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engineering design and manufacture. FGMs have continu-
ous variation of material properties in one or more direc-
tions. Typically, FGMs are made from a mixture of ceram-
ics and metals with the variation of the volume fraction 
according to a power law through thickness [1, 2]. FGMs 
have received wide applications as structural compo-
nents in modern industries such as mechanical, aerospace, 
nuclear reactors, and civil engineering.

In the process of FGMs fabrication, the existence of 
porosities and micro-voids inside the materials possiblyoc-
curs due to technical problems, especially at the ceramic 
zone. The impact of this failure has been the subject of 
much attention, as evidenced by the large number of studies 
on this subject. For porous plates and shells, Magnucka–
Blandzi [3] studied the dynamic stability for a circular 
porous plate to determine the critical loads. The influence 
of unstable regions for the Mathieu equation was described. 
She [4, 5] also examined the nonlinear dynamic stability 
and axi-symmetrical deflection and buckling of circular 
porous plates. Belica and Magnucki [6, 7] investigated the 
dynamic stability of a porous cylindrical shell under differ-
ent loading.

Wattanasakulpong and Ungbhakor [8] investigate linear 
and nonlinear vibration problems of FGMs beams having 
porosities. Wattanasakulpong et  al. and Ebrahimi [9, 10] 
presented a work on porosities happening inside FGMs 
samples fabricated by a multi-step sequential infiltration 
technique. FGMs may possess a number of advantages 
such as high resistance to temperature gradients, significant 
reduction in residual and thermal stresses, and high wear 
resistance.

Composite structures on elastic foundations have wide 
applications in modern engineering and pose great techni-
cal problems in structural design. In the vast majority of 
the classical mechanics, plates on an elastic foundation are 
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1  Introduction

Functionally graded materials (FGMs) are a new class 
of composite structures that are of great interest for 
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a simplified approach for two continuum media interact-
ing together such as flexible structural elements in contact 
with a bearing soil, rubber, polymer or any deformable sub-
strate material. The mechanical behaviour of elastic foun-
dations was discussed by Winkler [11], whereas Pasternak 
[12] presented a two-parameter model, which considers the 
shear deformation between the springs over the one param-
eter model. The Winkler model can be considered a spe-
cial case of Pasternak model by setting the shear modulus 
to zero. A review of literature shows that there are only 
a few studies on free vibration of rectangular and porous 
nano FGM plates based on the nonlocal plate shear defor-
mation theory. It is well-known that classical Love–Kirch-
hoff theory of beam bending, also known as elementary 
theory of bending (CPT), disregards the effects of the shear 
deformation. The theory is suitable for slender plate and is 
not suitable for thick or deep, implying that the transverse 
shear strain is zero. Timoshenko and Reissner–Mindlin 
showed that the effect of transverse shear is much greater 
than that of rotatory inertia on the response of transverse 
vibration of prismatic bars and thick plate (FPT). In this 
theory, transverse shear strain distribution is assumed to 
be constant through the plates thickness and thus requires 
shear correction factor to appropriately represent the strain 
energy of deformation. In order to overcome the limitations 
of FPT, higher order shear deformation theories (HPT) 
involving higher order terms in Taylor’s expansions of the 
displacements in the thickness coordinate were developed 
by Reddy and several researchers [13–21]. A two-variable 
refined plate theory (RPT) using only two unknown func-
tions was developed by Shimpi [22] for isotropic plates, 
and was extended by Shimpi and Patel [23, 24] to ortho-
tropic plates. Recently, a two-variable RPT was developed 
by Kim et al. [25], El Meiche et al., Mechab et al. and Thai 
et al. [26–32].

Nanostructural elements are objects of intermediate 
size between molecular and microscopic structures such 
as nanobeams, nanomembranes and nanoplates. In recent 
years, these elements are commonly used in nanoelectro-
mechanical (NEM) devices. Hence, accurate prediction of 
their vibrational behaviour becomes essential for engineer-
ing design and manufacture. The nonlocal elasticity theory 
is also used as proposed and developed by Eringen [33, 34], 
nonlocal theory of Eringen is based on this assumption that 
the stress at a point is considered as a function of the strain 
field at all neighbour points in the continuum body. The 
inter-atomic forces and atomic length scales directly come 
to the constitutive equations as material parameters. Impor-
tance of accurate prediction of nanostructures vibration 
characteristics has been discussed by Lu et  al., eAghaba-
baei and Reddy [35, 36]. Hence, many papers have been 
published on this topic, specially for analysing nonlocal 
plate models of bending, vibration and buckling [37–39], 

Malekzadeh and Shojaee [40] analysed the free vibration of 
nanoplates based on a nonlocal two-variable RPT.

This paper investigates the effect of porosities occur-
ring inside FGMs during fabrication, the new model ψ(z) is 
employed for analysis the FGM nanoplates resting on Win-
kler–Pasternak elastic foundations based on two-variable 
RPT. The small-scale effects are introduced using the nonlo-
cal elasticity theory with a new shear deformation function. 
The governing equations are obtained through the Hamil-
ton’s principle. The effect of material property, porosities, 
various boundary conditions and elastic foundation stiff-
nesses on free vibration are presented. The present solutions 
are compared with those obtained by other researchers.

2 � Mathematical formulations

2.1 � Theory of nonlocal elasticity

This theory assumes that the stress state at a reference 
point X in the body is regarded to be dependent not only on 
the strain state at X but also in the strain states at all other 
points X ′ of the body.

The most general form of the constitutive relation in the 
nonlocal elasticity type representation involves an integral 
over the entire region of interest. The integral contains a 
nonlocal kernel function, which describes the relative influ-
ences of the strains at various locations on the stress at a 
given location. For nonlocal linear elastic solids, the equa-
tions of motion have the form [33–35] 

where ρ and fi are, respectively, the mass density and the 
body (and/or applied) forces; ui is the displacement vector; 
and tij is the stress tensor of the nonlocal elasticity defined 
by

in which X is a reference point in the body; α
(∣

∣X ′ − X
∣

∣

)

 is 
the nonlocal kernel function; and σij is the local stress ten-
sor of classical elasticity theory at any point X ′ in the body 
and satisfies the constitutive relations

for a general elastic material, in which Qijkl are the elas-
tic modulus components with the symmetry properties 
Qijkl = Qjikl = Qijlk = Qklij, and εkl is the strain tensor. It 
should be emphasized here that the boundary conditions 

(1)tij,j + fi = ρüi

(2)tij(X) =

∫

V

α
(∣

∣X ′ − X
∣

∣

)

σij
(

X ′
)

dv
(

X ′
)

(3)σij = Qijklεkl

(4)εkl =
1

2

(

uk,l + ul,k
)
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involving tractions are based on the nonlocal stress tensor 
tij and not on the local stress tensor σij.

The properties of the nonlocal kernel α
(∣

∣X ′ − X
∣

∣

)

 have 
been discussed in detail by Eringen [33]. When α(|X|) takes 
on a Greens function of a linear differential operator L, i.e.

The nonlocal constitutive relation (2) is reduced to the 
differential equation

and the integro-partial differential Eq.  (1) is correspond-
ingly reduced to the partial differential equation

By matching the dispersion curves with lattice models, 
Eringen [33, 34] proposed a nonlocal model with the linear 
differential operator L defined by

where µ = e0a, (a) is an internal characteristic length (lat-
tice parameter, granular size or molecular diameters) and e0 
is a constant appropriate to each material for adjusting the 
model to match some reliable results from experiments or 
other theories. Therefore, according to Eqs. (3), (4), (6) and 
(8), the constitutive relations may be simplified to

For simplicity and to avoid solving integro-partial differ-
ential equations, the nonlocal elasticity model, defined by 
the relations (6)–(9), has been widely adopted in tackling 
various problems of linear elasticity and micro-/nanostruc-
tural mechanics.

For general boundary value problems, like a nonzero 
boundary force conditions, the method for the solution of 
the nonlocal plate theories will be more complicated than 
those of the local plate theories. It is known that the force 
boundary conditions for the nonlocal plate models are 
based on the nonlocal components Nij and Mij defined as

The global governing equations of the plate structures 
can be derived by integrating the equations of motion (1) 
through the thickness. By multiplying Eq.  (1) by dz, then 
integrating through the thickness and noting (10), we have

(5)Lα
(∣

∣X ′ − X
∣

∣

)

= δ
(∣

∣X ′ − X
∣

∣

)

(6)Ltij = σij

(7)σij + L(fi − ρü) = 0

(8)L = 1− µ2∇2

(9)
(

1− µ2∇2
)

tij =
(

1− (e0a)
2∇2

)

tij = σij = Qijklεkl

(10)Nij =

h/ 2
∫

−h/ 2

tijdz, Mij =

h/ 2
∫

−h/ 2

ztijdz

(11)
Nij,j +

h
2

∫

− h
2

fidz =

h
2

∫

− h
2

ρüidz

Furthermore, multiplying Eq.  (1) by zdz followed by 
integrating through the thickness and noting (10), we have

By applying the linear differential operator (8) and the dif-
ferential Eq. (6) to Eq. (10), we have

where NL
ij  and ML

ij are the local (classical) resultant forces 
and the local resultant moments defined by

Furthermore, by applying the operator to Eqs. (11) and 
(12), we obtain the general equations of motion for the 
nonlocal plate model as

and

The differential operator ∇2 in (15a) and (15b) is the 
three-dimensional Laplace operator in general. For thin-
plate models, it may be reduced to the two-dimensional 
Laplace operator by ignoring the differential component 
with respect to z, i.e. ∇2 = ∂2

∂x2
+ ∂2

∂y2
. With this approxima-

tion, the equations of motion (15a) and (15b) become

and

The nonlocal resultant force and moment tensors, Nij 
and Mij, respectively, in (10) can be simplified as

(12)Mij,j +

h
2

∫

− h
2

zfidz =

h
2

∫

− h
2

ρzüidz

(13)
(

1− µ2∇2
)

Nij = NL
ij and

(

1− µ2∇2
)

Mij = ML
ij

(14)NL
ij =

h/ 2
∫

−h/ 2

tijdz, ML
ij =

h/ 2
∫

−h/ 2

ztijdz

(15a)

Nij,j = −

(

1− µ2∇2
)

h
2

∫

− h
2

fidz +

h
2

∫

− h
2

ρüidz − µ2

h
2

∫

− h
2

∇2(ρüidz)

(15b)Mij,j +

h
2

∫

− h
2

zfidz =

h
2

∫

− h
2

ρzüidz − µ2

h
2

∫

− h
2

∇2(ρzüi)dz

(16a)NL
ij,j = −

�

1− µ2∇2
�









h
2

�

− h
2

fidz +

h
2

�

− h
2

ρüidz









(16b)ML
ij,j +

h
2

∫

− h
2

zfidz =
(

1− µ2∇2
)

h
2

∫

− h
2

(ρzüi)dz
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where the integrals are taken along the mid-plane s of the 
plate, NL

ij  and ML
ij are given in (14). The two-dimensional 

nonlocal kernel α
(∣

∣X ′ − X
∣

∣

)

 in Eq.  (17) can be defined to 
satisfy the relation (5), in which the differential operator is 
as given in Eq.  (8) instead of a two-dimensional Laplace 
operator, i.e. L = 1− µ2

(

∂2

∂x2
+ ∂2

∂y2

)

.This approxima-
tion is acceptable for plates with very small thickness span 
ratios.

Generally used three and two-dimensional nonlo-
cal kernel functions are given the following equations, 
respectively,

where ξ =
µ
ℓ
; K0 is the modified Bessel function and ℓ is a 

characteristic length of the considered structure. For more 
examples of different boundary value problems based on 
the nonlocal elasticity models, refer to Eringen [32].

The nonlocal constitutive equations of an FGM nonlocal 
plate can be written as:

(17)

Nij(X) =

∫

A

α
(∣

∣X ′ − X
∣

∣

)

NL
ij

(

X ′
)

dS
(

X ′
)

Mij(X) =

∫

A

α
(∣

∣X ′ − X
∣

∣

)

ML
ij

(

X ′
)

dS
(

X ′
)

(18)α(|X|) =
1

4πℓ2ξ2|X|
e
−

|X|
ℓξ

(19)α(|X|) =
1

2πℓ2ξ2|X|
K0

(

|X|

ℓξ

)

(20)



























σx

σy

τxy

τyz

τxz



























− (e0ℓ)
2

�

∂2

∂x2
+

∂2

∂y2

�



























σx

σy

τxy

τyz

τxz



























=















Q11(z) Q12(z) 0 0 0

Q12(z) Q22(z) 0 0 0

0 0 Q66(z) 0 0

0 0 0 Q44(z) 0

0 0 0 0 Q55(z)









































εx

εy

γxy

γyz

γxz



























where (σx, σy, τxy, τyz, τyx) and (εx, εy, γxy, γyz, γyx) are the 
stress and strain components, respectively. Where the elas-
tic constants Qij in terms of Young’s modulus E and Pois-
son’s ratio ν are:

z is a distance parameter along the graded direction are 
such that −h

/

2 ≤ z ≤ h
/

2

2.2 � Higher‑order plate theory

The high shear models considered in this paper are 
defined from a variational methodology and are then vari-
ationallly consistent. Consider a FGMs structure made of 
three isotropic layers of arbitrary thickness h, width (b1) 
and length (a1) as shown Fig.  1. The FGM nanoplate is 
supported at four edges defined in the (x, y, z) coordinate 
system with x- and y-axes located in the middle plane 
(z = 0) and its origin placed at the corner of the plate. It 
is assumed to be rested on a Winkler–Pasternak type elas-
tic foundation with the Winkler stiffness of kw and shear 
stiffness of kp.

Consider a FGM with a porosity volume fraction 
α(α << 1). The FGM is made from a mixture of a metal 
and a ceramic, while a core is made of an isotropic homo-
geneous material. The material properties of FGM are 
assumed to vary continuously through the plate thickness 
by a power law distribution as [8]:

where Pm, Pc, Vm and Vc are the material properties and the 
volume fraction of the metal and ceramic, respectively, the 
compositions represent in relation to

(21)

Q11(z) = Q22(z) =
E(z)

1− ν2
, Q12(z) = Q21(z) =

νE(z)

1− ν2
,

Q44(z) = Q55(z) = Q66(z) = G(z) =
E(z)

2(1+ ν)

(22a)P(z) = Pm

(

Vm −
α

2

)

+ Pc

(

Vc −
α

2

)

(22b)Vm + Vc = 1

Fig. 1   Geometry of the func-
tionally graded materials plate 
resting on elastic foundations
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The mathematical model, called a power law distribu-
tion, has been used widely in a number of research inves-
tigations, especially for the mechanical engineering field 
(Wattanasakulpong [8, 9], Mechab et al. [27, 28] and Nav-
azi et  al. [41]). The power law distribution based on the 
rule of mixture was introduced by Wakashima et  al. [42] 
to define the effective material properties of FGMs. The 
volume fraction of ceramic (Vc) can then be written as 
follows:

Hence, all properties of the FGMs with a porosity can be 
written as [8, 9]:

It is noted that the positive real number p (0 ≤ p < ∞) 
is the power law or volume fraction index, and z is the dis-
tance from the mid-plane of the FGM plate. The FGM plate 
becomes a fully ceramic when p is set to zero and fully 
metal for large value of (p).

Thus, the Young’s modulus (E) and material density (ρ ) 
equations of the FGMs with a porosity can be expressed as 
[8, 9]:

However, Poisson’s ratio (ν) is assumed to be constant. 
The material properties of FGMs plate without porosity can 
be obtained when α is set to zero.

The displacements of a material point located at (x, y, z) 
in the plate may be written as:

The shape function ψ(z) is to be specified a posteriori 
(see Zenkour [21]). It may be chosen such that

where, U,V ,W are displacements in the x, y, z directions, 
u0, v0 and w0 are mid-plane displacements, θx and θy rota-
tions of the yz and xz planes due to bending, respectively. 
ψ(z) represents shape function determining the distribution 

(23)Vc =

(

z

h
+

1

2

)p

(24)P(z) = (Pc − Pm)

(

z

h
+

1

2

)p

+ Pm − (Pc + Pm)
α

2

(25a)E(z) = (Ec − Em)

(

z

h
+

1

2

)p

+ Em − (Ec + Em)
α

2

(25b)ρ(z) = (ρc − ρm)

(

z

h
+

1

2

)p

+ ρm − (ρc + ρm)
α

2

(26a)

U(x, y, z) = u0(x, y)− z
∂w0

∂x
+ ψ(z)θx

V(x, y, z) = v0(x, y)− z
∂w0

∂y
+ ψ(z)θy

W(x, y, z) = w0(x, y)

(26b)ψ ′(z)
∣

∣

z=± h
2
= 0,

z= h
2

∫

z=− h
2

ψ(z)dz = 0

of the transverse shear strains and stresses along the 
thickness.

The Love–Kirchhoff plate theory or classical plate the-
ory (CPT) is a particular case of such an enriched kinemat-
ics based on the vanishing kinematics function ψ(z) = 0. 
The Reissner–Mindlin theory is simply obtained from the 
linear relationship [13, 14]:

In this case, the shape factor κ is equal to unity, as sug-
gested for instance in literature a κ factor close to 5/6 
would be more relevant for the Reissner–Mindlin plate the-
ory (FPT, first shear plate theory). The higher-order shear 
plates (HPT) models considered in this paper are the model 
of Reddy [18], the model of Touratier [43] and the present 
model.

•	 Model of Reddy third plate theory (TPT) [18]

•	 Model of Touratier sinusoidal plate theory (SPT) [43] 

•	 The new shape function shear deformation plate theory 
presented in this work:

2.3 � Present refined shear deformation theory

Unlike the other theories, the number of unknown func-
tions involved in the new trigonometric shear deforma-
tion plate theory is only four, as against five in case of 
other shear deformation theories. The theory presented is 
variationally consistent, does not require shear correction 
factor, and gives rise to transverse shear stress variation 
such that the transverse shear stresses vary parabolically 
across the thickness satisfying shear stress free surface 
conditions.

2.3.1 � Assumptions of the present plate theory

Assumptions of the present plate theory are as follows:

(1)	 The displacements are small in comparison with the 
plate thickness and, therefore, strains involved are 
infinitesimal.

(2)	 The transverse displacement W includes two compo-
nents of bending wb, and shear ws. These components 
are functions of coordinates x, y only.

(27a)ψ(z) = z

(27b)ψ(z) = z

(

1−
4z2

3h2

)

(27c)ψ(z) =
h

π
sin

(

π
z

h

)

(27d)ψ(z) = z −
8z3

7h2
e

(

z2

h2
− 1

4

)
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(3)	 The transverse normal stress σz is negligible in com-
parison with in-plane stresses σx and σy.

(4)	 The displacements U in x-direction and V in y-direction 
consist of extension, bending, and shear components.

The bending components ub and vb are assumed to be 
similar to the displacements given by the CPT. Therefore, 
the expression for ub and vb can be given as

θx and θy rotations of the yz and xz due to shear displace-
ment, and w0 includes two components of bending wb, and 
shear ws, the expression for θx and θy can be given as

The shear components us and vs give rise, in conjunction 
with ws, to the parabolic variations of shear strains γxz, γyz 
and hence to shear stresses τxz, τyz through the thickness of 
the plate in such a way that shear stresses τxz, τyz are zero 
at the top and bottom faces of the plate. Consequently, the 
expression for us and vs can be given as

Substituting Eqs. (30), (31) and (32) into Eq. (26a), the 
displacement field resultants are given as

with

2.3.2 � Kinematics and constitutive equations

The new shear deformation plate theory of the four vari-
ables (u0, v0, wb, ws) can be given as [22–32]

(28)W(x, y, z) = w0(x, y) = wb(x, y)+ ws(x, y)

(29)U = u0 + ub + us, V = v0 + vb + vs

(30)

ub = z
∂w0

∂x
= −z

∂(wb + ws)

∂x
,

vb = −z
∂w0

∂y
= −z

∂(wb + ws)

∂y

(31)θx =
∂ws

∂x
, θy =

∂ws

∂y

(32)us = ψ(z)
∂ws

∂x
= ψ(z)θx, vs = ψ(z)

∂ws

∂y
= ψ(z)θy

(33)

U(x, y, z) = u0(x, y)− z
∂wb

∂x
+ (ψ(z)− z)

∂ws

∂x

V(x, y, z) = v0(x, y)− z
∂wb

∂y
+ (ψ(z)− z)

∂ws

∂y

W(x, y, z) = wb(x, y)+ ws(x, y)

(34)f (z) = ψ(z)− z

The strains associated with the displacements in Eq. (35) 
are:

where

The shape function must be chosen in such a way to sat-
isfy the boundary conditions in the free edges z = ± h

2
:

2.3.3 � Governing equations

The governing equations of equilibrium can be derived by 
using the principle of virtual displacements. The principle 
of virtual work in the present case yields

(35)

U(x, y, z) = u0(x, y)− z
∂wb

∂x
+ f (z)

∂ws

∂x

V(x, y, z) = v0(x, y)− z
∂wb

∂y
+ f (z)

∂ws

∂y

W(x, y, z) = wb(x, y)+ ws(x, y)

(36)







εxx
εyy
γxy







=







ε0x
ε0y
γ 0
xy







+ z







κbx
κby
κbxy







+ f (z)







ηbx
ηby
ηbxy







,

εz = 0,

�

γxz
γyz

�

= g(z)

�

γ s
xy

γ s
yz

�

(37)

ε0x =
∂u0
∂x

, ε0y =
∂v0
∂y

, γ 0
xy =

∂u0
∂y

+
∂v0
∂x

, kbx = −
∂2wb

∂x2
,

kby = −
∂2wb

∂y2
, kbxy = −2

∂2wb

∂x∂y

ksx =
∂2ws

∂x2
, ksy =

∂2ws

∂y2
, ksxy = 2

∂2ws

∂x∂y
, γ s

yz =
∂ws

∂y
,

γ s
xz =

∂ws

∂x
, γ s

yz =
∂ws

∂y
, γ s

xz =
∂ws

∂x
,

(38)f (−z) = −f (z), g =

(

∂f

∂z
+ 1

)∣

∣

∣

∣

h
2

− h
2

= 0

(39)







h/2
�

−h/2

�

S

�

σxδεx + σyδεy + τxyδγxy + τyzδγyz + τxzδγxz
�

dS dz

+

�

Ω
feδW dS−

h/2
�

−h/2

�

S
ρ
�

ÜδU + V̈δV + ẄδW
�

dS dz






dt = 0
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where S is the top surface.
Substituting Eqs. (35), (36) into Eq. (39) and integrating 

through the thickness of the plate, Eq. (47) can be rewritten 
as:

where the stress resultants N, M, and S are defined by

Based on the Winkler and Pasternak foundations, the 
effects of the surrounding elastic medium on the nanoplates 
are considered as follows:

where fe is the foundation reaction per unit area applied on 
lower nanoplate, kw and kp are spring and shear modulus, 
respectively.

Substituting Eq.  (20) into Eq.  (41) and integrating 
through the thickness of the plate, the stress resultants are 
given as:

(40)

∫

S

[

Nxδε
0
x + Nyδε

0
y + Nxyδε

0
xy +Mxδk

b
x +Myδk

b
y +Mxyδk

b
xy + Sxδk

s
x

+Syδk
s
y + Sxyδk

s
xy + Qyzδγ

s
yz + Qxzδγ

s
xz

]

dS +

∫

Ω

fe(δwb + δwb) dS

−

h/2
∫

−h/2

∫

S
ρ

[(

u0,tt − zwb
x,xtt + fws

x,xtt

)

δ

(

u0 − zwb
x,x + fws

x,x

)

+

(

v0,tt − zxby,ytt + fws
y,ytt

)

δ

(

v0 − zxby,y + fws
y,y

)

(

wb
,tt + ws

,tt

)

δ

(

wb + ws
)]

dS dz

(41)

(

Nx ,Ny,Nxy
)

=

h/2
∫

−h/2

(

σx , σy, τxy
)

dz

(

Mx,My,Mxy
)

=

h/2
∫

−h/2

(

σx , σy, τxy
)

zdz

(

Sx, Sy, Sxy
)

=

h/2
∫

−h/2

(

σx , σy, τxy
)

f dz

(

Qxz,Qyz
)

=

h/2
∫

−h/2

(

τxz, τyz
)

gdz

(42)

fe = kww− kp∇
2w = kw(wb + ws)− kp

(

∂2

∂x2
+

∂2

∂y2

)

(wb + ws)

(43)











N

M

S











− (e0a)
2

�

∂2

∂x2
+

∂2

∂y2

�











N

M

S











=







Aij Bij B
f
ij

Bij Dij D
f
ij

B
f
ij D

f
ij F

f
ij

















ε

κ

η











,

Q− (e0a)
2

�

∂2

∂x2
+

∂2

∂y2

�

Q = γA
f
ij ,

where Aij denote the extensional stiffnesses, Dij the bend-
ing stiffnesses, Bij the bending–extensional coupling stiff-
nesses and Bf

ij, D
f
ij,F

f
ij,A

f
ij are the stiffnesses associated with 

the transverse shear effects, defined by

The inertias Ii are defined by:

The governing equations of equilibrium can be derived 
from Eq.  (39) by integrating the displacement gradients 
by parts and setting the coefficients δu0,δ v0, δ wb, and δ ws 
to zero separately. Thus, one can obtain the equilibrium 
equations associated with the present RPT for the nonlocal 
plate.

In this part we present some formulations for the free 
vibration of generic higher-order shear plate models gen-
eralized in a nonlocal framework. This nonlocal model 
depends on a single characteristic length (e0a)2, responsi-
ble of the small scale effects. The nonlocal generalization 
of the linear elastic constitutive law Eq. (9) using the non-
local theory of Eringen [32–34] can be presented in the fol-
lowing differential format:

(44a)

{

Aij ,Bij ,Dij ,B
f
ij ,D

f
ij ,F

f
ij

}

=

h/2
∫

−h/2

{

1, z, z2, f (z), zf (z), f (z)2
}

Qij(z)dz (i, j = 1, 2, 6)

{

A
f
ij

}

=

h/2
∫

−h/2

{

g2
}

Qijdz (i, j = 4, 5)

(44b)

{I1, I2, I3, I4, I5, I6} =

h/2
∫

−h/2

{

1, z, z2, f (z), zf (z), f (z)2
}

ρ(z)dz

(45)

δu0 :
∂Nx

∂x
+

∂Nxy

∂y
= I1

∂2u0
∂t2

− I2
∂3wb

∂x∂t2
+ I4

∂3ws

∂x∂t2

δv0 :
∂Nxy

∂x
+

∂Ny

∂y
= I1

∂2v0
∂t2

− I2
∂3wb

∂y∂t2
+ I4

∂3ws

∂y∂t2

δwb :
∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
− fe = I2

(

∂3u0
∂x∂t2

+
∂3v0
∂y∂t2

)

− I3

(

∂4wb

∂x2∂t2
+

∂4wb

∂y2∂t2

)

+ I5

(

∂4ws

∂x2∂t2
+

∂4ws

∂y2∂t2

)

+ I1

(

∂2wb

∂t2
+

∂2ws

∂t2

)

δws :
∂2Sx
∂x2

+ 2
∂2Sxy
∂x∂y

+
∂2Sy
∂y2

−
Qxz

∂x
−

∂Qyz

∂y
+ fe

= I4

(

∂3u0
∂x∂t2

+
∂3v0
∂y∂t2

)

− I5

(

∂4wb

∂x2∂t2
+

∂4wb

∂y2∂t2

)

+ I6

(

∂4ws

∂x2∂t2
+

∂4ws

∂y2∂t2

)

+ I1

(

∂2wb

∂t2
+

∂2ws

∂t2

)
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(46a)

(

−I1
∂2u

∂t2∂x2
+ I2

∂3wb

∂t2∂x3
− I4

∂3ws

∂t2∂x3
− I1

∂2u

∂t2∂y2
+ I2

∂3wb

∂x∂y2∂t2
− I4

∂3ws

∂x∂y2∂t2

)

(e0a)
2

+

(

I1
∂2u

∂t2
− I2

∂3wb

∂x∂t2
+ I4

∂3ws

∂x∂t2

)

= A11
∂2u

∂x2
+ A66

∂2u

∂y2
+ (A12 + A66)

∂2v

∂x∂y
− B11

∂3wb

∂x3

− (B12 + 2B66)
∂3wb

∂y2∂x
+ B

f
11

∂3ws

∂x3
+

(

B
f
12 + 2B

f
66

) ∂3ws

∂y2∂x

(46b)

(

−I1
∂2v

∂t2∂y2
+ I2

∂3wb

∂t2∂y3
− I4

∂3ws

∂t2∂y3
− I1

∂2v

∂t2∂x2
+ I2

∂3wb

∂t2∂y∂x2
− I4

∂3ws

∂t2∂y∂x2

)

(e0a)
2

+

(

I1
∂2v

∂t2
− I2

∂3wb

∂y∂t2
+ I4

∂3ws

∂y∂t2

)

= (A12 + A66)
∂2u

∂x∂y
+ A66

∂2v

∂x2
+ A22

∂2v

∂y2
− (B12 + 2B66)

∂3wb

∂x2∂y

− B22
∂3wb

∂y3
+

(

B
f
12 + 2B

f
66

) ∂3ws

∂x2∂y
− B

f
22

∂3ws

∂y3

(46c)

−
∂

∂x2

(

I2

(

∂3u

∂x∂t2
+

∂3v

∂y∂t2

)

− I3

(

∂4wb

∂x2∂t2
+

∂4wb

∂y2∂t2

)

+ I5

(

∂4ws

∂x2∂t2
+

∂4ws

∂y2∂t2

)

+ I1

(

∂2wb

∂t2
+

∂2ws

∂t2

)

+ fe

)

(e0a)
2

−
∂

∂y2

(

I2

(

∂3u

∂x∂t2
+

∂3v

∂y∂t2

)

− I3

(

∂4wb

∂x2∂t2
+

∂4wb

∂y2∂t2

)

+ I5

(

∂4ws

∂x2∂t2
+

∂4ws

∂y2∂t2

)

+ I1

(

∂2wb

∂t2
+

∂2ws

∂t2

)

+ fe

)

(e0a)
2

+ I2

(

∂3u

∂x∂t2
+

∂3v

∂y∂t2

)

− I3

(

∂4wb

∂x2∂t2
+

∂4wb

∂y2∂t2

)

+ I5

(

∂4ws

∂x2∂t2
+

∂4ws

∂y2∂t2

)

+ I1

(

∂2wb

∂t2
+

∂2ws

∂t2

)

+ fe

= B11

∂3u

∂x3
+ (B12 + 2B66)

∂3u

∂x∂y2
+ (B12 + 2B66)

∂3v

∂x2∂y
+ B22

∂3v

∂y3
− D11

∂4wb

∂x4
− 2(D12 + 2D66)

∂4wb

∂x2∂y2

− D22

∂4wb

∂y4
− D

f
11

∂4ws

∂x4
− 2

(

D
f
12 + 2D

f
66

) ∂4ws

∂x2∂y2
− D

f
22

∂4ws

∂y4

(46d)

−
∂

∂x2

(

I4

(

∂3u

∂x∂t2
+

∂3v

∂y∂t2

)

− I5

(

∂4wb

∂x2∂t2
+

∂4wb

∂y2∂t2

)

+ I6

(

∂4ws

∂x2∂t2
+

∂4ws

∂y2∂t2

)

+ I1

(

∂2wb

∂t2
+

∂2ws

∂t2

)

− fe

)

(e0a)
2

−
∂

∂y2

(

I4

(

∂3u

∂x∂t2
+

∂3v

∂y∂t2

)

− I5

(

∂4wb

∂x2∂t2
+

∂4wb

∂y2∂t2

)

+ I6

(

∂4ws

∂x2∂t2
+

∂4ws

∂y2∂t2

)

+ I1

(

∂2wb

∂t2
+

∂2ws

∂t2

)

− fe

)

(e0a)
2

+ I4

(

∂3u

∂x∂t2
+

∂3v

∂y∂t2

)

− I5

(

∂4wb

∂x2∂t2
+

∂4wb

∂y2∂t2

)

+ I6

(

∂4ws

∂x2∂t2
+

∂4ws

∂y2∂t2

)

+ I1

(

∂2wb

∂t2
+

∂2ws

∂t2

)

− fe

= B
f
11

∂3u

∂x3
+

(

B
f
12 + 2B

f
66

) ∂3u

∂x∂y2
+

(

B
f
12 + 2B

f
66

) ∂3v

∂x2∂y
+ B

f
22

∂3v

∂y3
− D

f
11

∂4wb

∂x4
− 2

(

D
f
12 + 2D

f
66

) ∂4wb

∂x2∂y2

− D
f
22

∂4wb

∂y4
− F

f
11

∂4ws

∂x4
− 2

(

F
f
12 + 2F

f
66

) ∂4ws

∂x2∂y2
− F

f
22

∂4ws

∂y4
+ A

f
55

∂2ws

∂x2
+ A

f
44

∂2ws

∂y2

2.3.4 � Analytical solutions for vibration problems nonlocal 
plates

For the analytical solution of Eq. (46), the Navier method 
is used under the specified boundary conditions. The dis-
placement functions that satisfy the equations of boundary 

conditions in the Table 1 are selected as the following Fou-
rier series [44–46]:

(47)















u
v
wb

ws















=

∞
�

i=1

∞
�

j=1















Umn
∂Xm(x)

∂x Yn(y)e
iωt

VmnXm(x)
∂Yn(y)
∂x eiωt

WbmnXm(x)Yn(y)e
iωt

WsmnXm(x)Yn(y)e
iωt














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where Umn, Vmn,Wbmn, and Wsmn are arbitrary parameters 
and ω = ωmn denotes the eigenfrequency associated with 
(mth, nth) eigenmode.

The functions Xm(x) and Yn(y) are suggested here to 
satisfy at least the geometric boundary conditions given in 
Table 1, and represent approximate shapes of the deflected 
surface of the plate.

These functions, for the different cases of bound-
ary conditions, are listed in Table  1 [45] noting that 
ηm = mπ

a1
, ζn =

nπ
b1

.
Substituting Eq.  (47) into equations of motion (46) we 

get the below eigenvalue equations for any fixed value of m 
and n, for free vibration problem:tabl 

(48)
(

[K]− ω2[M]
)

{�} = {0}

where {�} denotes the columns, and [K] is stiffness matrix 
and [M] refers to the mass matrix in the case of free 
vibration.

The elements Kij = Kji of the coefficient matrix [K] are 
given by:

(49)

{�} =















Umn

Vmn

Wbmn

Wsmn















, [K] =









K11 K12 K13 K14

K12 K22 K23 K24

K13 K23 K33 K34

K14 K24 K34 K44









,

[M] =









M11 M12 M13 M14

M12 M22 a23 M24

M13 M23 M33 M34

M14 M24 M34 M44









Table 1   The admissible functions Xm(x) and Yn(y) [45]

a1 = 10, E = 30 · 106, ν = 0.3, Kw = 0, Kp = 0, n = m = 1 = 1

Boundary conditions The functions Xm and Yn

At x = 0, a1 At y = 0, b1 Xm(x) Yn(y)

Xm(0) = X ′′
m(0) = 0

Xm(a1) = X ′′
m(a1) = 0

Yn(0) = Y ′′
n (0) = 0

Yn(b1) = Y ′′
n (b1) = 0

sin(ηmx) sin(ζny)

Xm(0) = X ′
m(0) = 0

Xm(a1) = X ′′
m(a1) = 0

Yn(0) = Y ′′
n (0) = 0

Yn(b1) = Y ′′
n (b1) = 0

sin(ηmx)[cos(ηmx)− 1] sin(ζny)

Xm(0) = X ′
m(0) = 0

Xm(a1) = X ′′
m(a1) = 0

Yn(0) = Y ′
n(0) = 0

Yn(b1) = Y ′′
n (b1) = 0

sin(ηmx)[cos(ηmx)− 1] sin(ζny)
[

cos(ζny)− 1
]

Xm(0) = X ′
m(0) = 0

Xm(a1) = X ′
m(a1) = 0

Yn(0) = Y ′′
n (0) = 0

Yn(b1) = Y ′′
n (b1) = 0

sin2(ηmx) sin(ζny)

Xm(0) = X ′
m(0) = 0

Xm(a1) = X ′
m(a1) = 0

Yn(0) = Y ′
n(0) = 0

Yn(b1) = Y ′
n(b1) = 0

sin2(ηmx) sin2(ζny)

Xm(0) = X ′
m(0) = 0

Xm(a1) = X ′
m(a1) = 0

Yn(0) = Y ′
n(0) = 0

Yn(b1) = Y ′′
n (b1) = 0

sin2(ηmx) sin(ζny)
[

cos(ζny)− 1
]
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The elements Mij = Mji of the coefficient matrix [M] are 
given by:

(50)

K11 = A11e1 + A66e2,

K12 = (A12 + A66)e2,

K13 = −B11e1 − (B12 + 2B66)e2,

K14 = B
f
11e1 +

(

B
f
12 + 2B

f
66

)

e2,

K21 = (A12 + A66)e3,

K22 = A22e4 + A66e3,

K23 = −B22e4 − (B12 + 2B66)e3,

K24 = B
f
22e4 +

(

B
f
12 + 2B

f
66

)

e3,

K31 = B11e5 + (B12 + 2B66)e6,

K32 = B22e7 + (B12 + 2B66)e6,

K33 =
(

(e8 + e9)kw − (e5 + 2e6 + e7)kp
)

(e0a)
2

− e10kw + (e8 + e9)kp − e5D11 − e7D22

− 2(D12 + 2D66)e6,

K34 =
(

(e8 + e9)kw − (e5 + 2e6 + e7)kp
)

(e0a)
2

− e10kw + (e8 + e9)kp + D
f
22e7 + D

f
11e5

+ 2

(

D
f
12 + 2D

f
66

)

e6,

K41 = B
f
11e5 +

(

B
f
12 + 2B

f
66

)

e6,

K42 = B
f
22e7 +

(

B
f
12 + 2B

f
66

)

e6,

K43 =
(

(e5 + 2e6 + e7)kp − (e8 + e9)kw
)

(e0a)
2

+ e10kw − (e8 + e9)kp − D
f
11e5 − D

f
11e7

− 2

(

D
f
12 + 2D

f
66

)

e6,

K44 =
(

(e5 + 2e6 + e7)kp − (e8 + e9)kw
)

(e0a)
2

+ e10kw − (e8 + e9)kp + F
f
11e5 + F

f
22e7

+ 2

(

F
f
12 + 2F

f
66

)

e6 − A
f
44e9 − A

f
55
e8

in which

(51)

M11 = I1

(

e11 − (e1 + e2)(e0a)
2

)

,

M12 = 0,

M13 = I2

(

(e1 + e2)(e0a)
2 − e11

)

,

M14 = I4

(

e11 − (e1 + e2)(e0a)
2

)

,

M21 = 0,

M22 = I1

(

(e3 + e4)(e0a)
2 − e12

)

,

M23 = I2

(

e12 − (e3 + e4)(e0a)
2

)

,

M24 = I4

(

(e3 + e4)(e0a)
2 − e12

)

,

M31 = I2

(

(e5 + e6)(e0a)
2 − e8

)

,

M32 = I2

(

(e6 + e7)(e0a)
2 − e9

)

,

M33 = ((e8 + e9)I1 − (e5 + 2e6 + e7)I3)(e0a)
2

− e10I1 + (e8 + e9)I3,

M34 = ((e8 + e9)I1 + (e5 + 2e6 + e7)I5)(e0a)
2

− e10I1 − (e8 + e9)I5,

M41 = I4

(

(e5 + e6)(e0a)
2 − e8

)

,

M42 = I4

(

(e6 + e7)(e0a)
2 − e9

)

,

M43 = e10I1 + (e8 + e9)I5 − ((e8 + e9)I1

+(e5 + 2e6 + e7)I5)(e0a)
2
,

M44 = e10I1 − (e8 + e9)I6 + ((e5 + 2e6 + e7)I6

−(e8 + e9)I1+)(e0a)
2
,

(52)

{e1, e2, e11} =

a
∫

0

b
∫

0

X ′(x)Y(y)
{

X ′′′(x)Y(y), X ′(x)Y ′′(y), X ′(x)Y(y)
}

dxdy

{e3, e4, e12} =

a
∫

0

b
∫

0

X(x)Y ′(y)
{

X ′′(x)Y ′(y), X(x)Y ′′′(y), X(x)Y ′(y)
}

dxdy

{e5, e6, e7} =

a
∫

0

b
∫

0

X(x)Y(y)
{

X ′′′′(x)Y(y), X ′′(x)Y ′′(y), X(x)Y ′′′′(y)
}

dxdy

{e8, e9, e10} =

a
∫

0

b
∫

0

X(x)Y(y)
{

X(x)Y(y), X(x)Y ′′(y), X(x)Y(y)
}

dxdy
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For nontrivial solutions of Eq. (48), the following deter-
minants should be zero:

(53)Det
(

[K]− ω2[M]
)

= 0

The exact solution of Eq.  (53) for the FGM nanoplate 
under various boundary conditions can be constructed. The 
plate is assumed to have simply-supported (S) and clamped 
(C) edges or have combinations of them, and they are given 
as:
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 Present
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h

ψ'(z)

Fig. 2   Shape strain functions of different shear deformation theories of the plate

Table 2   The first 
nondimensional higher order 

frequencies ω̄ = ωh
√

ρ
/

G of 

simply supported plate

a1 = 10, E = 30 × 106, ν = 0.3, Kw = 0,  Kp = 0, n = m = 1 = 1

Frequencies b1
a1

a1
h Theory (e0a)

2

0 1 2 3 4 5

ω̄ 1 10 CPT [47] 0.0963 0.0880 0.0816 0.0763 0.0720 0.0683

FPT [47] 0.0930 0.0850 0.0788 0.0737 0.0696 0.0660

TPT [47] 0.0935 0.0854 0.0791 0.0741 0.0699 0.0663

Present 0.0936 0.0855 0.0793 0.0742 0.0699 0.0664

2 10 CPT [47] 0.0602 0.0568 0.0539 0.0514 0.0493 0.0473

FPT [47] 0.0589 0.0556 0.0527 0.0503 0.0482 0.0463

TPT [47] 0.0591 0.0557 0.0529 0.0505 0.0483 0.0464

Present 0.0591 0.0558 0.0529 0.0505 0.0484 0.0465

Table 3   The frequency 

ω̄ = ωb2
/

π2

√

ρch
/

Dc,  

of a square functionally 
graded material nanoplate 
without or resting on elastic 
foundations for different values 
of inhomogeneity parameter 
(a1

/

h = 10)

Kw Kp p (e0a)
2 = 0 (e0a)

2 = 4

Sobhy [41] Present Sobhy [41] Present

0 0 0 1.9318 1.9318 1.4441 1.6358

0.5 1.4969 1.4902 1.1189 1.1139

2.5 1.2572 1.2534 0.9397 0.9369

5.5 1.2087 1.2066 0.9035 0.9020

10.5 1.1609 1.1595 0.8678 0.8667

100 0 0 2.1780 2.1780 1.7598 1.7599

0.5 1.8354 1.8271 1.5427 1.5357

2.5 1.6910 1.6854 1.4704 1.4677

5.5 1.6738 1.6705 1.4686 1.4656

10.5 1.6499 1.6477 1.4585 1.4566
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Table 4   Effects of volume 
fraction index p and nonlocal 
parameter on the free vibration 

ω̄ = ωa21

√

(

ρch
/

Dc

)

 of simply 

supported functionally graded 
nanoplate

a1
/

h = 10, m = n = 1, Kw = 10, Kp = 10

α (e0a)
2 Theory p

0 0.5 1 2 3.5

0 0 CPT 24.2357 22.3689 21.4674 20.8704 20.7717

FPT 23.8296 22.0899 21.2470 20.6848 20.5841

TPT 23.8299 22.0942 21.2471 20.6742 20.5577

SPT 23.8305 22.0947 21.2475 20.6740 20.5563

Present 23.8311 22.0951 21.2478 20.6757 20.5609

1 CPT 22.8949 21.3324 20.5939 20.1309 20.0870

FPT 22.5373 21.0895 20.4036 19.9720 19.9271

TPT 22.5376 21.0933 20.4036 19.9630 19.9046

SPT 22.5380 21.0938 20.4040 19.9627 19.9035

Present 22.5386 21.0941 20.4042 19.9642 19.9073

2 CPT 21.8830 20.5572 19.9441 19.5835 19.5812

FPT 21.5632 20.3421 19.7767 19.4449 19.4423

TPT 21.5634 20.3454 19.7767 19.4369 19.4228

SPT 21.5639 20.3458 19.7770 19.4368 19.4218

Present 21.5643 20.3461 19.7773 19.4381 19.4252

0.2 0 CPT 24.5911 22.2414 20.9036 19.7784 19.4134

FPT 24.1645 21.9749 20.7235 19.6666 19.3222

TPT 24.1646 21.9792 20.7236 19.6595 19.3033

SPT 24.1652 21.9797 20.7239 19.6592 19.3022

Present 24.1659 21.9799 20.7241 19.6601 19.3054

1 CPT 23.1841 21.2093 20.1029 19.2015 18.9426

FPT 22.8075 20.9772 19.9480 19.1069 18.8666

TPT 22.8076 20.9810 19.9480 19.1010 18.8510

SPT 22.8082 20.9813 19.9483 19.1007 18.8501

Present 22.8088 20.9817 19.9485 19.1015 18.8527

2 CPT 22.1203 20.4371 19.5086 18.7770 18.5977

FPT 21.7827 20.2316 19.3728 18.6954 18.5331

TPT 21.7828 20.2349 19.3729 18.6902 18.5197

SPT 21.7833 20.2353 19.3731 18.6901 18.5190

Present 21.7838 20.2355 19.3733 18.6908 18.5212
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Fig. 3   The effect of thickness ratio (a1
/

h) on nondimensional fundamental frequency of (SSSS) square plate (p = 3.5, (e0a)
2
= 0 ,Kw = Kp = 0)
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3 � Results and discussion

The analytical free vibration solutions presented in Eqs. (48) 
and (53) are numerically evaluated here for an isotropic plate 
to discuss the effects of nonlocal parameter (e0a)2 on the plate 
vibration response. The material properties used in the present 
study are as follows:Em = 70 GPa, ρm = 2707 kg/m3 for 
aluminum, Ec = 380 GPa, ρc = 3800 kg/m3 for alumina, 
νc = νm = ν = 0.3where E, ν, ρ are Young modules, Pois-
son’s ratio and plate density.

In all examples, the parameters of the found are given 
in the dimensionless form Kw = kwa

4
1

/

D
c
, Kp = kpa

2
1

/

D
c
 

and ω̄ = ωa21

√

(

ρch
/

Dc

)

 where Dc = Ech
3
/

12
(

1− ν2
)

 
is the reference bending rigidity of the plate.

In this work, an analytical method was used to study the 
free vibration analysis of FGM nanoplates subjected with 
porosities resting on Winkler Pasternak elastic foundations 
based on two new variable refined plates theories. This the-
oretical formulation included the CPT, the first order shear 
deformation theory (FPT) and the higher order shear defor-
mation theories (TPT, SPT and present model). The present 
results have shown the influences of porosity (α) and nonlo-
cal parameters (e0a)2, constituent material distribution and 
plate aspect ratio on the natural frequencies of the plate.
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Fig. 4   The effect of thickness ratio (a1
/

h) on nondimensional fundamental frequency of (CCCC) square plate (p = 2, (e0a)
2
= 1 ,Kw = 100,Kp = 10)
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Fig. 5   The effect of thickness ratio and nonlocal parameters (e0a)2 on nondimensional fundamental frequency of (CSCS) square plate 
(p = 1.5, Kw = 100, Kp = 10)
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Figure  2a, b illustrates the shear strain shape function 
of different models. This figure also shows that [18] the 
present model has the same shape functions determining 
the same distribution of the transverse shear strains and 
stresses along the thickness. In the first-order shear defor-
mation plate theory (FPT) Reissner–Mindlin [13, 14], the 
in-plane displacements are expanded up to the first term in 
the thickness coordinate, and the relations of normals to 
the mid-surface are assumed independent of the transverse 
deflection. Note that the condition in (31) is not satisfied 
and then the FPT yields a constant value of transverse 
shearing strain through the thickness of the plate Fig. 2b, 
and thus requires shear correction factors in order to 
ensure the proper amount of transverse energy. The actual 

values of shear correction coefficients of the present FPT 
are 5/6.

The TPT [18] accounts not only for transverse shear 
strains, but also for a parabolic variation of the trans-
verse shear strains through the thickness. The forms of 
the assumed displacement functions for (TPT) Reddy [18] 
and (SPT) Touratier [43], the present model are satisfied 
the conditions of zero transverse shear stresses on the top 
and bottom surfaces of the plate (Fig.  2b). No shear cor-
rection factors are needed in computing the shear stresses 
for other theories, because a correct representation of the 
transverse shearing strain is given. It can be seen that the 
present model is in good agreement of (TPT) Reddy [18] 
and (SPT) Touratier [43]

Table 5   Effects of elastic foundation stiffnesses Kw, Kp and the aspect ratio ba on the free vibration ω̄ = ωa21

√

(

ρch
/

Dc

)

 of three boundaries 
conditions square plates p = 3.5, a

/

h = 10, (e0a)2 = 1, m = n = 1

b1
a1

Theory SSSS CCCC CSCS
(

Kw,Kp

) (

Kw,Kp

) (

Kw,Kp

)

(0, 0) (100, 0) (100, 10) (0, 0) (100, 0) (100, 10) (0, 0) (100, 0) (100, 10)

0 1
2

CPT 26.2543 28.4916 37.6295 49.7607 50.9158 61.3976 44.1815 45.4903 56.1368

FPT 24.7964 27.1779 36.7307 42.5856 43.9953 56.3106 39.4892 40.9996 52.9241

TPT 24.6003 27.0027 36.6135 41.7934 43.2362 55.7708 38.9239 40.4613 52.5511

SPT 24.5918 26.9950 36.6084 41.7657 43.2091 55.7525 38.9018 40.4403 52.5368

Present 24.6235 27.0233 36.6270 42.1081 43.5393 55.9983 39.0276 40.5601 52.6221

1 CPT 11.9045 16.3690 22.7391 21.7220 24.4239 31.5116 20.4219 23.2701 30.9992

FPT 11.6112 16.1644 22.6027 20.4024 23.2778 30.6791 19.4521 22.4412 30.4240

TPT 11.5690 16.1354 22.5837 20.2265 23.1264 30.5710 19.3193 22.3287 30.3474

SPT 11.5671 16.1340 22.5828 20.2187 23.1198 30.5662 19.3134 22.3236 30.3440

Present 11.5741 16.1389 22.5860 20.2471 23.1443 30.5835 19.3350 22.3419 30.3565

2 CPT 7.7106 13.6617 18.5346 15.4549 19.1074 24.7514 13.9885 17.9373 24.2124

FPT 7.5885 13.5967 18.4902 14.7031 18.5168 24.3164 13.5151 17.5806 23.9645

TPT 7.5706 13.5874 18.4838 14.6003 18.4370 24.2584 13.4484 17.5308 23.9302

SPT 7.5698 13.5869 18.4834 14.5956 18.4335 24.2557 13.4454 17.5286 23.9288

Present 7.5727 13.5885 18.4847 14.6429 18.4706 24.2832 13.4612 17.5404 23.9371

0.2 1
2

CPT 21.0169 23.7910 34.3341 39.6195 41.0664 53.5382 35.2102 36.8475 49.4398

FPT 20.1454 23.0514 33.9126 35.2764 36.9716 51.0247 32.4071 34.2381 47.9055

TPT 19.9661 22.9013 33.8313 34.5168 36.2621 50.6153 31.8813 33.7532 47.6382

SPT 19.9569 22.8936 33.8274 34.4830 36.2311 50.5988 31.8567 33.7306 47.6274

Present 19.9867 22.9187 33.8402 34.7596 36.4915 50.7629 31.9668 33.8324 47.6847

1 CPT 9.56084 14.8449 21.7905 17.4218 20.7501 28.8861 16.3757 19.8722 28.6694

FPT 9.38471 14.7399 21.7292 16.6238 20.1066 28.4760 15.7930 19.4137 28.3962

TPT 9.34623 14.7174 21.7165 16.4603 19.9769 28.3955 15.6710 19.3191 28.3419

SPT 9.34424 14.7162 21.7159 16.4516 19.9702 28.3914 15.6646 19.3143 28.3393

Present 9.3508 14.7200 21.7181 16.4791 19.9917 28.4047 15.6853 19.3301 28.3481

2 CPT 6.1978 12.9837 18.1415 12.4123 16.8243 23.1501 11.2328 15.9668 22.9138

FPT 6.1244 12.9524 18.1223 11.9565 16.5039 22.9366 10.9479 15.7783 22.7975

TPT 6.1081 12.9456 18.1182 11.8610 16.4381 22.8934 10.8867 15.7384 22.7738

SPT 6.1072 12.9454 18.1180 11.8558 16.4346 22.8912 10.8834 15.7363 22.7725

Present 6.1100 12.9465 18.1187 11.8922 16.4601 22.9086 10.8970 15.7452 22.7780
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In Table 2, the effects of plate aspect ratio (b1 = a1), 
side-to-thickness ratio (a1 =  h) and nonlocal parameter 
(eoa)2 on the natural frequencies of simply supported 
nanoplates for differents theory (CPT) [47], FPT [47], 
TPT [47], and the present result are given. However, the 
ω̄ slightly decreases as the nonlocal parameter increases 
and plate aspect ratio decreases. It can be observed that 
the CPT [47] gives results higher than those obtained by 
the shear deformation plate theories, indicating to the 
shear deformation influence, It can be seen that the pre-
sent result is in good agreement of (TPT) [47] and (FPT) 
[47].

Table  3 presents the natural frequency ω̄ of a local 
((e0a)2 = 0) and nonlocal ((e0a)2 = 4) FGM square nano-
plate without or resting on elastic foundations for differ-
ent values of inhomogeneity parameter (p) compared with 
results of Sobhy [48]. It is found that the presence of elastic 
foundations has a significant effect on the results, where it 
leads to a considerable increase the natural frequency ω̄. 
On the other hand, with the change in the power law index 
(p) (inhomogeneity parameter), regardless of the elastic 
foundations, the natural frequency decreases as the param-
eter (p) increases. It is also noted that the frequency of the 
nonlocal theory is always smaller than of the local theory, 
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the present results are in good agreement with the solutions 
of Sobhy [48].

Table 4 presents dimensionless fundamental frequencies 
of FGM nanoplates with and without porosity parameter 
(α) for deferent value of nonlocal parameter (e0a)2 and vol-
ume fraction of material (p) for the various theories (CPT, 
FPT, TPT, SPT) compared with the present result. In gen-
eral, the frequency results decrease as the increase of non-
local parameter and volume fraction of material (p) values 
for with and without porosity for deferent theories. The 
present results are in good agreement with the solutions of 
(FPT), (TPT) and (SPT) theories.

Figures 3 and 4 show the variation of fundamental fre-
quencies with the side-to-thickness ratio for square FGM 
nanoplate with and without porosity parameter (α) and 

volume fraction of material (p) for the various theories 
(CPT, FPT,TPT, SPT) compared with the present result, 
respectively. It can be observed that the CPT gives results 
higher than those obtained by the first shear plate theory 
(FPT), third plate theory (TPT) and sinusoidal plate the-
ory (SPT) and the present results, but I note that the fun-
damental frequencies due to FPT, TPT, SPT, and present 
model increase with increasing the side-to-thickness ratio 
and decrease with increasing values of porosity volume 
index (α) and the present result is in good agreement with 
the solutions of the FPT, TPT and SPT.

In Fig.  5. The plate aspect ratio is taken as 1, and the 
side-to-thickness ratio is taken as 5, 10, 15, 25, 30, 35, 40, 
45, 50; while the nonlocal parameter is considered as 0, 1, 
3, 4, 5. Note that when (e0a)2 = 0, one obtains the results 

Table 6   Effects of index parameter p and side-to-thickness ratio 
(

a1
/

h
)

 on the free vibration ω̄ of functionally graded material square nanoplate

(e0a)
2 = 0.5, α = 0.2, Kw = 100, Kp = 10, m = n = 1

BC Theory p = 0 p = 0.5 p = 3.5

a1
/

h = 5 10 20 a1
/

h = 5 10 20 a1
/

h = 5 10 20

SSSS CPT 23.4127 25.5647 26.2437 22.1294 23.8087 24.3335 20.6560 21.9784 22.3511

FPT 22.5135 25.1953 26.1382 21.6336 23.586 24.268 20.6107 21.9109 22.3286

TPT 22.5154 25.1955 26.1383 21.6408 23.5896 24.2699 20.6058 21.8967 22.3234

SPT 22.5170 25.1961 26.1384 21.6414 23.5899 24.2700 20.6055 21.8961 22.3233

Present 22.5175 25.1966 26.1387 21.6421 23.5903 24.2704 20.6063 21.8985 22.3242

CCCC CPT 35.4332 40.5240 42.1346 31.8754 35.5985 36.7431 26.8415 29.0091 29.4962

FPT 31.5145 38.5305 41.5288 29.5333 34.3061 36.3471 26.5224 28.5334 29.3344

TPT 31.5323 38.5335 41.5289 29.5688 34.3272 36.3535 26.4877 28.4395 29.2988

SPT 31.5404 38.5367 41.5296 29.5734 34.3293 36.3541 26.4879 28.4346 29.2968

Present 31.5362 38.5382 41.5305 29.5719 34.3302 36.3545 26.4897 28.4501 29.3031

CSCS CPT 33.6932 39.3055 41.2451 30.5731 34.8803 36.3525 26.1989 29.1183 29.9864

FPT 30.8245 37.8665 40.8078 28.9064 33.9631 36.0702 26.0256 28.8018 29.8755

TPT 30.8355 37.8683 40.8080 28.9312 33.9780 36.0748 26.0096 28.7382 29.8506

SPT 30.8413 37.8707 40.8086 28.9340 33.9793 36.0751 26.0105 28.7349 29.8495

Present 30.8395 37.8721 40.8094 28.9340 33.9804 36.0758 26.0111 28.7454 29.8538

CCSS CPT 30.3000 33.8613 34.9767 27.6628 30.2720 31.0697 24.1110 25.7423 26.1261

FPT 27.5849 32.5896 34.5993 26.0522 29.4632 30.8275 23.8489 25.4562 26.0316

TPT 27.5959 32.5914 34.5995 26.0770 29.4765 30.8316 23.8135 25.3989 26.0109

SPT 27.6013 32.5934 34.6000 26.0798 29.4775 30.8320 23.8129 25.3961 26.0098

Present 27.8250 32.7178 34.6392 26.2283 29.5577 30.8568 23.9008 25.4428 26.0252

CSSS CPT 29.0866 32.8578 34.1010 26.7654 29.6467 30.5851 23.6985 25.7142 26.2858

FPT 27.1384 31.9657 33.8378 25.6459 29.0884 30.4184 23.5671 25.5283 26.2229

TPT 27.1445 31.9666 33.8378 25.6624 29.0974 30.4211 23.5530 25.4903 26.2087

SPT 27.1483 31.9680 33.8382 25.6646 29.0982 30.4213 23.5526 25.4886 26.2080

Present 27.1798 31.9851 33.8436 25.6855 29.1092 30.4248 23.5677 25.4996 26.2119

CCCS CPT 34.4788 39.8300 41.6051 31.1555 35.1733 36.4821 26.4723 29.0293 29.7094

FPT 31.0643 38.0983 41.0779 29.1361 34.0591 36.1394 26.2134 28.6303 29.5720

TPT 31.0794 38.1011 41.0783 29.1662 34.0773 36.1451 26.1855 28.5511 29.5415

SPT 31.0860 38.1037 41.0787 29.1701 34.0790 36.1454 26.1859 28.5472 29.5398

Present 31.1673 38.1586 41.0972 29.2263 34.1148 36.1573 26.2164 28.5769 29.5508
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of local model for FGM nanoplates with and without poros-
ity parameter (α) respectively. I note that the fundamental 
frequencies of the present result increases with increasing 
the side to-thickness ratio and decrease with increasing of 
the values of porosity volume index (α).

Table 5 present the effects of plate aspect ratio 
(

b1
/

a
1

)

 , 
Effects of elastic foundation stiffness Kw, Kp and poros-
ity volume index (α) on the fundamental frequency for the 
various boundary conditions (SSSS), (CCCC) and (CSCS) 
for FGM nanoplates for different theories are given. The 
CPT give result higher than those obtained by the FPT, 
TPT, SPT and the present results, The maximum difference 

between present theory and the CPT appears in the case 
of (CCCC) plate and (CSCS). The fundamental frequency 
decrease with increase porosity volume index. It can be 
seen that the present result is in good agreement with the 
solutions of the FPT, TPT and SPT.

Figures 6 and 7 reveals the variation of fundamental fre-
quency of the side- to-thickness ratio (a1

/

h)for various val-
ues of foundation parameters (Kw, Kp) for FGM nanoplates 
with and without porosity parameter (α). It is to be seen 
that the fundamental frequency increases with the increase 
of Winkler Pasternak elastic foundations (Kw,Kp).

Table  6 shows the variation of fundamental frequen-
cies with the side-to-thickness ratio and volume fraction of 
material (p) for the various boundary conditions for porous 
FGM nanoplate are given, the various theories (CPT, 
FPT,TPT, SPT) compared with the present result respec-
tively in Table  6. the CPT gives result higher than those 
obtained by the FPT, TPT, SPT and the present results. 
The maximum difference between present theory and the 
CPT appears in the case of (CCCC) plate and (CCCS). the 
fundamental frequency increase with increase volume frac-
tion of material (p) and the side-to-thickness ratio 

(

a1
/

h
)

 
the same for Fig. 8. It can be seen that the present result is 
in good agreement with the solutions of the FPT, TPT and 
SPT.

Figure 9 shows the influence of porosities on natural fre-
quencies of (CCCC) FGM nanoplate for various volume 
fractions of material (p). The numerical result based on 
HSPT in this figure reveals that the fundamental frequen-
cies decrease as the porosity parameter (α) and volume 
fraction of material (p) increases.

4 � Conclusion

Functionally graded materials are a new class of composite 
structures that are of great interest for engineering design 
and manufacture. In this study, a nonlocal elasticity model 
for free vibrations of FGMs nano plate on elastic medium 
with porosities was developed using exponential shear 
deformation plate theory. The model can be extended to 
the analysis of the vibrations of beams, plates, shells, solid, 
etc. The model allows the analysis of the small-size effects 
such as micro metric or nano metric effects. In the present 
model, the number of unknown functions was reduced to 
only two functions. The obtained results show that the fre-
quency values decrease as of (p) values for every boundary 
condition increase. The frequencies of the plates increase 
dramatically within the range of spring constant factors 
around 100 to 10. Additionally, the porosity within func-
tionally graded plates is one of the important aspects that 
lead to considerable changes in frequencies. The frequen-
cies decrease as the porosity volume fraction increases for 
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Fig. 8   The effect of thickness ratio a1
/

h on nondimen-
sional fundamental frequency of various boundary square plate 
(p = 2, (e0a)

2
= 2, α = 0.2, Kw = 100, Kp = 0
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Fig. 9   The effect of (p) and porosity volume index α on non-
dimensional fundamental frequency of (CCCC) square plate 
((e0a)2 = 1.5, Kw = 100, Kp = 10)
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every value of the volume fraction index. Our results are 
in good agreements with those founded in the literature. 
For testing the fiability and the accuracy of the developed 
model, it is recommend to compare it with finite element 
model. This comparison will be done in future work of the 
authors.
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