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1 Introduction

Because of excellent physical properties of nanowire-based 
nano-structures, e.g. small size with large ratio of surface-
area to volume, the applications of these structures are 
growing rapidly. Nanowires are of great interest for detect-
ing nano-objects with high sensitivity and also have notice-
able applications in several industries such as optics [1], 
nanoelectromechanical systems (NEMS) [2], biological 
or gas sensing devices [3], flexible electronics and renew-
able energy technologies [4], ultrasensitive biological and 
chemical sensors [5], pH measurements [6], resonators and 
actuators [7, 8] and multifunctional NEMS.

When the electronic and mechanical systems are fabri-
cated at nano-scale size, some new phenomena that origi-
nated from the nano-size quantum effects have become 
more important and the motion of nanowire-based struc-
ture is affected by the small-scale quantum electrodynamic 
interactions such as vacuum fluctuations. The effect of 
vacuum fluctuation forces is usually modeled through the 
Casimir attraction which is the dominant phenomenon in 
sub-micron separations [9]. By integrating a force-sensing 
micromechanical beam and an electrostatic actuator on a 
single chip, Zou et al. [10] demonstrated the Casimir effect 
between two micromachined silicon components on the 
same substrate. Lombardo et al. [11] numerically evaluate 
the Casimir interaction energy for configurations involv-
ing two perfectly conducting eccentric cylinders and a cyl-
inder in front of a plane. Emig et al. [12] found the exact 
Casimir force between a plate and a cylinder by assuming 
an intermediate geometry between parallel plates and the 
plate-sphere. Tercas et al. [13] considered the mechanical 
coupling between a two-dimensional Bose–Einstein con-
densate and a graphene sheet via the vacuum fluctuations 
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of the electromagnetic field which are at the origin of the 
so-called Casimir–Polder potential. By deriving a self-
consistent set of governing equations of the condensate and 
the flexural modes of the graphene, they could show the 
formation of a new type of purely acoustic quasi-particle 
excitation, a quasi-polariton resulting from the coherent 
superposition of quanta of flexural and Bogoliubov modes. 
Ali et al. [14] investigated the excitation of electrostatic 
wake fields in metallic nanowires due to the propagation of 
a short electron pulse. To this end, they considered a non-
local dielectric response of the system and discussed the 
stability conditions of wake fields. Moreover, they showed 
that the underling mechanism can be useful to investigate 
new sources of radiation in the extreme-ultraviolet range. 
Bordag et al. [15] provided a review of both new experi-
mental and theoretical developments in the Casimir effect. 
They demonstrated that the Casimir force strongly depends 
on the shape, size, geometry and topology of the bounda-
ries. Since then, many investigations have been conducted 
to compute the Casimir attraction for different geometries 
including parallel plates [16–18], plate-sphere [19], paral-
lel cylinders [20] and plate-cylinder [21]. Several inves-
tigations have investigated the instability characteristics 
and nonlinear analysis of micro/nano-scale structures by 
employing different assumptions and theories such as 
nonlocal elasticity [22–24] modified couple stress theory 
[25–28], strain gradient theory [29, 30], modified strain 
gradient theory [31], strain-inertia gradient elasticity [32], 
etc. A nano-scale device might adhere to its substrate due 
to Casimir force if the minimum gap between the flexible 
beam and the substrate is not considered. Besides interfer-
ing with the stability of freestanding nanostructures, the 
Casimir force can also induce undesired adhesion during 
the fabrication stages. Therefore, the investigation on the 
stability behavior of suspended nanowires is very crucial 
for precise designing and mounting of these structures. All 
the published works have focused on the instability analysis 
of small-sized structures with planar or rectangular cross-
section. However, the dynamic instability characteristics 
of size-dependent nano-beams with circular cross-section 
with the consideration of Casimir force by incorporating 
the surface effects have not been addressed so far.

Owing to the high surface/volume ratio of nano-sized 
structures [33], it was experimentally demonstrated that 
the surface layer plays an important role in the static and 
dynamic behavior of such devices. Atoms at a free surface 
of nano-structures experience a different local environ-
ment with respect to the atoms in the bulk material. Conse-
quently, the energy associated with these atoms is different 
from that of the atoms in the bulk. The excess energy asso-
ciated with surface atoms is called surface free energy [34]. 
In the classical continuum mechanics, the effect of surface 
layer is ignored. However, for nano-size devices, due to the 

high surface-to-volume ratios, the influence of the surface 
layer on the overall dynamic behavior of nano-structure 
becomes highlighted. A surface elasticity theory was pre-
sented by Gurtin and Murdoch [35] to model the surface 
layer of a solid as a membrane with negligible thickness. 
The dynamic pull-in behavior of an electrically actuated 
nano-bridge with rectangular cross-section incorporating 
the surface and small-size effects was studied by Sedighi 
[36]. Eltaher et al. [37] examined the vibration characteris-
tics of nano-beams using the nonlocal finite element model 
with the consideration of surface layer effects. The pull-in 
behavior of an electrically actuated nano-beam by incorpo-
rating surface elasticity was studied by Fu and Zhang [38]. 
They solved the complex mathematical problem by the 
analog equation method (AEM) and discussed the effects 
of the surface energies on the static and dynamic responses, 
pull-in voltage and pull-in time. The influence of surface 
effect on the static instability behavior of cantilever nano-
actuator in the presence of van der Waals force (vdW) was 
investigated by Koochi et al. [39].

As mentioned earlier, the Casimir force can induce insta-
bility and adhesion in suspended nanostructures. Based 
on the available published literature, previous investiga-
tions in this area have focused on modeling instability in 
structures with planar or rectangular cross-section and the 
Casimir-induced instability and dynamic behavior of nano-
systems with circular cross-section (such as nanowires 
and nanotubes) have not been explored yet. Therefore, the 
main objective of this study was to examine the influence 
of Casimir attraction on the instability/adhesion character-
istics of nano-bridges incorporating the size-dependency 
and surface layer effects. To this end, the nonlocal elasticity 
together with the Euler–Bernoulli beam theory is adopted to 
derive the vibrational governing equation of nanowires with 
the consideration of vacuum fluctuations and surface energy. 
To solve the nonlinear governing equation a stepwise 
numerical method is introduced. Finally, the effect of differ-
ent parameters on the instability behavior and adhesion time 
of Casimir-induced suspended nanowires is addressed.

2  Mathematical modeling

The schematic view and SEM image of suspended doubly 
clamped nanowire above a flat plate substrate is depicted 
in Fig. 1. The flexible cylinder can deform towards the 
fixed ground plane due to the influence of Casimir attrac-
tive force. The nanowire has the initial gap D, length L and 
radius R. In the following subsections, based on two dif-
ferent approaches, e.g. PFA (small separation approxima-
tion) and Dirichlet mode (large separation approximation), 
the governing equation of Casimir-induced nanowires are 
extracted.
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Figure 2 shows the schematic representation of a doubly 
clamped nanowire suspended on three substrates. When the 
interface force that originates from Casimir attraction between 
two surfaces is smaller than the critical value, the nanow-
ire deflected toward the fixed substrate. As the Casimir force 
increases and approaches the critical value, the nanowire can-
not tolerate the attractive load and suddenly collapses on the 
lower plate and the stiction/adhesion phenomena occurs [40].

2.1  Equation of motion

The configuration of a doubly clamped nanowire with con-
sideration of surface layer is shown in Fig. 3a. Based on 
the Gurtin–Murdoch method [35], it is assumed that the 
nanowire has an elastic surface with zero thickness with 
specific material characteristics which accounts for the sur-
face energy effects. Moreover, Fig. 3b shows the free-body 
diagram of an infinitely small nano-beam element. The 
governing equation for transverse vibration of nanowire is 
expressed as follows [38]:

where Tx and Tz refer to the contact tractions between the 
surface layer and bulk material, respectively. M is the bend-
ing moment, N is the axial force, S is the perimeter of the 
cross-section and q(x, t), that is derived in the subsequent 
section, denotes the Casimir force per unit length of the 
nanowire.

The relation between the contact traction and the surface 
layer stresses is written as

where i = x, z, ρ0 represents the mass density of surface 
layer and ui

s is the deflection of the surface layer in the i 
direction. The constitutive equations for the surface layer 
and the governing equations for the axial force and bending 
moment are given by

(1)

∂2M

∂x2
−

∂

∂x

∫

S

Tzds− q(x, t)−
∂

∂x

(

N
∂w

∂x

)

+ (ρA)eff
∂2w

∂t2
= 0,

(2)
∂τix

∂x
− Ti = ρ0

∂2usi
∂t2

,

Fig. 1  a Schematics view b side view and c SEM image of doubly clamped cylinder-plate

Fig. 2  Adhesion phenomena of suspended doubly clamped nanowire under Casimir attraction
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Substituting of Eq. (2) into Eq. (1) and using the above-
mentioned relations results in

where E0 is the elasticity of surface layer, I0 =
∫

S
z2ds 

represents the perimeter moment of inertia, τ0 is the initial 
residual surface stress and v is the Poisson’s ratio of the 

(3)N =
EA

2L

L
∫

0

(

∂w

∂x

)2

dx + N0

(4)M = (EI)eff
∂2w

∂x2
−

2vI

2R

(

τ0
∂2w

∂x2
− ρ0

∂2w

∂t2

)

(5)τxx = τ0 + E0

(

∂u

∂x
− z

∂2w

∂x2

)

(6)τzx = τ0
∂w

∂x

(7)

�

EI + E0I0 −
2vIτ0

2R

�

∂4w

∂x4
+

�

ρA+ ρ0S0
�∂2w

∂t2
+

vIρ0

R

∂4w

∂x2∂t2

= q(x, t)+



τ0S0 +
EA

2L

L
�

0

�

∂w

∂x

�2

dx + N0





∂2w

∂x2
,

bulk material. The nonlocal constitutive equations for the 
nanowire are given by

where ∆2 = ∂2
/

∂x2, e0 and a represent the nonlocal effects 
dependent on material and an internal characteristic length 
nanoscale. Rewriting the governing equation described in 
Eq. (1) in the nonlocal form and multiplied by the nonlo-
cal operator (1 − e0

2a2Δ2), the governing equation for the 
Casimir-induced nonlocal nanowires is obtained as 

(8)
(

1− e20a
2∆2

)

Mnl = Ml

(9)
(

1− e20a
2∆2

)

τ nlxx = τ lxx

(10)
(

1− e20a
2∆2

)

τ nlzx = τ lzx ,

(11)

�

EI + E0I0 −
2vIτ0

2R

�

∂4w

∂x4
+

vIρ0

R

∂4w

∂x2∂t2
− τ0S0

∂2w

∂x2
=

�

1− e20a
2∆2

�



q(x, t)+



N0 +
EA

2L

L
�

0

�

∂w

∂x

�2

dx





∂2w

∂x2

−(ρA+ ρ0S0)
∂2w

∂t2

�

Fig. 3  a Schematic represen-
tation of a doubly clamped 
nanowire and b nano-beam 
element
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Equation (11) is subjected to the boundary conditions as 
follows:

In addition, the initial conditions of nano-structure are 
defined as

2.2  Casimir force for the cylinder‑plate geometry

For the case of conducting parallel flat plates, the Casimir 
energy per unit area separated by a distance D is [41]

(12)w(0, t) = 0, w′(0, t) = 0, w(L, t) = 0, w′(L, t) = 0,

(13)w(x, 0) = 0, ẇ(x, 0) = 0,

where c is the light speed and h̄ is Planck’s constant. It 
should be noted that this formula can be obtained with 
the consideration of the electromagnetic mode structure 
between the two plates in comparison with the free space 
by assigning a zero-point energy to each electromagnetic 
mode [42]. Proximity force approximation (PFA) funda-
mentally uses the relation described in Eq. (14) to predict 
the Casimir force in the case of small separation. Based on 
PFA approach, the interaction between any other surfaces 

(14)Epp(D) = −
π2hc

720D3
,

Fig. 4  Non-dimensional gap 
versus the Casimir parameter: 
investigating the effect of 
geometry parameter k for a SSA 
b LSA approaches
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is modeled through a summation of infinitesimal parallel 
plates [41]. For small separations, the correct zeroth order 
approximation for the Casimir energy is given by [10]

in which S is one of the two surfaces restricting a gap. It 
should be emphasized that for large separation as well 
as non-smooth surfaces the PFA cannot be used. There-
fore, another approach should be employed to model the 
Casimir attraction force for the case of larger separations. 
To model the Casimir energy in large separations, a path 
integral representation [43] is used and the electrodynamic 
Casimir energy of two disconnected metallic surfaces using 
Dirichlet mode definition at zero temperature is determined 

(15)EPFA =
∫

s

EPP(D)dS = −
π2hC

720

� dS

D3
,

[44, 45]. The Casimir energy of this mode at zero tempera-
ture is expressed as

in which

where matrix M12 represents the geometry of the sur-
faces 1 and 2, M∞

−1 is the functional inverse of matrix M 
at infinite surface separation, si(u) is a vector referring to 

(16-a)ED =
h̄c

2π

∞
∫

0

Tr ln(MM−1
∞ )dq0,

(16-b)M12

(

u,u′;q0
)

= G0

(

s1(u)− s2
(

u′
)

;q0
)

,

G0

(

x, x
′
;q0

)

=
e−q0|x−x′|
4π |x − x′|

,

Fig. 5  Non-dimensional gap 
versus the Casimir parameter: 
investigating the effect of nonlo-
cal parameter ɛ0 for a SSA b 
LSA approaches
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the ith surface parameterized by the surface vector u and 
G0 denotes the free space Green function [46]. Based on 
the PFA (for small separations), the Casimir energy can be 
obtained as [10]

where R denotes the radius of nanowire and D is the gap 
distance. Thus, the Casimir force for small separation 
approximation (SSA) can be obtained by differentiating the 
energy with respect to D as

(17)EPFA = −
π3h̄cL

960

√

R

2D5
,

(18)fcas = −
∂E(D)

∂D
=

1

768
π3h̄cL

√

2R

D7

Otherwise, for the case of cylinder-plate geometry with 
large separation gap, i.e. D ≫ R, the approximate expres-
sion for the attractive Casimir energy is stated as [47]

therefore, the Casimir force for large separation approxi-
mation (LSA) can be expressed as follows:

(19)ED = −
h̄cL

D2

1

16π ln
(

D
R

) ;

(20)fcas =
h̄cL

D3

1

8π ln
(

D
R

) +
h̄cL

D3

1

16π ln2
(

D
R

)

Fig. 6  Non-dimensional gap 
versus the Casimir parameter: 
investigating the effect of 
surface effect parameter μ for a 
SSA b LSA approaches
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2.3  Nondimensionalization of governing equation

In order to express the governing equation in the non-
dimensional from, the following variables are defined:

Thereby, the non-dimensional equation of motion for 
nonlocal nanowires considering the surface effects and 
Casimir force can be written as

(21)

τ =

√

EI

ρbhL4
t, W =

w

D
, ξ =

x

L
, α =

EAD2

2EI
, k =

D

R
, µ =

E0I0

EI
,

σ1 =
vτ0

ER
, σ2 =

τ0S0L
2

EI
, γ =

h̄cL4

8πD4EI
, fi =

N0L
2

EI
, ε0 =

e0a

L
,

κ1 =
vρ0R

3ρL2
, κ2 =

ρ0S0

ρA

for SSA approximation and

(22-a)

(1+ µ− σ1)
∂4W

∂ξ4
+ κ1

∂4W

∂ξ2∂τ̄ 2
− σ2

∂2W

∂ξ2

=
�

1− ε20
∂2

∂ξ2

�

�

π4γ

96

�

2

k(1−W)7

+



fi + α

1
�

0

�

∂W

∂ξ

�2

dξ





∂2W

∂ξ2
− (1+ κ2)

∂2W

∂τ̄ 2





(22-b)

(1+ µ− σ1)
∂4W

∂ξ4
+ κ1

∂4W

∂ξ2∂τ̄ 2
− σ2

∂2W

∂ξ2

=
�

1− ε20
∂2

∂ξ2

��

γ

(1−W)3

1

ln(k(1−W))
+

γ

(1−W)3

1

2(ln (k(1−W)))2

+



fi + α

1
�

0

�

∂W

∂ξ

�2

dξ





∂2W

∂ξ2
− (1+ κ2)

∂2W

∂τ̄ 2





Fig. 7  Time responses of 
nanowires at corresponding 
instability state: investigat-
ing the effect of geometry 
parameter k for a SSA b LSA 
approaches
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for LSA approximation.
It is worth pointing out that due to the nano-beam 

deflection, the distance D presented in the Casimir force is 
replaced by D − w and for the case of large separation gap, 
it is assumed that D + R ≈ D.

3  Numerical approach for the non‑linear problem

In order to numerically investigate the instability/adhesion 
properties and dynamic behavior of nanowires, the govern-
ing equation of motions (22-a) and (22-b) should be integrated 
over the time domain. In each time step of integration, the non-
linear terms on the right-hand side of Eq. (22) are assumed to 
be a function of the values in the previous step [48]. Accurate 
results can then be obtained if the time steps are selected rea-
sonably small. The reduced order model eliminates the spatial 
dependency in the PDEs using the Galerkin-based methods. In 
this method, the displacements are described as a linear com-
bination of independent eigenmodes which must satisfy the 
kinematic boundary conditions. By defining the orthogonality 
condition of the residue to every basis function, the second-
order time-dependent ODEs in terms of the generalized coor-
dinates corresponding to the each basis function are obtained.

To find an approximate reduced-order-model 
(ROM), the non-dimensional deflection are assumed as 

W(ξ , τ ) =
N
∑

j=1

qj(τ )φj(ξ),, where N denotes the number of 

considered modes, qj(τ) denotes the time-dependent gen-

eralized coordinate of the system and φj(ξ) is the jth mode 
shape of nano-bridge which is given by

where λj is the root of characteristic equation for jth eigen-
mode. By substituting Eq. (23) into Eqs. (22-a) and (22-b), 
multiplying by φj(ξ) and integrating from ξ = 0 to μmc, the 
approximate Reduced-Order-Model on the basis of Bub-
nov–Galerkin decomposition method can be simplified as

where

(23)

φj(ξ) = cosh
(

�jξ
)

− cos
(

�jξ
)

−
cosh

(

�j

)

− cos
(

�j

)

sinh
(

�j

)

− sinh
(

�j

)

(

sinh
(

�jξ
)

− sinh
(

�jξ
))

,

(24)

N
∑

j=1

Mijq̈j(τ )+
N
∑

j=1

Kijqj(τ ) = Fi,

(25)

Mij = (1+ κ2)

∫ 1

0

ϕiϕjdξ + [κ1 − ε0(1+ κ2)]

∫ 1

0

ϕiϕ
′′
j dξ

(26)

Kij = (1+ µ− σ1)

∫ 1

0

ϕiϕ
(iv)
j dξ − (fi + σ2)

∫ 1

0

ϕiϕ
′′
j dξ + ε0f0

∫ 1

0

ϕiϕ
(iv)
j dξ

(27-a)

Fi = α

� 1

0

ϕi
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�
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ϕ′′j qj
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d
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ϕ
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d
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0
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�

�

�

�

�

�

2

k

�

1−
N
�
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ϕjqj

�7
dξ +

49π4ε0γ

384

� 1

0

ϕi
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for SSA approximation and

Fi = α

� 1
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(27-b)
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Fig. 8  a Time history and b 
phase diagram of vibrating 
Casimir-induced nanowire for 
different values of μ at cor-
responding adhesion time for 
SSA model
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for LSA approximation. In the recent equations, Fi 
describes the nonlinear terms. By integrating Eq. (24) over 
the time domain, the dynamic behavior of the system can 
be described.

4  Results and discussion

The Casimir force has an important role in the design 
and fabrication of nano-devices. To assess the influ-
ences of vacuum fluctuations on the dynamics and 
instability characteristics of nano-systems, the vari-
ations of non-dimensional gap (1 − W) versus the 
Casimir parameter are drawn for SSA and LSA mod-
els. Figure 4 shows the non-dimensional gap as a func-
tion of Casimir force parameter γ for some values of 
geometry parameter k. Any increase in the Casimir 

parameter can decrease the initial gap between the 
flexible nanowire and bottom plate. According to the 
illustrated results, it is inferred that any increase in 
the Casimir parameter leads to increase in the dynamic 
deflection of nano-beam. In addition, when the Casimir 
parameter approaches to the critical value γcr, the nano-
beam loses its stability and adheres to the fixed sub-
strate. On the other hand, one can clearly observe that 
for both SSA and LSA approximations, the significant 
effect of geometry parameter k is to increase γcr. In 
addition, it is shown that the effect of parameter k in 
the case of small separations is more significant than 
large separations. Finally, one can see that for small 
separation gaps the nanowire may collapse into con-
tact with the bottom plate at lower values of Casimir 
parameter in comparison with large separation gaps. It 
should be noted that if the nanowire length is greater 

Fig. 9  a Time history and b 
phase diagram of vibrating 
Casimir-induced nanowire for 
different values of μ at cor-
responding adhesion time for 
LSA model



439J Braz. Soc. Mech. Sci. Eng. (2017) 39:427–442 

1 3

than the critical length (i.e. detachment length) any 
disturbance in the fabrication process can result in the 
instability of the structure even in the absence of any 
actuation voltages.

Figure 5a, b shows the non-dimensional gap (1 − W) 
versus the Casmir parameter γ for different values of the 
nonlocal parameter ɛ0 considering the SSA and LSA mod-
els, respectively. It is observed that by increasing the nonlo-
cal parameter, the mid-point of the nano-bridge diverges to 
the bottom substrate at lower values of Casimir parameter 
ɛ0 which means that the dynamic instability of nano-struc-
ture happens at lower values of nanowire length as the size-
effect parameter ɛ0 increases.

The influence of the non-dimensional parameter μ, i.e. 
the effect of the surface elasticity in the dynamic instability 

of nonlocal nanowires, is shown in Fig. 6a, b. It is seen 
that the predicted critical values for Casimir parameter 
increases as the parameter μ increases, for both SSA and 
LSA models.

The time responses of vibrating nanowires for various 
values of geometry parameter k at the corresponding adhe-
sion time are illustrated in Fig. 7. According to this figure, 
for both SSA and LSA approaches, the adhesion time of 
the nano-beam is increased by increasing the geometry 
parameter and the dynamic instability occurs at higher val-
ues of Casimir force parameter γ.

Figures 8 and 9 illustrate the time histories and phase 
portraits of Casimir-induced nanowires at the corresponding 
adhesion times for some given values of non-dimensional 
surface parameter μ. According to the obtained results, it is 

Fig. 10  The relation between γcr and nonlocal parameter ɛ0: investigating the effect of surface parameter μ for a SSA and b LSA models
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clearly inferred that for both small and large separation gaps, 
by increasing the parameter μ, the adhesion time decreases. 
Moreover, by increasing the parameter μ, the dynamic insta-
bility occurs at higher values of Casimir force. In addition, 
one can see that as the surface effect parameter μ increases, 
the corresponding deflection slightly decreases and instabil-
ity happens at lower values of nano-beam deflection.

The effect of the nonlocal parameter ɛ0 which accounts 
for the size dependency of nanowire on the critical values 
of Casimir force is illustrated in Fig. 10a, b. The obtained 
results elucidate that γcr decreases by increasing the nonlo-
cal parameter. Furthermore, it is concluded from this figure 
that the positive μ, which stands for the surface elasticity, 
can increase the critical Casimir value of nanowires while 
the negative one will decrease it.

The plot of time responses and phase portraits of the 
Casimir-induced nanowires may be of interest. To this end, 
the influence of Casimir force on the instability characteris-
tics of nanowires is investigated through Figs. 11 and 12 for 

the case of SSA and LSA models, respectively. According 
to illustrated results in Figs. 11a and 12a, one can observe 
that the nano-beam deflection and time period of vibrating 
nanowires under the influence of Casimir force is increased 
by increasing parameter γ up to the adhesion time. On the 
other hand, in the vicinity of adhesion state, any increase in 
the Casimir parameter changes the dynamic behavior of the 
system and causes the nanowire to drop to the fixed plate.

It is observed from Figs. 11b and 12b that at lower val-
ues of Casimir parameter, the system exhibits the periodic 
motions around the stable center point. When the dynamic 
instability occurs at critical Casimir value (γcr = 67.0171 
for SSA and γcr = 137.0981 for LSA models), a homo-
clinic orbit appears in the phase plane which separates peri-
odic solutions from the unbounded non-periodic trajecto-
ries around an unstable saddle node. The homoclinic orbit 
starts from the unstable branch of saddle node and returns 
to it via the stable one. In addition, one can conclude that 

Fig. 11  Effect of Casimir 
parameter on the instability 
characteristics of nanowires for 
SSA model, a time history b 
phase portrait
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the Casimir-induced nanowire collapses to the bottom plate 
beyond the unstable saddle node.

5  Conclusions

In this research work, the significant effects of Casimir 
force, nonlocal and surface effects on instability/adhe-
sion properties of suspended nanowires were investi-
gated. For this purpose, considering both small and large 
separation regimes, the non-linear governing equation 
of vibrating nanowires was extracted and solved using 
a step-by-step numerical approach. Based on the results, 
the effect of geometry parameter k was to increase 
the critical Casimir value of nanowires for both SSA 
and LSA models. It was also observed that the criti-
cal Casimir value decreases as the nonlocal parameter 
increases. In addition, the effect of surface elasticity 

parameter was to increase the critical Casimir value and 
to decrease the adhesion time. Finally, it was found that 
at lower values of Casimir force, the nanowire showed 
periodic motions around the stable center point. By 
increasing the Casimir force, the nano-system experi-
ences unbounded non-periodic motions in the vicinity of 
unstable saddle node.
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