critical buckling load

By applying different boundary conditions to each kind
of loading, four equations with variables C,, o, C,, |, C,,»,
and C,, ; are achieved. To obtain a non-trivial solution of
the system, the determinant of the coefficients matrix is
set to zero. By solving the eigenvalue equation, the values
of dimensionless buckling loads of Ny can be achieved.
Substituting each Ny in four homogeneous equations, the
values of corresponding eigenvectors of C,,, represent-
ing the shape mode (m) can be determined. The minimum
value of Ny represents the critical buckling load. Numeri-
cal results of power series method are presented in the
next section and are achieved according to Table 2, con-
sidering adequate term (N = 55) for convergence. In this
table, N is the total number of existing terms in the power
series solution method. The highlighted critical buckling
load shows the best convergence values in each column
with minimum N.

5 Evaluation of accuracy and reliability of results

To demonstrate the validity of the results of Frobenius
solution for rectangular plate, first they have been com-
pared with those in the literature review in Tables 3 and 4,
and for all boundary conditions, validity and accuracy are
observed.

6 The analytical results and discussion

6.1 The effect of ratio of elasticity modulus and the
method of loading on the critical buckling load

To examine the critical dimensionless buckling load in
each type of loading according to boundary conditions, two
tables are presented. In the first table, the coefficient val-
ues of Winkler and Pasternak foundations (lateral and shear
stiffness) have been fixed, and the effects of boundary con-
ditions, aspect ratio, the ratio of modulus of elasticity, and

@ Springer

Table 4 Comparison of the critical buckling load parameter (N¢;) for
thin rectangular plates subjected to uniformly and linearly distributed
in-plane compressive loading

Boundary ] o  Reference [4] Reference Present
conditions [27] study
Nee! 0.67 0 68.800) 68.816D 68.816D
0.66 0.5 91.4300 92.4150 91.429
SSsC 0.8 0 533900 53.393(0 53,3930
0.78 0.5 68.480) 68.9770 68.522()
SSSS 1 0 39.4800 39.478M 39.478M
1 0.5 52.490 50.673V 52.494M
SSSF 10 0 4200 42820 42950
10 05 6.7000) 6.7651 6.8711

N,=(—an), EJE,= 1

the kind of loadings as uniaxial and biaxial are investigated.
Superscript numbers in parentheses represent the buckling
mode. Based on Tables 5, 6, 7, 8 and 9, it can be found that
the critical buckling load generally decreases as aspect ratio
(Q) increases. As a result, the maximum buckling corre-
sponds to the aspect ratio (Q = 0.5). Additionally, it can be
seen that by increasing the aspect ratio, the critical buckling
load factor sometimes remains constant; for example, in the
Table 5 for rectangular plate (CASE-A) with the boundary
condition (SCSC) and (R = 0), when E,/E, = 0.5, the criti-
cal dimensionless buckling load Ne = 259.352 is obtained
for aspect ratio (Q = 0.5, m = 1), (Q =1, m = 2), and
QO = 2, m = 4. This is due to the fact that parameter 8
appears to determine the coefficients matrix.

While the ratio of coefficients of m and Q in that param-
eter has been chosen as a constant value, the buckling load
factor does not change. It should be noted that this phe-
nomenon is a familiar behavior in buckling of plates, that is
not limited to orthotropic plates on elastic foundation. Fur-
thermore, by increasing the aspect ratio, the critical buck-
ling load factor remains occasionally constant, whereas
the critical buckling mode increases. As it is evident in all
tables, the maximum buckling mode corresponds to the
aspect ratio Q = 10.
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Table 5 The critical buckling load factor (N) for the isotropic and orthotropic rectangular plate with different boundary conditions under axial
and biaxial non-uniform in-plane loading for CASE-A

% Boundary conditions ~ Q
0.5 1 2 10
R
0 1 0 1 0 1 0 1
0.5 SCSC 259.3520 212,744 259.352®)  212.744® 2593529 209.274®  257.272»  208.73119
SSSC 245.1500  203.6320  245.150®  197.447 2451509  193.892®  245.060C"  193.38419
SSSS 233.2361  196.2671  233.236®  179.4331  233236“W  179.433® 23298419  178.968!V
SSSF 215.3840  193.1490  215384® 17232500 208.009®  172.325®  208.009"Y  172.1501D
1 SCSC 2337820 191769V 233782®  188.636"  233.782%  183.088%  233.578@D  182.882(¥
e 226.5360  188.0541V  226.536®  176.146V  226.536®  176.146®  226.536%0  174.584(1?
SSSS 220.1030  184.811V  220.103®  167.091V  220.103®  167.091®  219.579%0  166.843D
SSSF 20833510 1837720 208.335®  163.709)  201.970%  163.709®  201.950"®  163.645D
2 SCsC 219.1230  179.1520  219.123®  169.472V  219.123® 168237  219.123?Y  167.025"Y
SSSC 214.817%  177.8310  214.817®  163.962V 2148179  163.962?®  214.641"Y  163.0391?
SSSS 211.3480 1765981 211.348®  159.5360  211.348®  159.536®  210.655"Y  159.2601"
SSSF 205.320  176.33000  205.320® 1579181 199.851®  157.918®  199.358!9 15777701
3 SCSC 2145811 174056V 214.581®  162.603"  214.581%  162.598®  213.321@Y  160.960!'?
SSSC 212798 173401V 212798 159.2741 212798 159.274® 21232818 158.475(1?
SSSS 2104030 172771V 210.403® 15643010 210.403®  156.430?  209.626'®  156.086!)
SSSF 202.8270  172.6940  202.827® 1554801V  198.124®  155.480?®  197.63119 15523910

K,, = 100, K, = 100

Table 6 The critical buckling load factor (N) for the isotropic and orthotropic rectangular plate with different boundary conditions under axial
and biaxial non-uniform in-plane loading for CASE-B

% Boundary conditions ~ Q
y
0.5 1 2 10
R
0 1 0 1 0 1 0 1
0.5 SCSsC 364.5680 2755960 364.568% 2423591 364.568@  242359%  364.568%0  241.5291D
SSSC 261.4330  204.077Y  261.433®  150.1750  252.549%  148.7531  251.01819  147.4027
SSSS 2539810 200.416Y  253.981® 1245520 232,631  100.898"  232.22614 92.612
SSSF 2474520 200.348"  197.0590  123.593V  197.059®  102.4931  197.05919  100.920%
1 sScsc 279394 2113490 279.394® 154811V  278.903%  149.4401  273.47817  149.4400
SSSC 213.9900 165382 213.990®  105.1160  194.235® 942580 19407914 93.048"
SSSS 211.605%  164.77510  194.8541 947700 186.353® 714050 18335713 63.009"
SSSF 209.6771  164.8490  163.8671 96.00610  163.867? 752450 163.86710 72.149®
2 scsc 2255260 169.0200  225.526®  107.642V  210.931® 943700 210.9311% 91.583M
SSSC 181.980" 1379111 167.4700 79.5350  158.226® 65.942M  155.6441% 62.8551
SSSS 1813290 137.8851  156.013 76.2491 1553733 555590 150.32302 48.1561
SSSF 180.896"  137.87010  142.333D 77.0070  142.333@ 587540 142.1940D 55.785®
3 Nee 2027660 150.186"  202.766@ 90.4851  184.290® 75.5871  184.1871% 71.8851
SSsC 167.8140  125.0730  147.3150 69.703M  143.411® 56.0860  139.6211Y 527691
SSSS 167.5310 1250731 140.2841 68.368)  140.284® 498350 136.058? 431870
SSSF 167.3740  125.0570  132.3030V 68.6860  132.303® 523760 131.6191D 49.623®
kw 107 1_<s =10
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Table 7 The critical buckling load factor (N) for the isotropic and orthotropic rectangular plate with different boundary conditions under axial
and biaxial non-uniform in-plane loading for CASE-C

% Boundary conditions ~ Q
'y
0.5 1 2 10
R
0 1 0 1 0 1 0 1
0.5 SCSC 335.6280  189.1990 335628  111.8240  335.628% 94741V 332.820%?  89.909V
SSSC 212.505Y  125.405%  212.505@ 719040 212.505% 56271V 210.6691®  51.4051
SSSS 183.8291  118.980V  183.829Y 56.0810  170.396®  37.189"  170.2591% 31,0110
SSSF 48.006" 532110 30.9911 36.5611 30.991®  36.560? 30.742 36.3249
1 SCSC 246.508"  137.3990)  246.508? 717100 246.508% 5502500 246.3820%  50.4200
SSSC 165.232( 945370 165.232@ 50.1200  160.693® 35651 160.11199  31.196
SSSS 150.0211 93.924  142.8360 43.0330  135.483% 263390 1339831 21,0971
SSSF 36.4410 40.672V 22.1050 273510 22.105%  27.351@ 21.701® 2735140
2 scsc 239.069V 95.548M  239.069? 502290 188.824® 34760V  186.00417  30.6581
SSSC 132.0120 719811 132.012® 374600 125.168% 24932V 125.1681%  21.073D
SSSS 124.2501 703510 113.811D 351110 111.109% 205250 108.89313  16.124D
SSSF 32.0770 34.054M 18.0361 20.853M 18.036%®  20.853@ 17.168® 20.745
3 SCSC 195.02610 79.8141 1950261 425260 160.443% 278510 160.4431Y  24.0631
SSSC 116.694 619610 116.694@ 322820 110.011%®  21.195"  110.0119Y  17.691D
SSSS 109.7510 60.7841  101.7231V 31.799M 99.991®  18.4400" 97.8161 23,502
SSSF 29.935M 31.368D 16.2179 18.3641 16.217%  18.364@ 15.1927 18.108®
K, =10,K, = 10

Table 8 The critical buckling load factor (N) for the isotropic and orthotropic rectangular plate with different boundary conditions under axial
and biaxial nonlinear in-plane loading for CASE-D

% Boundary conditions ~ Q
y
0.5 1 2 10
R
0 1 0 1 0 1 0 1
0.5 SCSC 418.1141  308.2240  418.114®  300.742V 393217 282.0291 39234729  269.7251"
SSSC 417.1440  308.147V  417.144®  276.104V  393.025® 1862720 3922109  154.860"
SSSS 240929V 188.995)  240.929%  144.592V 240929  110.4020  240.2731 93.0310
SSSF 62.9261 652771 40.799 42.963M 40.799? 42.963? 40.5519 42.6699
1 SCSC 291.1360  215.6920  291.136%®  215.6900  288.918®  163.571  287.038?Y  151.2581
SSSC 290.94110 2156831 290.941®  182.2570  288.891®  118.069"  286.979?Y 93.980"
SSSS 185.5690 1443950 185.569®  104.382(0  183.482 778150 181.72917 63.2940
SSSF 48.6740 507110 29.2031 31.0300 29.203? 31.0300 28.680 30.5239
2 SCSC 213.7290  158.083)  213.729% 12481010 213.7299  103.041V  213.729@9 91.972M
SSsC 213.697"  158.0620  213.697%  124.612V  213.697% 82.654  213.697?9 63.486"
SSSS 1483001  113.8841V  148.300? 784771 141.518® 60.0390  141.50819 48.3741
SSSF 43.4531 443611 24.0251 24.8911 24.025® 24.891® 22.848® 23.746®
3 Nee 1824491 1344110 182.449® 1013751  182.449W 823240 181.8671” 72.1891
SSSC 182.4381 1344000 182.438® 101357V 182.438% 703460 181.8491% 53.300V
SSSS 132.1530  100.478D  132.153® 675560 124.006® 533790 124.006" 43.3810
SSSF 40.9470 415631 21.7740 223951 21.774® 22.395® 20.3507 21.0277
kw 107 1_<s =10
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Table 9 The critical buckling load factor (N) for the isotropic and orthotropic rectangular plate with different boundary conditions under axial

and biaxial non-uniform in-plane loading for CASE-E

% Boundary conditions ~ Q
0.5 1 2 10
R
0 1 0 1 0 1 0 1
0.5 SCSC 308.8980 2429140 308.898% 2424611  307.489%)  235256%  305.157%Y  235.25619
SSsC 299.009"  238.61010  299.009?® 2204531 299.009¥  220.453?®  297.941?»  220.348°
SSSS 265.9240 2143640 265.924®  190.637V  265.924®  190.637?  265.924%Y  190.123®
SSSF 183.7690  181.6711  183.769% 165240  174.407® 165240  174.407"Y  164.21112
1 SCSC 2753681 215999 275368  203.079"Y  275.368%  203.079®  274.509@Y  202.0311?
e 271159 215173 271.159® 195397V 271.159%  193.601V  270.964%D 1925231
SSSS 249.0950 198387V 249.095®  176.027V  249.095®  176.027®  249.086"?  175.687®
SSSF 168.7700  169.628V  168.770®  153.947D 159282  153.947®  159.092(%  152.87512
2 SCsC 2544410 198.0661"  254.441®  181.306"  254.441%  181.306® 254330V  181.2681D
SSSC 2525920 198.001V  252.592®  179.556V  252.592®  178.988V 2525920  177.1811
SSSS 237.6051  186.2501  237.605®  166.069"  237.605¥  166.069®  237.52919  166.022°
SSSF 161.7181  160.1490  159.0360  144.6360  151.324®  144.636®  150.826"Y  143.582(12
3 SCSC 2458251 190.065"  245.825®  173.028"  245.825%  173.028®  245.825%0  173.02817
SSSC 2446510 190.059"  244.651® 172519 2446519 172519 244.651%0 17251910
SSSS 2326310 180.513V  232.631®  161.597  232.631%  161.597® 23255819  161.59710
SSSF 159.4870 1569160 154944 141.06010  148.592®  141.060%  147.929Y  140.1451?

K,, = 100, K, = 100

When the plate is subjected to uniaxial loading (R = 0),
the critical buckling load occurs in higher modes, com-
pared to biaxial loading. Critical buckling load values of the
plate, while it is subjected to biaxial loading (there are a few
exceptions), decrease in comparison with the uniaxial state.
For example, in Table 7 for rectangular plate under sample
loading (C) with the boundary condition SSSS when the
ratio of modulus of elasticity in two different directions is
2 and the aspect ratio is Q = 2, the critical buckling load is
reduced from the value of N, = 111.109 to N, = 20.525.

It can also be observed that as the ratio of the modulus
of elasticity in two different directions (isotropic and ortho-
tropic) increases, the value of dimensionless buckling load
decreases. In all Tables of 5, 6, 7, 8, and 9, the maximum
buckling load is associated to the plate with SCSC bound-
ary condition. In other words, when two edges of the plate
are clamped, the critical buckling load increases, compared
to the simply-supported and free edges. It can also be seen
in the state of uniaxial loading (R = 0) that the minimum
buckling load is associated with SSSF plate.

6.2 The influence of stiffness coefficients of elastic
foundation and combinations of boundary
conditions on the critical buckling load

In this section, the influences of elastic foundation
coefficients and boundary conditions for a rectangular
orthotropic plate on the state of biaxial loading can be
observed. According to Tables 10 and 11, it is obvious
that the minimum buckling load is associated to the state
in which there is a rectangular plate without elastic foun-
dation. When Ky = 100, Ks = 0, the value of buckling
load increases in comparison with that of the foundation-
less state. As expected, when the coefficients of elastic
foundation increase, the values of dimensionless critical
buckling load rise, and, rising rates of these amounts for
the coefficient Pasternak elastic foundation (shear stiff-
ness coefficient) are more than those with the variation of
the coefficient of Winkler elastic foundation (lateral stiff-
ness coefficient).
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Table 10 The critical buckling load factor (N;) for the orthotropic rectangular plate with different boundary conditions under biaxial non-uni-
form in-plane loading for CASE-A versus foundation stiffness coefficients

(K, Ky) Boundary conditions 0
0.5 1 1.5 2 25 3 10

(0, 0) Nee 57.632D 30.979 29.023V 29.2320 29.384? 29.023@ 29.030©
SSsC 55.4350 23.796 18.780M 172910 16.683M 16.381) 15.833M
SSSS 53.6440 38.874M 36.957 34.284M 33.0510 32.382(0 31.0030M
SSSF 52.982) 16.609 30.8741M 27.896) 26.512) 25.7561 24.183M

(0, 100) SCSC 176.8871 163.578M 162.897? 163.578» 162.445%) 162.897% 162.44512)
SSSC 175.5150 157.657 159.212® 157.657® 157.979® 157.657% 157.58011
SSSS 174.2350 152.858M 154.62611 152.858 153.308® 152.858® 152.850
SSSF 173.9100 149.812( 149.394(0 149.812® 148.955® 149.394® 148.955®

(100, 0) Nee 59.930) 36.854 37.1830M 36.854? 36.567? 36.854% 36.519°
SSsC 57.818) 30.089) 27.570 27.426 27.562 27.570® 27.4250)
SSSS 56.0950 26.092) 22.824M 22.5050 22.636 22.809) 22.505®
SSSF 55.5930 26.137M 25.389) 26.137? 25.054? 25.389@ 25.054®

(10, 10) SCSC 69.805 448310 43.999M 44.831® 43.872® 43.999® 43.872®
SSsC 67.7561 37.8941 33.979 33.103M 32.845M 32.754D 32.698?
SSSS 66.0420 33.385(0 28.0561 26.4741 25.8361 25.524M 24.983M
SSSF 65.4970 31.2840M 25.873D 24.983M 25.243M 25.782(0 24.9830)

R=1, EX/E‘, =2

Table 11 The critical buckling load factor (N.;) for the orthotropic rectangular plate with different boundary conditions under biaxial non-uni-
form in-plane loading for CASE-B versus foundation stiffness coefficients

(K, Ks) Boundary conditions 0
0.5 1 1.5 2 2.5 3 10

(0, 0) SCSC 142.606" 74.9971 64.3410 61.562(0 60.5341 60.057" 59.278M
SSSC 114.666" 50.413M 38.328(1 34.5100 32.8801 32.0410 30.4340
SSSS 114.600) 45.1261 28.338D 22.3380 19.588M 18.109V 15.098
SSSF 114.5920 4535200 27.2840 20.1330 16.6591 14.726D 10.626)

(0, 100) Nee! 386.8460 3713760 3702391 367.6060  365.389)  363.831V  359.697
SSsC 3352740 3189480 318.680?  318.948®  318.111®  318.680%  318.1111?
SSSS 335.2740 318.749D 318.656» 318.749% 318.053® 318.656% 318.05312
SSSF 335.270 318.818 318.645% 318.818 318.051® 318.645% 318.05112

(100, 0) SCSC 147.2671 88.708M 82.180" 81.231M 81.1281M 81.175M 81.128%
SSSC 118.5970 62.6171 553710 54.0501 53.7961 53.7781M 53.796%
SSSS 118.5571 59.692() 49.765W 47.153M 46.2290 45.823M 452380
SSSF 118.539M 60.704 53.002) 52.0250 52.165 52.4730 52.0250

(100,100)  SCSC 3905320 381.9560 379360  379.926Y  379.889® 379360  379.41414
SSsC 3385160 3282870 325.004® 325990  325471®  325.004% 32501519
SSSS 3385171 3282230 324.996@  325988® 3254519  324.996% 32500519
SSSF 338.512(0 328.192(M 324.968» 325.969% 325.417% 324.968% 324.96819

R=1,E/E =2
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Table 12 Comparison of buckling load (N, from the present 6.3 The influence of type of loading and different
method with FEM results combinations of boundary conditions on the critical

Load case ~ Method Boundary conditions buckling load

SCSC  SSSC  SSSS SSSF

In Table 12, the influence of loading type on the dimension-
CASE-A  Presentstudy 27.654 26768  26.368 26904  less critical buckling load under various boundary condi-

FEM 27.632 26703 206411 26.897  tions can be observed while comparing the results of the
CASE-B  Presentstudy 53.513 51481  51.023 51.697 present study with those of finite element method [36].
FEM 53.318 51.287 50.996 51.638 According to Table 12, as observed, the results of finite
CASE-C  Presentstudy 17.988 17.350 17.174  17.501 element method have good agreement with Frobenius
FEM 17.814 17.327 17.158 17.494 method’ solution. As it is evident, the maximum buckling
CASE-D  Presentstudy 53.927 52564  51.308 47.017 load corresponding to the state of loading CASE-D, for
FEM 53.887 52.534 51287 47.098 SCSC plate is: N, = 53.927. Due to the fact that in this
CASE-E  Presentstudy 26.649 25833 25414 26201 state of loading, a combination of tension and compres-
FEM 26.588 25.830 25403 26318 sion is applied to the edges, the part of the plate in tension

: : stress improves the stability of orthotropic plate. Besides,
0=5R=2K,=10,K, =100, E/E, =5

CASE - 4

CASE - B

CASE - C

CASE - D

CASE - E

Fig. 3 The Displacement contours of plate in different cases of loading for 9 = 2, Ey/E, =10, R =1, I-(W =100,K; =10
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the minimum critical buckling load is N = 17.988 for
(CASE-Q). In this case, the intensity of load on the edge
n =0, 1is —3N,. In the same loading condition, it can be
found that maximum buckling load occurs for SCSC plate.
On top of that, when one edge of the plate is free (there is
one exception), the value of the critical buckling load gets
more than that of SSSC, and SSSS plates.

7 The contours of critical buckling mode shapes

Displacement contour diagram (fixed displacement lines)
of the critical buckling modes for orthotropic rectangular
plate resting on Pasternak elastic foundation under biaxial
in-plane loading and different boundary conditions are
shown. As observed, for rectangular plate with boundary
condition of SCSC (two clamped edges), the maximum
and minimum buckling loads correspond to CASE-D and
CASE-C, respectively (Fig. 3).

8 Conclusion

In this paper, the buckling analysis of orthotropic rectangu-
lar thin plates resting on Pasternak elastic foundation with
two opposite simply supported edges, and two other edges
being arbitrarily restrained, was investigated. According
to Levy solution and applying Frobenius method to the
governing equation, the critical buckling load of the plate
was obtained. The in-plane loading was assumed to have
non-uniform and nonlinear distribution. As seen, Frobe-
nius method solution is an efficient and reliable method
which presents very strong and compressed process for
buckling analysis. The results showed that the accuracy of
this method is dependent on the number of terms of power
series for achieving convergence. Some of the important
results of this study are as follows:

It is observed that by increasing the aspect ratio, in some
cases, the coefficient of critical buckling load remains
constant, whereas the critical buckling mode increases.
When the plate is subjected to uniaxial loading (there
are a few exceptions), the values of critical buckling
load get more than those in the state of biaxial loading,
and occur in the higher modes.

As the value of modulus of elasticity in two differ-
ent directions increases, the values of buckling load
decrease.

By increasing the coefficients of elastic foundation, the
values of critical buckling load grow, too. Shear founda-
tion coefficient exerts a greater influence on the buckling
load in comparison with the lateral foundation coeffi-
cient.

@ Springer

The buckling load of the plate is highly dependent on
the type of loading at the edges.

In the specified type of in-plane loading, the maximum
buckling load is allocated to that of the rectangular plate
with two opposite clamped edges. Moreover, it can be
found out that when the plate is under uniaxial loading,
the minimum buckling load occurs when the plate has a
free edge.

The results of this study can be used as a new reference
to assist researchers and engineers assess the accuracy
and reliability of the results and investigate the analyti-
cal and numerical methods in the future.
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