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boundary conditions, lateral and shear stiffness coefficients 
of elastic foundation are examined on critical buckling.
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1 Introduction

The applied structures in buildings, bridges, reservoir 
foundations, swimming pools, and various economic and 
industrial designs are formed from different components, 
of which the most important parts are plates. The plates in 
many structures are subjected to various tensile, bending, 
and compressive and shear loadings in various working 
conditions. In safe conditions, such loads cause buckling 
or static instability, which is very important in practice. A 
plate may be subjected to non-uniform load at the edges 
that can be applied as linear or nonlinear [1]. A compre-
hensive analysis was presented by Timoshenko and Gere 
[2] in which the linear and nonlinear buckling problems 
for plates with different forms under a variety of load-
ings and substantial presentation of the results of critical 
loads and buckling modes that are widely used in practi-
cal engineering design. Extensive studies about buckling 
of rectangular plates, being subjected to uniform in-plane 
loading, have been performed by Michelussi [3]. Leissa 
and Kang presented an exact solution for buckling analy-
sis of a thin rectangular plate with two opposite simply-
supported edges, using power series of Frobenius. In their 
work, the in-plane loading varies linearly along the edges. 
Additionally, they examined the vibration of an isotropic 
rectangular plate under linear load in another research [4, 
5]. Javaheri and Eslami investigated the buckling of FGM 
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plates under compressive plane load. They concluded that 
the critical buckling load for FGM plates increases as the 
ratio of width per length rises, and on the other hand, the 
critical load decreases as the ratio of width per thickness 
grows [6]. Bret and Devarakonda examined the buckling of 
rectangular plates with simply-supported boundary condi-
tions at the edges which are subjected to sinusoidal load-
ing, using Galerkin method [7]. The buckling of rectangu-
lar plates subjected to a variety of non-uniform loadings 
such as concentrated, local, sinusoidal, and other loadings 
was studied by Jana and Bhaskar [8, 9]. Wang et al. utilized 
the differential quadrature method to calculate the buck-
ling load of rectangular plates which are subjected to non-
uniform load at the edges. They examined cosine, linear, 
and parabolic shaped loads in the buckling load [10–12]. 
Hosseini-Hashemi applied Mindlin’s plate theory to study 
isotropic rectangular plate buckling under in-plane loading 
with different boundary conditions [13]. Kumar Panda and 
Ramachandra investigated the buckling of composite plates 
subjected to non-uniform linear and parabolic shaped load-
ings at the edges, using shear deformation theory [14]. Lat-
ifi et al. examined the buckling of rectangular plates made 
of FGM in different boundary conditions and under biaxial 
compressive loading. The analysis is based on the classi-
cal plate theory with large deformations [15]. Abolgha-
semi et al, investigated the buckling of rectangular plates 
under non-uniform in-plane load, using the first-order shear 
deformation theory. The results were compared with the 
numerical solutions and those of the classical theory [16]. 
Orthotropic plates had high efficiency in civil infrastructure 
and other structural applications, because, they had such 
advantages as high stiffness ratio and resistance versus 
weight. Concrete slabs with reinforced asymmetric steel 
on both sides are examples of orthotropic plates. Harris 
presented the buckling analysis of orthotropic rectangular 
plates which were subjected to uniaxial and in-plane load-
ings in two directions [17]. Hwang and Lee analyzed the 
buckling of orthotropic plates under optional in-plane load. 
They examined the behavior of the plate under non-uni-
form loading with various boundary conditions, using the 
finite element method [18]. Lopatin and Morozov investi-
gated the buckling analysis of orthotropic plate with CCFF 
boundary conditions. The problem was solved via partial 
differential equations and Galerkin method [19, 20]. Thai 
and Kim applied Levy solution to the buckling analysis of 
orthotropic plates, using two-variable refined plate theory 
[21]. Jafari and Eftekhari analyzed the buckling load and 
the natural frequencies of rectangular orthotropic plates 
located on elastic foundation for various types of loadings 
and boundary conditions, using a combination of Ritz and 
differential quadrature methods [22]. It is observed that one 
of the main conditions of the stability of a structure is pro-
viding appropriate support for the structure, the reaction of 

the structures on the foundation has long been considered. 
In Winkler model, the elastic foundation is independently 
modeled, using a series of springs. Despite the effective-
ness of this model, the behavior of the elastic foundation is 
actually continuous, but it models the independent springs 
to analyze the behavior of the elastic foundation [23]. To 
correct this deficiency, researchers used Pasternak model, 
which is the most common one in this area, by adding a 
beam or plate with lateral shear stiffness [24]. Kim exam-
ined the stability and dynamic response of a thin infinite 
plate resting on Pasternak foundation [25]. Saeidifar and 
Sadeghi presented an analytical solution for the buckling 
analysis of rectangular plate under uniaxial compressive 
loading with changes in the thickness and modulus of elas-
ticity in the y direction [26]. Akhavan et al. introduced an 
exact solution for the buckling analysis of Mindlin rectan-
gular plates under uniform in-plane linear loading on elas-
tic foundation, assuming two opposite simply-supported 
edges. To extract the governing equations, the analysis 
method is based on Mindlin theory, considering the effect 
of first-order shear deformation and interaction of plate-
foundation. Moreover, in two other papers, they examined 
the analysis of free vibration of Mindlin rectangular plates 
under uniform in-plane linear loading [27, 28]. Hosseini-
Hashemi et al. investigated hydrostatic vibration and 
buckling analysis of rectangular plates resting on Paster-
nak foundation and subjected to in-plane loads with linear 
variation for different boundary conditions [29]. Bodaghi 
and Saidi examined the buckling behavior of rectangular 
plates made of FGM materials on elastic Pasternak foun-
dation under in-plane uniaxial linear and nonlinear load-
ings, based on the classical theory. Using Levy solution, 
the buckling equation was transformed to an ordinary dif-
ferential equation with variable coefficients and then was 
solved exactly using power series of Frobenius method 
[30]. Panahandeh Shahraki et al., studied the buckling of 
FGM cracked plates supported by Pasternak foundation 
[31]. Foroughi and Azhari presented the buckling and free 
vibration of thick FGM plates resting on Pasternak elastic 
foundation, using finite strip method. The buckling analy-
sis was carried out by normal finite strip method [32]. Yag-
hoobi and Fereidoon presented the analysis of mechanical 
and thermal buckling of FGM plate on elastic foundation, 
supposing shear deformation theory [33]. Viswanathana 
and Navaneethakrishnan investigated the buckling analysis 
of rectangular plate with variable thickness resting on elas-
tic foundation, using spline approximation method [34]. 
Lam and Wang presented common exact solutions for elas-
tic bending, buckling, and vibration of rectangular plate, 
using Levy solution on two-parametric elastic foundation 
via Green functions [35].

According to the abovementioned literature review, sev-
eral works have been published on isotropic plate buckling 
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under uniform uniaxial or biaxial loadings, whereas the 
buckling of orthotropic plate with non-uniform nonlinear 
loading is less considered, mainly due to the complexity of 
the solution process. This study introduces an exact analy-
sis for the buckling of orthotropic rectangular plates based 
on the classical plate theory. It is assumed that a rectangu-
lar plate is resting on Pasternak (two-parametric) elastic 
foundation and is subjected to non-uniform in-plane biaxial 
loading. Using Levy resolution, the buckling equation is 
reduced to an ordinary differential equation with variable 
coefficients. It is solved using power series of Frobenius. 
By applying different combinations of boundary conditions 
along the opposite edge of the plate, the critical buckling 
load is obtained. The accuracy of results is confirmed by 
comparing them with those of previous studies as well as 
the finite element method. Also, the influences of parame-
ters such as aspect ratio, the ratio of modulus of elasticity in 
two different directions, the type of non-uniform loading in 
both uniaxial and biaxial states, the various types of bound-
ary conditions, the foundation coefficients on the critical 
buckling load of plate are examined.

2  Formulation presentation

Assume a rectangular thin plate with lateral dimensions of 
a × b and uniform thickness of h, as shown in Fig. 1, which 
is simply supported at x = 0, a while the other two edges of 
y = 0, b have any arbitrary conditions such as the clamped 
(C), and simply (S) or free support (F). It is assumed that 
the material is orthotropic, and the main orthotropic direc-
tions are in the directions of  x and  y-axes. Shear modulus 
G of the plate and the relationship between four independ-
ent elastic constants can be expressed as follows [1]:

 
In the plane stress condition, bending and torsional stiff-

ness of the orthotropic plate is defined as follows [1]:

The governing equation in the buckling of orthotropic 
rectangular plate under biaxial in-plane loading, regardless 
of the shear force Nxy per unit of the length, which rests on 
Pasternak elastic foundation is as follows [30]:

(1)G ≈
√

ExEy

2
(

1+√
υxυy

) ,
υx

Ex

=
υy

Ey

.

(2)

D11 =
Exh

3

12
(

1− νxyvyx
) , D12 = D21 =

Exvyxh
3

12
(

1− νxyvyx
)

D22 =
Eyh

3

12
(

1− νxyvyx
) , D66 =

Gxyh
3

12
.

where Kw and Ks are the coefficients of lateral and shear 
stiffness of the foundation, respectively. W, Nx, Ny are out-
plane displacement, and the normal forces per unit of the 
length along x and y directions, respectively. To make a 
dimensionless form of the governing Eq. (3), the following 
parameters are defined as follows:

Based on Levy approach, the following expansions of 
displacements are chosen as follows by considering that the 
two opposite sides of the plate are simply supported in x 
direction:

where Ym is a function of η, and m is the number of half-
waves of the shape modes in x direction. This function 
satisfies boundary conditions in ξ = 0, 1. Substituting the 
parameters of Eqs. (4) and (5) in (3), and arranging it based 
on the order of Ym, the following equation can be obtained:

(3)

D11

∂4w

∂x4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2

+ D22

∂4w

∂y4
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(

∂2w

∂x2
+

∂2w

∂y2

)

− Nx

∂2w

∂x2
− Ny

∂2w

∂y2
= 0,

(4)

ξ =

x

a
, η =

y

b

∂ξ
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=

1

a
,

∂η

∂y
=

1

b

∂w
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=
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∂ξ
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(

1
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)
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∂η
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(

1
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)

.

(5)w(η, ξ) = Ym(η)sin(mπξ),

(6)

D22

(

1

b

)4

YIV
m +

[

−2(D12 + 2D66)

(mπ

ab

)2

− Ks

(

1

b2

)

− Ny

(

1

b2

)]

Y ′′
m

+
[

D11

(mπ

a

)4

+ Kw + Ks

(mπ

a

)2

+ Nx

(mπ

a

)2
]

Ym = 0.

Fig. 1  Orthotropic rectangular plate resting on Pasternak elastic 
foundation
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2.1  Orthotropic rectangular plate under biaxial 
loading

In this section, various types of non-uniform loading are 
examined, and the governing differential equations of plate 
buckling are solved by Frobenius method. The distribution 
of in-plane loading per unit length in direction x is consid-
ered as follows:

where a1, a2, a3, a4, and a5 are determined as dependent 
on the type of loading. N0 is the maximum intensity of the 
in-plane load per unit length. The loading in y direction is 
defined in the form of the mean function of loading in x 
direction with proportion coefficient (R) as Eq. (8):

(7)Nx = −µN0

(

a0 + a1η + a2η
2 + a3η

3 + a4η
4 + a5η

5
)

,

In this study, five cases of loading are examined accord-
ing to Fig. 2. Also, the coefficients of ai and μ can be seen 
for each case in Table 1. 

2.2  Applying Frobenius method to governing equations

Suppose that the rectangular plate is under in-plane loading 
according to Fig. 2 in both x and y directions. N0 is the inten-
sity of compressive force (load factor per length unit). In gen-
eral, to solve the governing equation by substituting Eqs. (7) 
and (8) in (6), the following equation can be obtained:

(8)
Ny = RN̄x , N̄x =

1

b

b
∫

0

Nxdy =
1

∫

0

Nxdη

Ny = −RµN0

(

a0 +
a1

2
+

a2

3
+

a3

4
+

a4

5
+

a5

6

)

.

Fig. 2  Schematic of non-uni-
form loading cases of in-plane 
loading with boundary condi-
tion SCSC

(CASE-A): x 0
1N N cosπ η
2

 = − −  
(CASE-B): ( )2x 0N N 1 2η η= − − +

(CASE-C): ( )2x 0N 3N 1 4η 4η= − − + (CASE-D): ( )2x 0N 2N η 2η= − − +

(CASE-E): ( )2x 0N N 2η η= − −

(9)
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b2

(

a0 +
a1

2
+

a2
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4
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6
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]
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+
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D11

(mπ
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− µN0

(
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5
)(mπ

a
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]

Ym = 0.
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The differential Eq. (9) can be solved exactly by the 
power series solution, using Frobenius method:

By substituting the power series of Eq. (10) in (9), the 
result is as follows:

(10)Ym =
∞
∑

n=0

Cm,nη
n.

Table 1  Different types of loading rectangular plate

Load case µ a0 a1 a2 a3 a4 a5

CASE -A 1 2 41 11 π π
8 384

+− 2 41 1π π
2 48

− 4 21 1π π
16 2

− 41 π
12

− 41 π
24

0

CASE -B 1 1 –2 1 0 0 0
CASE -C 3 1 –4 4 0 0 0
CASE -D 2 0 –1 2 0 0 0
CASE -E 1 0 2 –1 0 0 0

(11)

D22

(

1

b

)4
( ∞
∑

n=4

n(n− 1)(n− 2)(n− 3)Cm,nη
n−4

)

+
[

−2(D12 + 2D66)

(mπ
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)2

− Ks

(

1

b2

)

+
(

R

b2

)

µN0

(

a0 +
a1

2
+

a2

3
+

a3

4
+

a4

5
+

a5

6

)

]

( ∞
∑

n=2

n(n− 1)Cm,nη
n−2

)

+
[

D11

(mπ

a

)4

+ Kw + Ks

(mπ

a

)2

− µN0

(

a0 + a1η + a2η
2 + a3η

3 + a4η
4 + a5η

5
)(mπ

a

)2
]

( ∞
∑

n=0

Cm,nη
n

)

= 0

By collecting the indexes of Eq. (11), multiplying two 
equal sides of the equation in b4/D1, and considering the fol-
lowing dimensionless parameters, Eq. (12) results as follows:

After rearranging, Eq. (13) is obtained in the following 
way:

(12)

D11 = D1 , D22 = D2, (D12 + 2D66) = D3

Q =

a

b
, ¯Kw =

Kwb
4

D1

, ¯Ks =
Ksb

2

D1

, N0 =

N0b
2

D1

, β =

mπ

Q
.

(13)

∞
∑

n=0
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D2

D1

(n+ 4)(n+ 3)(n+ 2)(n+ 1)Cm,n+4 +
[

−2
D3

D1

(β)2 − K̄s +
(
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2
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3
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4
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5
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6

)

µRN̄0

]

× (n+ 2)(n+ 1)Cm,n+2+
[

(β)4 + K̄w + K̄s(β)
2 − a0µN̄0(β)

2
]

Cm,n

)

ηn

−
(

a1µN̄0(β)
2Cm,n

)

ηn+1 −
(

a2µN̄0(β)
2Cm,n

)

ηn+2 −
(

a3µN̄0(β)
2Cm,n

)

ηn+3

−
(

a4µN̄0(β)
2Cm,n

)

ηn+4−
(

a5µN̄0(β)
2Cm,n

)

ηn+5
)

= 0.

According to the same indexes for coefficient η0, the fol-
lowing equation is obtained:
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(14)
Cm,4 =

(

D1

24D2

)(

−2
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2
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)

and for coefficient η1, it can be calculated that:

(15)
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(

D1

120D2

)(

−6
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−2
D3
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and for coefficient η2,
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and for coefficient η4,
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−
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and for ηn η = 5, 6, 7, … equals:
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+
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+
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+
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Equations (14)–(19) are reversibility equations for Cm,n 
as arbitrary coefficients when n ≥ 4.

2.3  Types of loading

Once the rectangular plate is subjected to in-plane CASE-
A loading according to Fig. 2, −N0 (load factor per length 
unit) is the intensity of compressing force in η = 1/2. Based 
on Eq. (20) to solve this state, Cosine Taylor polynomial 
expansion is used.

and,

By expanding and arranging the abovementioned series, 
and as regards the sum of the first three terms has sufficient 
accuracy:

and,

(20)Nx = −N0cosπ

(

η −
1

2

)

(20-a)

Nx = −N0cosπ

(

η −
1

2

)

= −N0

∞
∑

n=0

(−1)n
(

π

(

η − 1

2

)) 2n

(2n)!
.

(20-b)

Nx = −N0

(

1−
1

2
π2

(

η −
1

2

)2

+
1

24
π4

(

η −
1

2

)4
)

Table 2  Convergence test of 
the critical buckling load factors 
for orthotropic rectangular thin 
plate under biaxial non-uniform 
in-plane loading resting on 
Pasternak elastic foundation for 
CASE-A

Q = 2, R = 1, ¯Kw,
¯Ks = 10, Ex/Ey = 2

Boundary conditions N

20 30 40 45 50 55

SCSC 45.923(1) 44.617(2) 44.831(2) 44.831(2) 44.831(2) 44.831(2)

SSSC 32.934(1) 33.102(1) 33.102(1) 33.102(1) 33.102(1) 33.102(1)

SSSS 26.695(1) 26.473(1) 26.474(1) 26.474(1) 26.474(1) 26.474(1)

SSSF 25.717(1) 24.982(1) 24.983(1) 24.983(1) 24.983(1) 24.983(1)

(21)Nx = −N0

(

1

24
π4η4 −

1

12
π4η3 +

(

1

16
π4 −

1

2
π2

)

η2 +
(

1

2
π2 −

1

48
π4

)

η +
(

1−
1

8
π2 +

1

384
π4

))

.

By naming the terms like Table 1 as follows, the values 
of ai are obtained:

(22)

a0 = 1−
1

8
π2 +

1

384
π4

a1 =
1

2
π2 −

1

48
π4

a2 =
1

16
π4 −

1

2
π2

a3 = −
1

12
π4 a4 =

1

24
π4

, a5 = 0.

Generally, for the other kinds of loadings of A, B, C, D, 
and E, the values of ai and μ can be replaced in Eq. (9) and 
can be solved by Frobenius method.

3  Boundary conditions

So far, different values of Cm,n are obtained by reversible 
relationships in terms of Cm,0, Cm,1, Cm,2, and Cm,3. To cal-
culate the values of these coefficients, it is required to have 
the equations that can be achieved by applying the bound-
ary conditions. For each edge of the plate η = 0, 1 accord-
ing to the boundary conditions, two equations can be writ-
ten. These two edges may admit any boundary condition 
(including simply, clamped, and free-edged support). For 
dimensionless boundary conditions, we give:

By substituting Eq. (5) in (23), the following equations 
can be obtained:

(23)

Simply w = 0,
∂w

∂η
= 0

Clamped w = 0 ,
∂w

∂η
= 0

Free
∂2w

∂η2
+ ν

∂2w

∂ξ2
= 0 ,

∂3w

∂η3
+ (2− ν)

∂3w

∂η∂ξ2
+ K̄s

∂w

∂η
= 0.

(24)

Simply Ym = 0, Y ′′
m = 0

Clamped Ym = 0, Y ′
m = 0

Free Y ′′
m − v

(

mπ

Q

)2

Ym = 0,

Y ′′′
m −

[

(2− v)

(

mπ

Q

)2

+ K̄s

]

Y ′
m = 0.
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4  Critical buckling load

By applying different boundary conditions to each kind 
of loading, four equations with variables Cm,0, Cm,1, Cm,2, 
and Cm,3 are achieved. To obtain a non-trivial solution of 
the system, the determinant of the coefficients matrix is 
set to zero. By solving the eigenvalue equation, the values 
of dimensionless buckling loads of N̄0 can be achieved. 
Substituting each N̄0 in four homogeneous equations, the 
values of corresponding eigenvectors of Cm,n represent-
ing the shape mode (m) can be determined. The minimum 
value of N̄0 represents the critical buckling load. Numeri-
cal results of power series method are presented in the 
next section and are achieved according to Table 2, con-
sidering adequate term (N = 55) for convergence. In this 
table, N is the total number of existing terms in the power 
series solution method. The highlighted critical buckling 
load shows the best convergence values in each column 
with minimum N.

5  Evaluation of accuracy and reliability of results

To demonstrate the validity of the results of Frobenius 
solution for rectangular plate, first they have been com-
pared with those in the literature review in Tables 3 and 4, 
and for all boundary conditions, validity and accuracy are 
observed.

6  The analytical results and discussion

6.1  The effect of ratio of elasticity modulus and the 
method of loading on the critical buckling load

To examine the critical dimensionless buckling load in 
each type of loading according to boundary conditions, two 
tables are presented. In the first table, the coefficient val-
ues of Winkler and Pasternak foundations (lateral and shear 
stiffness) have been fixed, and the effects of boundary con-
ditions, aspect ratio, the ratio of modulus of elasticity, and 

the kind of loadings as uniaxial and biaxial are investigated. 
Superscript numbers in parentheses represent the buckling 
mode. Based on Tables 5, 6, 7, 8 and 9, it can be found that 
the critical buckling load generally decreases as aspect ratio 
(Q) increases. As a result, the maximum buckling corre-
sponds to the aspect ratio (Q = 0.5). Additionally, it can be 
seen that by increasing the aspect ratio, the critical buckling 
load factor sometimes remains constant; for example, in the 
Table 5 for rectangular plate (CASE-A) with the boundary 
condition (SCSC) and (R = 0), when Ex/Ey = 0.5, the criti-
cal dimensionless buckling load N̄cr = 259.352 is obtained 
for aspect ratio (Q = 0.5, m = 1), (Q = 1, m = 2), and 
Q = 2, m = 4. This is due to the fact that parameter β 
appears to determine the coefficients matrix.

While the ratio of coefficients of m and Q in that param-
eter has been chosen as a constant value, the buckling load 
factor does not change. It should be noted that this phe-
nomenon is a familiar behavior in buckling of plates, that is 
not limited to orthotropic plates on elastic foundation. Fur-
thermore, by increasing the aspect ratio, the critical buck-
ling load factor remains occasionally constant, whereas 
the critical buckling mode increases. As it is evident in all 
tables, the maximum buckling mode corresponds to the 
aspect ratio Q = 10.

Table 3  Comparison of the 
critical buckling load parameter 
( ¯Ncr) for a thin square plate 
(Q = 1) subjected to uniformly 
and linearly distributed in-plane 
compressive loading resting on 
Pasternak elastic foundation

Nx = (1 − αη), Ex/Ey = 1

(

¯Kw,
¯Ks

)

α References Boundary conditions

SCSC SSSC SSSS SSSF

(10, 100) 0.5 Bodaghi and Saidi [30] present study 270.562(2) 251.325(2) 245.480(2) 215.029(1)

270.562(2) 251.325(2) 245.480(2) 215.028(1)

(100, 10) 0 Akhavan et al. [27] present study 91.363(2) 82.902(2) 69.610(1) –

91.365(2) 82.903(2) 69.610(1) 36.801(1)

(1000, 100) 0 Akhavan et al. [27] present study 229.971(2) 219.968(2) 212.014(2) –

229.973(2) 219.969(2) 212.015(2) 175.260(1)

Table 4  Comparison of the critical buckling load parameter ( ¯Ncr) for 
thin rectangular plates subjected to uniformly and linearly distributed 
in-plane compressive loading

Nx = (1 − αη), Ex/Ey = 1

Boundary 
conditions

Q α Reference [4] Reference  
[27]

Present 
study

SCSC 0.67 0 68.800(1) 68.816(1) 68.816(1)

0.66 0.5 91.430(1) 92.415(1) 91.429(1)

SSSC 0. 8 0 53.390(1) 53.393(1) 53.393(1)

0.78 0.5 68.480(1) 68.977(1) 68.522(1)

SSSS 1 0 39.480(1) 39.478(1) 39.478(1)

1 0.5 52.490(1) 50.673(1) 52.494(1)

SSSF 10 0 4.200(1) 4.282(1) 4.295(1)

10 0.5 6.700(1) 6.765(1) 6.871(1)
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Table 5  The critical buckling load factor ( ¯Ncr) for the isotropic and orthotropic rectangular plate with different boundary conditions under axial 
and biaxial non-uniform in-plane loading for CASE-A

¯Kw = 100, ¯Ks = 100

Ex
Ey

Boundary conditions Q

0.5 1 2 10

R

0 1 0 1 0 1 0 1

0.5 SCSC 259.352(1) 212.744(1) 259.352(2) 212.744(2) 259.352(4) 209.274(3) 257.272(22) 208.731(16)

SSSC 245.150(1) 203.632(1) 245.150(2) 197.447(1) 245.150(4) 193.892(3) 245.060(21) 193.384(14)

SSSS 233.236(1) 196.267(1) 233.236(2) 179.433(1) 233.236(4) 179.433(2) 232.984(19) 178.968(11)

SSSF 215.384(1) 193.149(1) 215.384(2) 172.325(1) 208.009(3) 172.325(2) 208.009(15) 172.150(11)

1 SCSC 233.782(1) 191.769(1) 233.782(2) 188.636(1) 233.782(4) 183.088(3) 233.578(21) 182.882(14)

SSSC 226.536(1) 188.054(1) 226.536(2) 176.146(1) 226.536(4) 176.146(2) 226.536(20) 174.584(12)

SSSS 220.103(1) 184.811(1) 220.103(2) 167.091(1) 220.103(4) 167.091(2) 219.579(20) 166.843(11)

SSSF 208.335(1) 183.772(1) 208.335(2) 163.709(1) 201.970(3) 163.709(2) 201.950(16) 163.645(11)

2 SCSC 219.123(1) 179.152(1) 219.123(2) 169.472(1) 219.123(4) 168.237(3) 219.123(20) 167.025(13)

SSSC 214.817(1) 177.831(1) 214.817(2) 163.962(1) 214.817(4) 163.962(2) 214.641(19) 163.039(12)

SSSS 211.348(1) 176.598(1) 211.348(2) 159.536(1) 211.348(4) 159.536(2) 210.655(19) 159.260(11)

SSSF 205.320(1) 176.330(1) 205.320(2) 157.918(1) 199.851(3) 157.918(2) 199.358(16) 157.777(11)

3 SCSC 214.581(1) 174.056(1) 214.581(2) 162.603(1) 214.581(4) 162.598(3) 213.321(21) 160.960(12)

SSSC 212.798(1) 173.401(1) 212.798(2) 159.274(1) 212.798(4) 159.274(2) 212.328(18) 158.475(12)

SSSS 210.403(1) 172.771(1) 210.403(2) 156.430(1) 210.403(4) 156.430(2) 209.626(18) 156.086(11)

SSSF 202.827(1) 172.694(1) 202.827(2) 155.480(1) 198.124(3) 155.480(2) 197.631(16) 155.239(11)

Table 6  The critical buckling load factor ( ¯Ncr) for the isotropic and orthotropic rectangular plate with different boundary conditions under axial 
and biaxial non-uniform in-plane loading for CASE-B

¯Kw = 10, ¯Ks = 10

Ex
Ey

Boundary conditions Q

0.5 1 2 10

R

0 1 0 1 0 1 0 1

0.5 SCSC 364.568(1) 275.596(1) 364.568(2) 242.359(1) 364.568(4) 242.359(2) 364.568(20) 241.529(11)

SSSC 261.433(1) 204.077(1) 261.433(2) 150.175(1) 252.549(3) 148.753(1) 251.018(16) 147.402(7)

SSSS 253.981(1) 200.416(1) 253.981(2) 124.552(1) 232.631(3) 100.898(1) 232.226(14) 92.612(1)

SSSF 247.452(1) 200.348(1) 197.059(1) 123.593(1) 197.059(2) 102.493(1) 197.059(10) 100.920(3)

1 SCSC 279.394(1) 211.349(1) 279.394(2) 154.811(1) 278.903(3) 149.440(1) 273.478(17) 149.440(5)

SSSC 213.990(1) 165.382(1) 213.990(2) 105.116(1) 194.235(3) 94.258(1) 194.079(14) 93.048(1)

SSSS 211.605(1) 164.775(1) 194.854(1) 94.770(1) 186.353(3) 71.405(1) 183.357(13) 63.009(1)

SSSF 209.677(1) 164.849(1) 163.867(1) 96.006(1) 163.867(2) 75.245(1) 163.867(10) 72.149(2)

2 SCSC 225.526(1) 169.020(1) 225.526(2) 107.642(1) 210.931(3) 94.370(1) 210.931(15) 91.583(1)

SSSC 181.980(1) 137.911(1) 167.470(1) 79.535(1) 158.226(3) 65.942(1) 155.644(13) 62.855(1)

SSSS 181.329(1) 137.885(1) 156.013(1) 76.249(1) 155.373(3) 55.559(1) 150.323(12) 48.156(1)

SSSF 180.896(1) 137.870(1) 142.333(1) 77.007(1) 142.333(2) 58.754(1) 142.194(11) 55.785(2)

3 SCSC 202.766(1) 150.186(1) 202.766(2) 90.485(1) 184.290(3) 75.587(1) 184.187(14) 71.885(1)

SSSC 167.814(1) 125.073(1) 147.315(1) 69.703(1) 143.411(3) 56.086(1) 139.621(13) 52.769(1)

SSSS 167.531(1) 125.073(1) 140.284(1) 68.368(1) 140.284(2) 49.835(1) 136.058(12) 43.187(1)

SSSF 167.374(1) 125.057(1) 132.303(1) 68.686(1) 132.303(2) 52.376(1) 131.619(11) 49.623(2)
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Table 7  The critical buckling load factor ( ¯Ncr) for the isotropic and orthotropic rectangular plate with different boundary conditions under axial 
and biaxial non-uniform in-plane loading for CASE-C

¯Kw = 10, ¯Ks = 10

Ex
Ey

Boundary conditions Q

0.5 1 2 10

R

0 1 0 1 0 1 0 1

0.5 SCSC 335.628(1) 189.199(1) 335.628(2) 111.824(1) 335.628(4) 94.741(1) 332.820(22) 89.909(1)

SSSC 212.505(1) 125.405(1) 212.505(2) 71.904(1) 212.505(4) 56.271(1) 210.669(18) 51.405(1)

SSSS 183.829(1) 118.980(1) 183.829(2) 56.081(1) 170.396(3) 37.189(1) 170.259(14) 31.011(1)

SSSF 48.006(1) 53.211(1) 30.991(1) 36.561(1) 30.991(2) 36.560(2) 30.742(9) 36.324(9)

1 SCSC 246.508(1) 137.399(1) 246.508(2) 71.710(1) 246.508(4) 55.025(1) 246.382(19) 50.420(1)

SSSC 165.232(1) 94.537(1) 165.232(2) 50.120(1) 160.693(3) 35.651(1) 160.111(16) 31.196(1)

SSSS 150.021(1) 93.924(1) 142.836(1) 43.033(1) 135.483(3) 26.339(1) 133.983(13) 21.097(1)

SSSF 36.441(1) 40.672(1) 22.105(1) 27.351(1) 22.105(2) 27.351(2) 21.701(9) 27.351(10)

2 SCSC 239.069(1) 95.548(1) 239.069(2) 50.229(1) 188.824(3) 34.760(1) 186.004(17) 30.658(1)

SSSC 132.012(1) 71.981(1) 132.012(2) 37.460(1) 125.168(3) 24.932(1) 125.168(15) 21.073(1)

SSSS 124.250(1) 70.351(1) 113.811(1) 35.111(1) 111.109(3) 20.525(1) 108.893(13) 16.124(1)

SSSF 32.077(1) 34.054(1) 18.036(1) 20.853(1) 18.036(2) 20.853(2) 17.168(8) 20.745(9)

3 SCSC 195.026(1) 79.814(1) 195.026(1) 42.526(1) 160.443(3) 27.851(1) 160.443(15) 24.063(1)

SSSC 116.694(1) 61.961(1) 116.694(2) 32.282(1) 110.011(3) 21.195(1) 110.011(15) 17.691(1)

SSSS 109.751(1) 60.784(1) 101.723(1) 31.799(1) 99.991(3) 18.440(1) 97.816(13) 23.502(1)

SSSF 29.935(1) 31.368(1) 16.217(1) 18.364(1) 16.217(2) 18.364(2) 15.192(7) 18.108(9)

Table 8  The critical buckling load factor ( ¯Ncr) for the isotropic and orthotropic rectangular plate with different boundary conditions under axial 
and biaxial nonlinear in-plane loading for CASE-D

¯Kw = 10, ¯Ks = 10

Ex
Ey

Boundary conditions Q

0.5 1 2 10

R

0 1 0 1 0 1 0 1

0.5 SCSC 418.114(1) 308.224(1) 418.114(2) 300.742(1) 393.217(5) 282.029(1) 392.347(26) 269.725(1)

SSSC 417.144(1) 308.147(1) 417.144(2) 276.104(1) 393.025(5) 186.272(1) 392.210(26) 154.860(1)

SSSS 240.929(1) 188.995(1) 240.929(2) 144.592(1) 240.929(4) 110.402(1) 240.273(19) 93.031(1)

SSSF 62.926(1) 65.277(1) 40.799(1) 42.963(1) 40.799(2) 42.963(2) 40.551(9) 42.669(9)

1 SCSC 291.136(1) 215.692(1) 291.136(2) 215.690(1) 288.918(5) 163.571(1) 287.038(23) 151.258(1)

SSSC 290.941(1) 215.683(1) 290.941(2) 182.257(1) 288.891(5) 118.069(1) 286.979(23) 93.980(1)

SSSS 185.569(1) 144.395(1) 185.569(2) 104.382(1) 183.482(3) 77.815(1) 181.729(17) 63.294(1)

SSSF 48.674(1) 50.711(1) 29.203(1) 31.030(1) 29.203(2) 31.030(1) 28.680(9) 30.523(9)

2 SCSC 213.729(1) 158.083(1) 213.729(2) 124.810(1) 213.729(4) 103.041(1) 213.729(20) 91.972(1)

SSSC 213.697(1) 158.062(1) 213.697(2) 124.612(1) 213.697(4) 82.654(1) 213.697(20) 63.486(1)

SSSS 148.300(1) 113.884(1) 148.300(2) 78.477(1) 141.518(3) 60.039(1) 141.508(16) 48.374(1)

SSSF 43.453(1) 44.361(1) 24.025(1) 24.891(1) 24.025(2) 24.891(2) 22.848(8) 23.746(8)

3 SCSC 182.449(1) 134.411(1) 182.449(2) 101.375(1) 182.449(4) 82.324(1) 181.867(19) 72.189(1)

SSSC 182.438(1) 134.400(1) 182.438(2) 101.357(1) 182.438(4) 70.346(1) 181.849(19) 53.300(1)

SSSS 132.153(1) 100.478(1) 132.153(2) 67.556(1) 124.006(3) 53.379(1) 124.006(15) 43.381(1)

SSSF 40.947(1) 41.563(1) 21.774(1) 22.395(1) 21.774(2) 22.395(2) 20.350(7) 21.027(7)
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When the plate is subjected to uniaxial loading (R = 0), 
the critical buckling load occurs in higher modes, com-
pared to biaxial loading. Critical buckling load values of the 
plate, while it is subjected to biaxial loading (there are a few 
exceptions), decrease in comparison with the uniaxial state. 
For example, in Table 7 for rectangular plate under sample 
loading (C) with the boundary condition SSSS when the 
ratio of modulus of elasticity in two different directions is 
2 and the aspect ratio is Q = 2, the critical buckling load is 
reduced from the value of N̄cr = 111.109 to N̄cr = 20.525.

It can also be observed that as the ratio of the modulus 
of elasticity in two different directions (isotropic and ortho-
tropic) increases, the value of dimensionless buckling load 
decreases. In all Tables of 5, 6, 7, 8, and 9, the maximum 
buckling load is associated to the plate with SCSC bound-
ary condition. In other words, when two edges of the plate 
are clamped, the critical buckling load increases, compared 
to the simply-supported and free edges. It can also be seen 
in the state of uniaxial loading (R = 0) that the minimum 
buckling load is associated with SSSF plate.

6.2  The influence of stiffness coefficients of elastic 
foundation and combinations of boundary 
conditions on the critical buckling load

In this section, the influences of elastic foundation 
coefficients and boundary conditions for a rectangular 
orthotropic plate on the state of biaxial loading can be 
observed. According to Tables 10 and 11, it is obvious 
that the minimum buckling load is associated to the state 
in which there is a rectangular plate without elastic foun-
dation. When K̄W = 100, K̄S = 0, the value of buckling 
load increases in comparison with that of the foundation-
less state. As expected, when the coefficients of elastic 
foundation increase, the values of dimensionless critical 
buckling load rise, and, rising rates of these amounts for 
the coefficient Pasternak elastic foundation (shear stiff-
ness coefficient) are more than those with the variation of 
the coefficient of Winkler elastic foundation (lateral stiff-
ness coefficient).

Table 9  The critical buckling load factor ( ¯Ncr) for the isotropic and orthotropic rectangular plate with different boundary conditions under axial 
and biaxial non-uniform in-plane loading for CASE-E

¯Kw = 100, ¯Ks = 100

Ex
Ey

Boundary conditions Q

0.5 1 2 10

R

0 1 0 1 0 1 0 1

0.5 SCSC 308.898(1) 242.914(1) 308.898(2) 242.461(1) 307.489(5) 235.256(3) 305.157(23) 235.256(15)

SSSC 299.009(1) 238.610(1) 299.009(2) 220.453(1) 299.009(4) 220.453(2) 297.941(22) 220.348(9)

SSSS 265.924(1) 214.364(1) 265.924(2) 190.637(1) 265.924(4) 190.637(2) 265.924(20) 190.123(8)

SSSF 183.769(1) 181.671(1) 183.769(2) 165.240(1) 174.407(3) 165.240(2) 174.407(15) 164.211(12)

1 SCSC 275.368(1) 215.999(1) 275.368(2) 203.079(1) 275.368(4) 203.079(2) 274.509(21) 202.031(12)

SSSC 271.159(1) 215.173(1) 271.159(2) 195.397(1) 271.159(4) 193.601(1) 270.964(21) 192.523(1)

SSSS 249.095(1) 198.387(1) 249.095(2) 176.027(1) 249.095(4) 176.027(2) 249.086(19) 175.687(8)

SSSF 168.770(1) 169.628(1) 168.770(2) 153.947(1) 159.282(3) 153.947(2) 159.092(14) 152.875(12)

2 SCSC 254.441(1) 198.066(1) 254.441(2) 181.306(1) 254.441(4) 181.306(2) 254.330(21) 181.268(11)

SSSC 252.592(1) 198.001(1) 252.592(2) 179.556(1) 252.592(4) 178.988(1) 252.592(20) 177.181(1)

SSSS 237.605(1) 186.250(1) 237.605(2) 166.069(1) 237.605(4) 166.069(2) 237.529(19) 166.022(9)

SSSF 161.718(1) 160.149(1) 159.036(1) 144.636(1) 151.324(3) 144.636(2) 150.826(14) 143.582(12)

3 SCSC 245.825(1) 190.065(1) 245.825(2) 173.028(1) 245.825(4) 173.028(2) 245.825(20) 173.028(10)

SSSC 244.651(1) 190.059(1) 244.651(2) 172.519(1) 244.651(4) 172.519(2) 244.651(20) 172.519(10)

SSSS 232.631(1) 180.513(1) 232.631(2) 161.597(1) 232.631(4) 161.597(2) 232.558(19) 161.597(10)

SSSF 159.487(1) 156.916(1) 154.944(1) 141.060(1) 148.592(3) 141.060(2) 147.929(14) 140.145(12)
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Table 10  The critical buckling load factor ( ¯Ncr) for the orthotropic rectangular plate with different boundary conditions under biaxial non-uni-
form in-plane loading for CASE-A versus foundation stiffness coefficients

R = 1, Ex/Ey = 2

( ¯Kw,
¯Ks) Boundary conditions Q

0.5 1 1.5 2 2.5 3 10

(0, 0) SCSC 57.632(1) 30.979(1) 29.023(1) 29.232(1) 29.384(2) 29.023(2) 29.030(6)

SSSC 55.435(1) 23.796(1) 18.780(1) 17.291(1) 16.683(1) 16.381(1) 15.833(1)

SSSS 53.644(1) 38.874(1) 36.957(1) 34.284(1) 33.051(1) 32.382(1) 31.003(1)

SSSF 52.982(1) 16.609(1) 30.874(1) 27.896(1) 26.512(1) 25.756(1) 24.183(1)

(0, 100) SCSC 176.887(1) 163.578(1) 162.897(2) 163.578(2) 162.445(3) 162.897(4) 162.445(12)

SSSC 175.515(1) 157.657(1) 159.212(2) 157.657(2) 157.979(3) 157.657(3) 157.580(11)

SSSS 174.235(1) 152.858(1) 154.626(1) 152.858(2) 153.308(2) 152.858(3) 152.850(9)

SSSF 173.910(1) 149.812(1) 149.394(1) 149.812(2) 148.955(2) 149.394(2) 148.955(8)

(100, 0) SCSC 59.930(1) 36.854(1) 37.183(1) 36.854(2) 36.567(2) 36.854(3) 36.519(9)

SSSC 57.818(1) 30.089(1) 27.570(1) 27.426(1) 27.562(1) 27.570(2) 27.425(5)

SSSS 56.095(1) 26.092(1) 22.824(1) 22.505(1) 22.636(1) 22.809(1) 22.505(5)

SSSF 55.593(1) 26.137(1) 25.389(1) 26.137(2) 25.054(2) 25.389(2) 25.054(8)

(10, 10) SCSC 69.805(1) 44.831(1) 43.999(1) 44.831(2) 43.872(2) 43.999(2) 43.872(8)

SSSC 67.756(1) 37.894(1) 33.979(1) 33.103(1) 32.845(1) 32.754(1) 32.698(2)

SSSS 66.042(1) 33.385(1) 28.056(1) 26.474(1) 25.836(1) 25.524(1) 24.983(1)

SSSF 65.497(1) 31.284(1) 25.873(1) 24.983(1) 25.243(1) 25.782(1) 24.983(5)

Table 11  The critical buckling load factor ( ¯Ncr) for the orthotropic rectangular plate with different boundary conditions under biaxial non-uni-
form in-plane loading for CASE-B versus foundation stiffness coefficients

R = 1, Ex/Ey = 2

( ¯Kw,
¯Ks) Boundary conditions Q

0.5 1 1.5 2 2.5 3 10

(0, 0) SCSC 142.606(1) 74.997(1) 64.341(1) 61.562(1) 60.534(1) 60.057(1) 59.278(1)

SSSC 114.666(1) 50.413(1) 38.328(1) 34.510(1) 32.880(1) 32.041(1) 30.434(1)

SSSS 114.600(1) 45.126(1) 28.338(1) 22.338(1) 19.588(1) 18.109(1) 15.098(1)

SSSF 114.592(1) 45.352(1) 27.284(1) 20.133(1) 16.659(1) 14.726(1) 10.626(1)

(0, 100) SCSC 386.846(1) 371.376(1) 370.239(1) 367.606(1) 365.389(1) 363.831(1) 359.697(1)

SSSC 335.274(1) 318.948(1) 318.680(2) 318.948(2) 318.111(3) 318.680(4) 318.111(12)

SSSS 335.274(1) 318.749(1) 318.656(2) 318.749(2) 318.053(3) 318.656(4) 318.053(12)

SSSF 335.270(1) 318.818(1) 318.645(2) 318.818(2) 318.051(3) 318.645(4) 318.051(12)

(100, 0) SCSC 147.267(1) 88.708(1) 82.180(1) 81.231(1) 81.128(1) 81.175(1) 81.128(4)

SSSC 118.597(1) 62.617(1) 55.371(1) 54.050(1) 53.796(1) 53.778(1) 53.796(4)

SSSS 118.557(1) 59.692(1) 49.765(1) 47.153(1) 46.229(1) 45.823(1) 45.238(1)

SSSF 118.539(1) 60.704(1) 53.002(1) 52.025(1) 52.165(1) 52.473(1) 52.025(5)

(100, 100) SCSC 390.532(1) 381.956(1) 379.360(2) 379.926(3) 379.889(3) 379.360(4) 379.414(14)

SSSC 338.516(1) 328.287(1) 325.004(2) 325.990(3) 325.471(3) 325.004(4) 325.015(13)

SSSS 338.517(1) 328.223(1) 324.996(2) 325.988(3) 325.451(3) 324.996(4) 325.005(13)

SSSF 338.512(1) 328.192(1) 324.968(2) 325.969(3) 325.417(3) 324.968(4) 324.968(15)
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6.3  The influence of type of loading and different 
combinations of boundary conditions on the critical 
buckling load

In Table 12, the influence of loading type on the dimension-
less critical buckling load under various boundary condi-
tions can be observed while comparing the results of the 
present study with those of finite element method [36].

According to Table 12, as observed, the results of finite 
element method have good agreement with Frobenius 
method’ solution. As it is evident, the maximum buckling 
load corresponding to the state of loading CASE-D, for 
SCSC plate is: N̄cr = 53.927. Due to the fact that in this 
state of loading, a combination of tension and compres-
sion is applied to the edges, the part of the plate in tension 
stress improves the stability of orthotropic plate. Besides, 

Table 12  Comparison of buckling load ( ¯Ncr) from the present 
method with FEM results

Q = 5, R = 2, ¯Kw = 10, ¯Ks = 100, Ex/Ey = 5

Load case Method Boundary conditions

SCSC SSSC SSSS SSSF

CASE-A Present study 27.654 26.768 26.368 26.904

FEM 27.632 26.703 206.411 26.897

CASE-B Present study 53.513 51.481 51.023 51.697

FEM 53.318 51.287 50.996 51.638

CASE-C Present study 17.988 17.350 17.174 17.501

FEM 17.814 17.327 17.158 17.494

CASE-D Present study 53.927 52.564 51.308 47.017

FEM 53.887 52.534 51.287 47.098

CASE-E Present study 26.649 25.833 25.414 26.201

FEM 26.588 25.830 25.403 26.318

CASE - A

SCSC SSSC SSSF SSSS

cr 30 3N .92= cr 28 6N .70= cr 28 7N .63= cr 27 1N .59=

CASE - B

cr 62 3N .37= cr 53 5N .27= cr 52 5N .72= cr 52 6N .26=

CASE - C

cr 21 7N .66= cr 20 4N .85= cr 18 8N .75= cr 21 8N .11=

CASE - D

cr 62 5N .62= cr 59 2N .06= cr 55 5N .92= cr 50 5N .82=

CASE - E

cr 30 3N .79= cr 28 1N .40= cr 28 1N .96= cr 26 2N .38=

Fig. 3  The Displacement contours of plate in different cases of loading for Q = 2, Ex/Ey = 10, R = 1, ¯Kw = 100, ¯Ks = 10
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the minimum critical buckling load is N̄cr = 17.988 for 
(CASE-C). In this case, the intensity of load on the edge 
η = 0, 1 is −3N0. In the same loading condition, it can be 
found that maximum buckling load occurs for SCSC plate. 
On top of that, when one edge of the plate is free (there is 
one exception), the value of the critical buckling load gets 
more than that of SSSC, and SSSS plates.

7  The contours of critical buckling mode shapes

Displacement contour diagram (fixed displacement lines) 
of the critical buckling modes for orthotropic rectangular 
plate resting on Pasternak elastic foundation under biaxial 
in-plane loading and different boundary conditions are 
shown. As observed, for rectangular plate with boundary 
condition of SCSC (two clamped edges), the maximum 
and minimum buckling loads correspond to CASE-D and 
CASE-C, respectively (Fig. 3).

8  Conclusion

In this paper, the buckling analysis of orthotropic rectangu-
lar thin plates resting on Pasternak elastic foundation with 
two opposite simply supported edges, and two other edges 
being arbitrarily restrained, was investigated. According 
to Levy solution and applying Frobenius method to the 
governing equation, the critical buckling load of the plate 
was obtained. The in-plane loading was assumed to have 
non-uniform and nonlinear distribution. As seen, Frobe-
nius method solution is an efficient and reliable method 
which presents very strong and compressed process for 
buckling analysis. The results showed that the accuracy of 
this method is dependent on the number of terms of power 
series for achieving convergence. Some of the important 
results of this study are as follows:

It is observed that by increasing the aspect ratio, in some 
cases, the coefficient of critical buckling load remains 
constant, whereas the critical buckling mode increases.
When the plate is subjected to uniaxial loading (there 
are a few exceptions), the values of critical buckling 
load get more than those in the state of biaxial loading, 
and occur in the higher modes.
As the value of modulus of elasticity in two differ-
ent directions increases, the values of buckling load 
decrease.
By increasing the coefficients of elastic foundation, the 
values of critical buckling load grow, too. Shear founda-
tion coefficient exerts a greater influence on the buckling 
load in comparison with the lateral foundation coeffi-
cient.

The buckling load of the plate is highly dependent on 
the type of loading at the edges.
In the specified type of in-plane loading, the maximum 
buckling load is allocated to that of the rectangular plate 
with two opposite clamped edges. Moreover, it can be 
found out that when the plate is under uniaxial loading, 
the minimum buckling load occurs when the plate has a 
free edge.
The results of this study can be used as a new reference 
to assist researchers and engineers assess the accuracy 
and reliability of the results and investigate the analyti-
cal and numerical methods in the future.
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