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motion performance of a manipulator, experience and intui-
tion have suggested to determine the most dextrous posture 
of the manipulator in the reachable workspace for perform-
ing a given task. Under this scenario, the main objective 
is to position the manipulator in such a way that it is best 
able to respond to input motions. Hence, there will be pre-
ferred postures where the manipulator can move with a set 
of desired motion characteristics. However,  to determine 
such postures, the manipulator’s Jacobian matrix must be 
dimensionally homogeneous.

In general, a first order (velocity) analysis of a parallel 
manipulator usually has a typical form given by Fẋ = Gq̇, 
where q̇ is a vector containing the joint velocities of the actu-
ated joints, F and G are the so-called Jacobian matrices of 
the manipulator, and ẋ is a vector associated with the velocity 
state of the mobile platform, that is, it may contain the angu-
lar velocity vector of the mobile platform and/or velocities of 
specially selected points pertaining to the mobile platform. 
In this context, it should be noted that, if the manipulator has 
a mix of revolute and prismatic actuators, or its mobile plat-
form undergoes a general motion (translation and rotation), 
the Jacobian matrices F and G are usually not homogene-
ous in terms of units. Thus, the evaluation of motion perfor-
mance would mix translational and rotational capabilities, 
which is apparently meaningless [1, 2].

Important efforts have been focused to the homogeniza-
tion [3]–[6] of the Jacobian matrices for both, planar and 
spatial manipulators. On this regard, particularly noto-
rious has been the number of researchers interested in 
the planar 3-RRR parallel manipulator. On the one hand 
[7] and [8], propose, whereas [9], [10], and [11] evalu-
ate the motion performance of the planar 3-RRR parallel 
manipulator based on a 3× 3 non-homogeneous Jacobian 
matrix, which is scaled with a parameter known as char-
acteristic length. However, the choice of the characteristic 
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1 Introduction

The Jacobian matrix is a fundamental aspect for the veloc-
ity analysis and the evaluation of motion performance char-
acteristics of an arbitrary manipulator. In analyzing the 
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length remains arbitrary [2]. On the other hand, [3, 4], and 
[These methods are similar to each other 12] presented 
some methods to obtain homogeneous Jacobian matrices 
for the planar 3-RRR parallel manipulator. and basically, 
they were developed by considering the velocity compo-
nents of two or three noncolinear points pertaining to the 
mobile platform of the planar 3-RRR parallel manipulator. 
Although these methods serve to formulate dimension-
ally Jacobian matrices, they suffer from: (a) a rather heavy 
computational burden, and/or (b) an ambiguous concep-
tion of the velocity state of the mobile platform, since the 
implementation of these methods requires the definition of 
reference points on the end effector, and no general ration-
ale can be formulated to guide this choice, which makes 
any comparison between different manipulators very dif-
ficult to achieve [13].

Thus, instead of looking for a new mathematical model 
of the velocity analysis of the manipulator, it is prefer-
able to consider the actual velocity model, represented by 
Fẋ = Gq̇, since it is very compact and also, it has been 
historically known as the most typical velocity model for 
the planar 3-RRR parallel manipulator. The solution of the 
inhomogeneity problem associated with such a velocity 
model may be achieved in a very simple way by realizing 
that equation Fẋ = Gq̇ is not an indivisible entity, which 
is a fact that has been previously recognized for spatial 
manipulators [14]. Hence the typical mathematical model 
will be regarded as the aggregate of a pair of dimensionally 
homogeneous systems of equations: (a) two scalar equa-
tions for the translational velocity of a point pertaining to 
the mobile platform of the manipulator, and (b) one scalar 
equation for the angular velocity of the moving platform. 
Thus, based on a very compact and dimensionally homoge-
neous Jacobian matrix, it is possible to estimate the optimal 
values and directions of the velocity of a point represent-
ing the mobile platform of the manipulator. These optimal 
directions can be very helpful in planning manipulation 
tasks and provide the foundations for a better understand-
ing of the kinematic behavior of the manipulator.

2  The planar 3‑RRR parallel manipulator

The kinematic architecture of the planar 3-RRR parallel 
manipulator is illustrated by means of the schematic dia-
gram shown in Fig. 1.

The planar 3-RRR parallel manipulator is composed 
of nine revolute joints, which are used to articulate seven 
moving bodies and one fixed body. This manipulator was 
designed  to move the mobile platform (link 7) on a plane 
by means of the actuation of three rotatory motors that pro-
duce three independent rotations of links 1, 3, and 5, with 
respect to fixed link (link 0).

3  Kinematic position analysis

To obtain a systematic approach, the kinematic position 
analysis is divided in the following sections.

3.1  Constraint equations

As it was shown in [15], three independent equations can 
be derived to describe the three circular loci of moving 
points A, B and C:

(1)(xA − xD)
2 + (yA − yD)

2 = L21

(2)(xA + d1 cosφ − xE)
2 + (yA + d1 sin φ − yE)

2 = L22

(3)

(xA + d2 cos (φ + α)− xF)
2

+ (yA + d2 sin (φ + α)− yF)
2 = L23

Fig. 1  Schematic diagram of the planar 3-RRR parallel manipulator

Fig. 2  Auxiliary kinematic diagram of the planar 3-RRR parallel 
manipulator
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whose centers are located at points moving D, E, and 
F, respectively, see Fig. 2. Additionally, a=(xA, yA)

T, 
d=(xD, yD)

T, e=(xE , yE)
T, and f=(xF , yF)

T, are the posi-
tion vectors of moving points A, D, E, and F, all measured 
with respect to fixed point G, respectively. Equations (1)–
(3) are the constraint equations sought.

3.2  Forward displacement analysis

The forward displacement analysis consists in finding the 
position of moving point P, given by p=(x, y)T, and the 
orientation of the mobile platform, represented by angle 
φ , for a given set of values of actuator’s angular displace-
ments, denoted by angles, ψ1, ψ2, and ψ3, see Fig. 2. The 
approach followed in this paper is basically an adaptation 
of the method shown in [15]. Thus, subtracting Eq. (1) from 
Eqs. (2) and (3) results in the following set of equations:

where:

and, from the geometry shown in Fig. 2:

Next, Eqs. (4) and (5) can be cast in the following matrix 
form:

Equation (8) can be symbolically solved for a = (xA, yA)
T 

in terms of the angle φ as follows:

or, equivalently:

(4)H1xA + H2yA + H3 + L21 − L22 = 0

(5)H4xA + H5yA + H6 + L21 − L23 = 0

H1 = 2d1 cosφ + 2xD − 2xE

H2 = 2d1 sin φ + 2yD − 2yE

H3 = − 2d1xE cosφ − 2d1yE sin φ

+ d21 − x2D + x2E − y2D + y2E

H4 = 2d2 cos (φ + α)+ 2xD − 2xF

H5 = 2d2 cos (φ + α)+ 2yD − 2yF

H6 = d22 − 2d2xF cos (φ + α)

− 2d2yF cos (φ + α)− x2D + x2F − y2D + y2F

(6)
xD = l1 cosψ1, yD = l1 sinψ1, xE = k1 + l2 cosψ2,

yE = k2 + l2 sinψ2,

(7)xF = k3 + l3 cosψ3, yF = k4 + l3 sinψ3.

(8)

Ha = w, H ≡

[

H1 H2

H4 H5

]

, a ≡

[

xA

yA

]

, w ≡

[

L22 − L21 − H3

L23 − L21 − H6

]

.

(9)a = H−1w

(10)

xA =
H2 L1

2 − H2 L3
2 − H5 L1

2 + H5 L2
2 + H2 H6 − H3 H5

H1 H5 − H2 H4

Additionally, substitution of Eqs. (10) and (11) into equa-
tion (1) produces a scalar equation in terms of the trigono-
metric functions of angle φ, which, considering the follow-
ing tangent half-angle formulas:

leads to the eight-degree, univariate polynomial given by:

Once Eq. (13) is numerically solved for unknown τ, angle φ 
may be computed as follows:

which, when substituted into Eqs. (10) and (11), produces 
the Cartesian coordinates, xA and yA, of point A.

Finally, the Cartesian coordinates of point P can be com-
puted from the geometry shown in Figs. 2 and 3:

thus completing the solution of the forward displacement 
analysis.

3.3  Position vectors required

As it will evident later, there are certain position vectors that 
will be used in the velocity analysis. For that reason, such 
vectors are computed next. From here, it is assumed that the 
Cartesian coordinates of point A, xA, and yA, as well as the 
orientation angle of the mobile platform, φ , have been suc-
cessfully computed in terms of the input angles ψ1, ψ2, and 
ψ3. Thus, from the geometry shown in Figs. 2 and 3, there 
can be obtained the following symbolic expressions:

(11)

yA = −
H1 L1

2 − H1 L3
2 − H4 L1

2 + H4 L2
2 + H1 H6 − H3 H4

H1 H5 − H2 H4

(12)sin φ =
2τ

1+ τ 2
, cosφ =

1− τ 2

1+ τ 2

(13)
8

∑

i=0

kiτ
i = 0, τ ≡ tan

φ

2
.

(14)φ = 2 arctan(τ )

(15)
x = xA + RA cos(φ + αA), y = yA + RA sin(φ + αA)

Fig. 3  Mobile platform of the planar 3-RRR parallel manipulator
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It should be noted that position vectors (16)–(20) depend 
only on variables xA, yA, φ, ψ1, ψ2, and ψ3, which are 
already known.

4  Velocity analysis

First, from the geometry shown in Fig. 2, it is possible to 
formulate the following vector-loop equations:

where rj/k stands for the position vector of point j with 
respect to point k.

Taking the first time derivative of Eqs. (21)–(22), and 
resorting to the transport theorem [16], it is obtained that:

where:

(16)rA/D = a − d =

[

xA − l1 cosψ1

yA − l1 sinψ1

]

(17)rB/E = b− e =

[

xA + d1 cosφ − k1 − l2 cosψ2

yA + d1 sin φ − k2 − l2 sinψ2

]

(18)

rC/F = c − f =

[

xA + d2 cos(φ + α)− k3 − l3 cosψ3

yA + d2 sin(φ + α)− k4 − l3 sinψ3

]

(19)

rA/P =

[

−RA cos(φ + αA)

−RA sin(φ + αA)

]

, rB/P =

[

−RB cos(φ + αB)

−RB sin(φ + αB)

]

,

rC/P =

[

−RC cos(φ + αC)

−RC sin(φ + αC)

]

(20)

rD/G = d =

[

l1 cosψ1

l1 sinψ1

]

, rE/M =

[

l2 cosψ2

l2 sinψ2

]

,

rF/N =

[

l3 cosψ3

l3 sinψ3

]

(21)rP/G + rA/P = rD/G + rA/D

(22)rG/M + rP/G + rB/P = rE/M + rB/E

(23)rG/N + rP/G + rC/P = rF/N + rC/F

(24)v + ω7/0 × rA/P = ω1/0 × rD/G + ω2/0 × rA/D

(25)v + ω7/0 × rB/P = ω3/0 × rE/M + ω4/0 × rB/E

(26)v + ω7/0 × rC/P = ω5/0 × rF/N + ω6/0 × rC/F

ω7/0 = φ̇ k, ω1/0 = ψ̇1k, ω3/0 = ψ̇2k, ω5/0 = ψ̇3k,

ω2/0 = θ̇1k, ω4/0 = θ̇2k, ω6/0 = θ̇3k, v ≡ ṙP/G = ẋ i+ ẏ j.

being i, j, and k unit vectors representing axes X, Y, and Z, 
respectively, and ωi/j represents to the angular velocity vec-
tor of body i with respect to body j. Moreover, a dot over a 
symbol stands for the first time derivative of that symbol, 
e.g., ẋ ≡ dx/dt, where symbol t represents to time.

4.1  Typical Jacobian matrix

Since θ̇1, θ̇2, and θ̇3 are passive joint velocities, they should 
be eliminated from Eqs. (24)–(26). To this end, Eqs. (24)–
(26) are dot-multiplied by vectors rA/D, rB/E, and rC/F, 
respectively, thus yielding:

Equations (27)–(28) can be arranged in the following 
matrix array:

where:

with:

(27)
v · rA/D + φ̇ (k × rA/P) · rA/D = ψ̇1 (k × rD/G) · rA/D

(28)
v · rB/E + φ̇ (k × rB/P) · rB/E = ψ̇2 (k × rE/M) · rB/E

(29)
v · rC/F + φ̇ (k × rC/P) · rC/F = ψ̇3 (k × rF/N ) · rC/F

(30)Pu = Qq̇

(31)

P ≡
�

p1 p2 p3

�

, u =





ẋ

ẏ

φ̇



,

Q ≡
�

q1 q2 q3

�

, q̇ =





ψ̇1

ψ̇2

ψ̇3





(32)p1 ≡





xA − l1 cosψ1

xA + d1 cosφ − k1 − l2 cosψ2

xA + d2 cos(φ + α)− k3 − l3 cosψ3



,

(33)

p2 ≡







yA − l1 sinψ1

yA + d1 sin φ − k2 − l2 sinψ2

yA + d2 sin(φ + α)− k4 − l3 sinψ3






, p3 ≡







µ1

µ2

µ3






,

(34)q1 ≡





σ1
0

0



, q2 ≡





0

σ2
0



, q3 ≡





0

0

σ3



,

(35)
µ1 ≡ (k × rA/P) · rA/D, µ2 ≡ (k × rB/P) · rB/E ,

µ3 ≡ (k × rC/P) · rC/F ,

(36)
σ1 ≡ (k × rD/G) · rA/D, σ2 ≡ (k × rE/M) · rB/E ,

σ3 ≡ (k × rF/N ) · rC/F .
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Solving Eq. (30) for vector u, which represents the velocity 
state of the moving platform, leads to:

where the 3× 3 matrix J is the typical Jacobian matrix 
related to the planar 3-RRR parallel manipulator. It is 
important to observe that matrix J is not homogeneous in 
terms of units, since the columns of matrix P do not share 
the same units. Hence, measures of robot dexterity depend-
ing upon eigenvalues and singular values of matrix J have 
no invariant physical meaning [17].

4.2  New homogeneous Jacobian matrix

This section is based on the general idea of separating the 
rotational and the translational motion, which was pre-
viously proposed for the motion performance of spatial 
manipulators [14]. Thus, Eq. (30) will be regarded as the 
aggregate of a pair of dimensionally homogeneous systems 
of equations: (a) two scalar equations for the translational 
velocity of point P of the mobile platform of the manipula-
tor, namely, v ≡ ṙP/G = ẋ i+ ẏ j, and (b) one scalar equa-
tion for the angular motion φ̇ of the moving platform.

The homogenization process begins with the obtaining 
of the symbolic form of the Jacobian matrix J, see Eq. (37), 
which first requires the symbolic form of inverse matrix 
P−1, that is:

where the concept of reciprocal basis [18, 19] has been 
used. In this way, the original Jacobian matrix J becomes:

Then Eq. (37) may be divided as follows:

where the symbolic expressions for matrix elements mij are 
given in Eq. (39).

From the foregoing discussion, it may be concluded that 
the 2× 3 matrix N is the new Jacobian matrix sought. It 
should be noted that the elements of matrix N depend on 
the columns of the original velocity matrices, namely, 
matrices P and Q, see Eq. (30). Moreover, the most impor-
tant feature is that matrix N is dimensionally homogeneous. 
Furthermore, matrix N serves to state a direct relationship 

(37)u = Jq̇, J ≡ P−1Q

(38)P−1 =
1

(p1 × p2) · p3





(p2 × p3)
T

(p3 × p1)
T

(p1 × p2)
T





(39)J ≡ P−1Q =
1

(p1 × p2) · p3





(p2 × p3) · q1 (p2 × p3) · q2 (p2 × p3) · q3
(p3 × p1) · q1 (p3 × p1) · q2 (p3 × p1) · q3
(p1 × p2) · q1 (p1 × p2) · q2 (p1 × p2) · q3



 =
�

mij

�

(40)

�

ẋ

ẏ

�

=

�

m11 m12 m13

m21 m22 m23

�





ψ̇1

ψ̇2

ψ̇3



, v = Nq̇

(41)φ̇ = m31ψ̇1 + m32ψ̇2 + m33ψ̇3

between the velocity of point P, pertaining to the mobile 
platform, and the input angular velocities of the manipula-
tor’s actuators. Hence, by resorting to matrix N, there is no 
necessity of involving the translational velocities of addi-
tional points pertaining to the mobile platform.

5  Optimization of the velocity vector of point P

On the one hand, a manipulator may be considered as a 
mechanical transformer of motion, where the task to be 
performed must ultimately be realized as a sequence of 
motions developed by the actuators [20]. On the other hand, 
for a given configuration of the manipulator, one may intui-
tively realize that there are preferred directions for motion 
of point P. These optimal directions can be quite helpful 
in planning manipulation tasks [21]. Such directions may 
be graphically illustrated by means of the so-called velocity 
ellipsoid.

5.1  Velocity ellipsoid

The velocity ellipsoid is an useful tool for visualizing the 
velocity transmission characteristics of a manipulator at a 
specific configuration. To this end, from Eq. (40), one may 
realize that Jacobian matrix N is simply a linear transfor-
mation that maps the joint velocity into the translational 
velocity of the mobile platform.

It is desired to describe the geometric locus of the set 
of all mobile platform velocities v that can be generated 
by a given set of joint velocities, q̇ = (ψ̇1, ψ̇2, ψ̇3)

T , with 
the manipulator in a given configuration. To this end, Eq. 

(40) may be mathematically manipulated as follows. First, 
it should be noted that Jacobian matrix N is not square, 
and therefore it does not have a direct inverse matrix. 
Moreover, if Eq. (40) is attempted to be solved for q̇ in 
terms of v, it results in a linear system of two equations in 
three unknowns. Hence, the system under study admits an 
infinite number of solutions, i.e., the solution q̇ for a given 
v is not unique. However, it allows to impose one condi-
tion on a specific solution which could be preferred for a 
designer. A viable solution approach consists in formulat-
ing the problem as a constrained linear optimization prob-
lem [19, 22]. Thus, assuming that the velocity vector v 
and the new Jacobian matrix N are available in some way, 
it is desired to find the vector of joint velocities q̇ that sat-
isfy the linear Eq. (40) and simultaneously minimize the 
quadratic cost functional of joint velocities given by:
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This problem can be efficiently solved by resorting to 
the method of Lagrange multipliers. To this end, a vector 
of unknown Lagrange multipliers � is incorporated into 
the original cost functional (42), thus yielding a new cost 
functional defined as follows:

which is subject to no constraints, since the vector of 
Lagrange multipliers � has been cleverly incorporated 
into the new cost functional, in such a way that there is 
no violation of velocity constraint represented by Eq. 
(40), i.e., �T (Nq̇− v) = �

T (0) = 0.
Summarizing, Eq. (43) represents an unconstrained min-

imization problem whose unknowns are contained in the 
components of vectors q̇ and �. Thus, the normality condi-
tion of the problem at hand, i.e., the necessary condition to 
satisfy, can be stated as:

which can be broken down in the two conditions below:

From Eq. (45), it is obtained that:

Substitution of Eq. (47) in (46) leads to:

Under the assumption that matrix N has full rank, the prod-
uct NNT results in a nonsingular square matrix, which can 
be inverted. Solving for � yields:

which, when substituted into Eq. (47) produces the sought 
optimal solution:

It should be noted that left multiplication of both sides of 
Eq. (50) by N leads directly to the original Eq. (40).

The process continues by taking the dot product of Eq. 
(50):

(42)ζ(q̇) ≡
1

2
q̇ · q̇

(43)ξ(q̇,�) ≡
1

2
q̇ · q̇+�

T (Nq̇− v)

(44)dξ =

(

∂ξ

∂q̇

)

dq̇+

(

∂ξ

∂�

)

d� = 0

(45)
∂ξ

∂q̇
= q̇+ NT

� = 0

(46)
∂ξ

∂�
= Nq̇− v = 0

(47)q̇ = −NT
�

(48)v = −NNT
�

(49)� = −(NNT )−1v

(50)q̇ = NT (NNT )−1v

(51)q̇ · q̇ = q̇T q̇ = {NT (NNT )−1v}T {NT (NNT )−1v}

equation that can be further simplified by resorting to 
matrix properties (AB)T = BTAT, and (AT )−1 = (A−1)T, 
thus yielding:

Now, if the set of joint velocities of constant (unit) norm, 
given by:

is considered, then the tip of the velocity vector v lies on an 
ellipsoid given by the following equation:

In general, Eq. (53), which describes the points on the sur-
face of a unit spheroid [23] in the joint velocity space, is 
mapped into an ellipsoid [20] in the space of velocities 
of point P defined by Eq. (54). Hence, Eq. (54) is usually 
known as the velocity ellipsoid.

It is important to remark that, since Jacobian matrix 
N is configuration dependent, the shape of the velocity 
ellipsoid is also configuration dependent, and as the mov-
ing platform moves from one configuration to another, 
the shape of the velocity ellipsoid changes accordingly 
[8].

5.2  Characterization of the velocity transmission

For the parallel manipulator under study, the input and out-
put velocities are regarded as the vector of actuated joint 
velocities, q̇, and the translational velocity vector v of 
point P, respectively. As it was shown in Sect. 4.2, through 
Eq. (40), the new Jacobian matrix N transforms the three-
dimensional vector of actuated joint velocities, q̇, into a 
two-dimensional moving platform velocity vector, v. It 
could be important to find some way to compare the input 
and output velocities, i.e., to look for some characteriza-
tion scheme of the velocity transmission of the manipula-
tor. This could be beneficial for a better understanding of 
the kinematic behavior of the manipulator. One way to 
characterize the transmission of velocity is to compare the 
amplitude and direction of the translational velocity vector 
v generated by a unit vector of actuated joint velocities, i.e., 
q̇ · q̇ = 1. This is presented next.

5.2.1  Maximum and minimum values of v

This section describes an optimization process to compute 
the maximum and minimum magnitudes of the transla-
tional velocity of the mobile platform, which is represented 
by vector v. As an additional result, it is also possible to 
compute the optimal directions for achieving the maximum 
and the minimum values of velocity vector v.

(52)vT {(NNT )−1}v = q̇ · q̇

(53)q̇ · q̇ = 1

(54)vT {(NNT )−1}v = 1
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First, the square of the magnitude of vector v, denoted as 
v2 ≡ v · v, can be computed from Eq. (40) as follows:

which will be considered as the function to be optimized 
under the following constraint:

Next, a new function v2N is defined by adjoining the con-
straint (56) to v2 via a Lagrange multiplier �:

Hence, the problem is now reduced to finding the maxi-
mum and minimum values of v2 subject to constraint 
q̇ · q̇ = 1. The solution to this problem can be obtained by 
solving:

which is the partial derivative [24] of a scalar, v2N, with 
respect to a vector, q̇, thus yielding:

It should be noted that, if � could be known in some way, 
then Eq. (59) would be linear for q̇. In fact, if the term �q̇ is 
replaced by �Iq̇, then Eq. (59) becomes:

where I is the 3× 3 identity matrix.
Since the objective is to obtain vector q̇ such that q̇ �= 0 , 

then,  to satisfy Eq. (60), the following condition must be 
fulfilled:

Notice that Eqs. (59)—(61) represent a well-known math-
ematic process which is called the eigenvalue problem. In 
this context, the number � is called an eigenvalue of the 

(55)
v2 ≡ v · v = vTv = {Nq̇}T {Nq̇} = q̇TG q̇, G ≡ NTN

(56)q̇ · q̇ ≡ q̇T q̇ = ψ̇2
1 + ψ̇2

2 + ψ̇2
3 = 1

(57)v2N ≡ q̇TG q̇− �(q̇ · q̇− 1)

(58)

(

∂ v2N
∂ q̇

)T

= 0

(59)G q̇− �q̇ = 0

(60)(G− �I)q̇ = 0

(61)det (G− �I) = 0

matrix G, and the vector q̇, computed from Eq. (60), is the 
associated eigenvector. Moreover, since G is a (3× 3) sym-
metric, and positive definite matrix, it will have three real 
and positive [25] eigenvalues, �1 > �2 > �3, which can be 
computed from Eq. (61). However, since the locus of the 
image under the transformation is an ellipse, and, the ellipse 
has only two principal axes, then the eigenvalues will be 
taken as follows: �MAX ≡ �1 > �MIN ≡ �2, and �3 = 0, i.e., 
only those eigenvalues whose numerical values are different 
from zero serve to describe the shape of the ellipse.

On the other hand, from Eq. (59) it is obtained that:

equation that, when substituted into equation (55), and by 
virtue of equation (56), leads to:

Thus, Eq. (63) allows to compute the maximum and mini-
mum magnitudes of vector v, which are given as follows:

Moreover, the maximum and minimum solutions of Eq. 
(40) can be written in terms of the eigenvectors associated 
with matrix G as follows:

(62)G q̇ = �q̇

(63)v2 = q̇T�q̇ = �q̇T q̇ = �

(64)||v||MAX =
√

�MAX , ||v||MIN =
√

�MIN

(65)vMAX = N q̇MAX , vMIN = N q̇MIN

Fig. 4  Geometric visualization 
of the linear mapping v = Nq̇

Fig. 5  Computer solid model of the planar 3-RRR parallel manipula-
tor
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where q̇MAX and q̇MIN are the eigenvectors corresponding to 
eigenvalues �MAX and �MIN, respectively.

Summarizing, Eqs. (64) and (65) provide the magnitude 
and the direction of the extreme velocities of point P, for 
any feasible configuration reached by the planar 3-RRR 
parallel manipulator under study.

5.3  Geometric description of the velocity 
transformation

In particular, for the manipulator under study, the spheroid 
represented by Eq. (53) is really a sphere, and, the ellip-
soid (54) becomes an ellipse. Thus, from Eq. (40), it can be 
shown that Jacobian matrix N maps a vector of joint veloci-
ties q̇, inscribed in the unit sphere q̇ · q̇ = 1, in R3, onto an 
ellipse in R2, given by Eq. (54), as it is graphically illus-
trated in Fig. 4.

As it is graphically shown in Fig. 4, there are only a 
maximum and a minimum of velocity vector v, which are 
located along the principal axes of an ellipse and determine 
its shape. Moreover, in the direction of the major axis of the 
ellipse, point P can move at high speed. On the other hand, 
in the direction of the minor axis point P can move only 
at low speed. If the ellipse is almost a circle, point P can 
move in all directions uniformly. Furthermore, the larger 
the ellipse is, the faster point P can move [26].

It is also important to distinguish optimal directions for 
developing velocity from those for controlling velocity. 
The optimal direction for effecting velocity is along the 
major axis of the ellipse, where the transmission ratio is at 
maximum. Conversely, the velocity is most accurately con-
trolled along the minor axis of the ellipse, where the trans-
mission it at minimum [20].

6  Case study

The objective of this section is to show the applicabil-
ity of the foregoing mathematical formulation. Since the 

pursuing results are of numerical nature, there are required 
the numerical values of the geometrical dimensions of the 
manipulator. On this regard, it was arbitrarily constructed a 
computer solid model of the manipulator, whose geometri-
cal dimensions are:

The solid model of the manipulator is shown in Fig. 5.
Fig. 5 shows an arbitrarily selected configuration of the 

manipulator for which the angles produced by the actua-
tors take the following numerical values, ψ1 = 343.30◦, 
ψ2 = 88.19◦, and ψ3 = 203.04◦.

6.1  Velocity ellipse

The purpose of this section is to show the compatibility 
between the theoretical results introduced in Sects. 5.1 

l1 = l2 = l3 = 1.00m, L1 = L2 = L3 = 1.00m,

d1 = 1.00m, d2 = 1.00m,α = 30
◦
,

RA = RB = RC = 0.57m,αA = 30
◦
,αB = 150

◦
,αC = 90

◦
.

Fig. 6  Illustration of: a velocity 
vectors vMAX and vMIN, b result-
ing ellipse, (c) vectors vMAX and 
vMIN inscribed into the ellipse

(a) (b) (c)

Fig. 7  Velocity ellipse distribution
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and 5.2.1. To this end, there is proposed the following 
methodology.

1. Directly, from Eq. (65), there are computed the opti-
mum velocity vectors vMAX = (0.4086, 0.7677)T, 
and vMIN = (−0.6515, 0.3467)T, see Sect. 5.2.1. The 
velocities are given in meters per second. A graphical 
description of these vectors is shown in Fig. 6a.

2. Equation (54) takes the form 1.7222 ẋ2 − 0.4261 ẋ ẏ

+1.4352 ẏ2 − 1 = 0, see Sect. 5.1. The resulting geo-
metric figure is the ellipse shown in Fig. 6b.

3. Insertion of Fig. 6a into Fig. 6b, leads to figure Fig. 6c.

As it is shown in Fig. 6c, velocity vectors vMAX and vMIN 
lie along the major and minor axes of the ellipse, respectively. 
Thus, Fig. 6 may be considered as a graphical verification 
of that the tip of the velocity vector of the mobile platform 
lies on a two dimensional ellipse whose symbolic formula is 
given by Eq. (54), thus showing the compatibility between 
the theoretical results introduced in section. 5.1 and 5.2.1.

6.2  Velocity ellipse distribution

The velocity ellipse is an useful geometric tool to visualize 
the velocity transmission characteristics of the manipulator 
at an specific configuration. As it would be expected, the 
shape of the velocity ellipse changes continuously within 

the manipulator’s workspace, see Fig. 7. As far as the shape 
of the velocity ellipse changes, the magnitude of the veloc-
ity vector of point P also changes.

From Fig. 7, it should be noted that the shape of the 
velocity ellipse is long and narrow near the boundaries 
of the reachable workspace. It also can be seen that when 
point P is near the boundary of the reachable workspace, 
the major axis of the velocity ellipse points out almost tan-
gentially, whereas the minor axis of the velocity ellipse 
points out radially.

6.3  Distribution of maximum velocity

The magnitude of the maximum velocity vector, ‖v‖MAX, 
given by Eq. (64), can be calculated over the whole work-
space, which yields the plot shown in Fig. 8.

The numerical data leading to the distribution of the 
minimum velocity of point P is shown in Fig. 8. It was 
observed that the maximum magnitude of the velocity vec-
tor vMAX is equal to 5.9014m/s, and it is reached at position 
x = 1.96m, y = 1.2653m, see the square box shown in 
Fig. 8. This particular position may be regarded as a good 
choice for the home position of the planar 3-RRR parallel 
manipulator if the designer’s purpose is based on a maxi-
mal velocity criterion. Moreover, to facilitate its visualiza-
tion, other points were heuristically selected and they are 
marked with stars in Fig. 8.

Fig. 8  Maximum velocity 
distribution
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6.4  Distribution of minimum velocity

The magnitude of the minimum velocity vector, ‖v‖MIN, 
given by Eq. (64), can be calculated over the whole work-
space, which yields the plot shown in Fig. 9.

The numerical data leading to the distribution of the 
minimum velocity of point P is shown in Fig. 9. It was 
observed that the minimum magnitude of the velocity vec-
tor vMIN is equal to 0.60009m/s, and it is reached at posi-
tion x = 1.95m, y = 1.01m, see the triangle shown in 
Fig. 9. This particular position may be regarded as a good 
choice for the home position of the planar 3-RRR parallel 
manipulator if the designer’s purpose is based on an accu-
rate control criterion. Moreover,  to facilitate its visualiza-
tion, other points were heuristically selected and they are 
marked with big dots in Fig. 9.

7  Conclusions

It has been introduced a new dimensionally homogeneous 
Jacobian matrix for the planar 3-RRR parallel manipulator. 
The proposed matrix is simpler and more compact, when 
compared with other Jacobian matrices reported in litera-
ture. The proposed approach may be considered as a means 
of representing motion performance characteristics of the 
planar 3-RRR parallel manipulator in such a way that the 

performance characteristics are quantified analytically and 
illustrated graphically to the designer during the conceptual 
design stage. In addition, it may serve to position the manip-
ulator in such a way that it is best able to respond to motion 
control commands, and it can be very helpful in planning 
manipulation tasks and provide the foundations for a better 
understanding of the kinematic behavior of the manipulator.
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