TECHNICAL PAPER

Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories

I. Mechab^{1,2} · B. Mechab¹ · S. Benaissa³ · B. Serier¹ · B. Bachir Bouiadjra¹

Received: 9 August 2015 / Accepted: 14 December 2015 / Published online: 1 February 2016 © The Brazilian Society of Mechanical Sciences and Engineering 2016

Abstract This paper presents a free vibration analysis of functionally graded materials nano-plate resting on Winkler–Pasternak elastic foundations based on two-variable refined plate theories including the porosities effect. The small-scale effects are introduced using the nonlocal elasticity theory with a new shear deformation function. The governing equations are obtained through the Hamilton's principle. The effect of material property, porosities, various boundary conditions and elastic foundation stiffnesses on free vibration functionally graded materials nanoplate are also presented and discussed in detail. The present solutions are compared with those obtained by other researchers. The results are in a good agreement with those in the literature.

Keywords Free vibration · Functionally graded materials nano-plate · Winkler–Pasternak elastic foundations · Refined plate theories · Porosities

1 Introduction

Functionally graded materials (FGMs) are a new class of composite structures that are of great interest for

Technical Editor: Kátia Lucchesi Cavalca Dedini.

I. Mechab ismail.mechab@gmail.com

- ¹ LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes, 22000 Sidi Bel Abbés, Algeria
- ² University of Mascara, 29000 Mascara, Algeria
- ³ Laboratoire de Statistique et Processus Stochastiques, Université de Sidi Bel Abbes, BP 89, 22000 Sidi Bel Abbés, Algeria

engineering design and manufacture. FGMs have continuous variation of material properties in one or more directions. Typically, FGMs are made from a mixture of ceramics and metals with the variation of the volume fraction according to a power law through thickness [1, 2]. FGMs have received wide applications as structural components in modern industries such as mechanical, aerospace, nuclear reactors, and civil engineering.

In the process of FGMs fabrication, the existence of porosities and micro-voids inside the materials possiblyoccurs due to technical problems, especially at the ceramic zone. The impact of this failure has been the subject of much attention, as evidenced by the large number of studies on this subject. For porous plates and shells, Magnucka-Blandzi [3] studied the dynamic stability for a circular porous plate to determine the critical loads. The influence of unstable regions for the Mathieu equation was described. She [4, 5] also examined the nonlinear dynamic stability and axi-symmetrical deflection and buckling of circular porous plates. Belica and Magnucki [6, 7] investigated the dynamic stability of a porous cylindrical shell under different loading.

Wattanasakulpong and Ungbhakor [8] investigate linear and nonlinear vibration problems of FGMs beams having porosities. Wattanasakulpong et al. and Ebrahimi [9, 10] presented a work on porosities happening inside FGMs samples fabricated by a multi-step sequential infiltration technique. FGMs may possess a number of advantages such as high resistance to temperature gradients, significant reduction in residual and thermal stresses, and high wear resistance.

Composite structures on elastic foundations have wide applications in modern engineering and pose great technical problems in structural design. In the vast majority of the classical mechanics, plates on an elastic foundation are a simplified approach for two continuum media interacting together such as flexible structural elements in contact with a bearing soil, rubber, polymer or any deformable substrate material. The mechanical behaviour of elastic foundations was discussed by Winkler [11], whereas Pasternak [12] presented a two-parameter model, which considers the shear deformation between the springs over the one parameter model. The Winkler model can be considered a special case of Pasternak model by setting the shear modulus to zero. A review of literature shows that there are only a few studies on free vibration of rectangular and porous nano FGM plates based on the nonlocal plate shear deformation theory. It is well-known that classical Love-Kirchhoff theory of beam bending, also known as elementary theory of bending (CPT), disregards the effects of the shear deformation. The theory is suitable for slender plate and is not suitable for thick or deep, implying that the transverse shear strain is zero. Timoshenko and Reissner-Mindlin showed that the effect of transverse shear is much greater than that of rotatory inertia on the response of transverse vibration of prismatic bars and thick plate (FPT). In this theory, transverse shear strain distribution is assumed to be constant through the plates thickness and thus requires shear correction factor to appropriately represent the strain energy of deformation. In order to overcome the limitations of FPT, higher order shear deformation theories (HPT) involving higher order terms in Taylor's expansions of the displacements in the thickness coordinate were developed by Reddy and several researchers [13–21]. A two-variable refined plate theory (RPT) using only two unknown functions was developed by Shimpi [22] for isotropic plates, and was extended by Shimpi and Patel [23, 24] to orthotropic plates. Recently, a two-variable RPT was developed by Kim et al. [25], El Meiche et al., Mechab et al. and Thai et al. [26–32].

Nanostructural elements are objects of intermediate size between molecular and microscopic structures such as nanobeams, nanomembranes and nanoplates. In recent years, these elements are commonly used in nanoelectromechanical (NEM) devices. Hence, accurate prediction of their vibrational behaviour becomes essential for engineering design and manufacture. The nonlocal elasticity theory is also used as proposed and developed by Eringen [33, 34], nonlocal theory of Eringen is based on this assumption that the stress at a point is considered as a function of the strain field at all neighbour points in the continuum body. The inter-atomic forces and atomic length scales directly come to the constitutive equations as material parameters. Importance of accurate prediction of nanostructures vibration characteristics has been discussed by Lu et al., eAghababaei and Reddy [35, 36]. Hence, many papers have been published on this topic, specially for analysing nonlocal plate models of bending, vibration and buckling [37-39],

Malekzadeh and Shojaee [40] analysed the free vibration of nanoplates based on a nonlocal two-variable RPT.

This paper investigates the effect of porosities occurring inside FGMs during fabrication, the new model $\psi(z)$ is employed for analysis the FGM nanoplates resting on Winkler–Pasternak elastic foundations based on two-variable RPT. The small-scale effects are introduced using the nonlocal elasticity theory with a new shear deformation function. The governing equations are obtained through the Hamilton's principle. The effect of material property, porosities, various boundary conditions and elastic foundation stiffnesses on free vibration are presented. The present solutions are compared with those obtained by other researchers.

2 Mathematical formulations

2.1 Theory of nonlocal elasticity

This theory assumes that the stress state at a reference point X in the body is regarded to be dependent not only on the strain state at X but also in the strain states at all other points X' of the body.

The most general form of the constitutive relation in the nonlocal elasticity type representation involves an integral over the entire region of interest. The integral contains a nonlocal kernel function, which describes the relative influences of the strains at various locations on the stress at a given location. For nonlocal linear elastic solids, the equations of motion have the form [33–35]

$$t_{ij,j} + f_i = \rho \ddot{u}_i \tag{1}$$

where ρ and f_i are, respectively, the mass density and the body (and/or applied) forces; u_i is the displacement vector; and t_{ij} is the stress tensor of the nonlocal elasticity defined by

$$t_{ij}(X) = \int_{V} \alpha\left(\left|X' - X\right|\right) \,\sigma_{ij}\left(X'\right) \,\mathrm{d}\nu(X') \tag{2}$$

in which *X* is a reference point in the body; $\alpha(|X' - X|)$ is the nonlocal kernel function; and σ_{ij} is the local stress tensor of classical elasticity theory at any point *X'* in the body and satisfies the constitutive relations

$$\sigma_{ij} = Q_{ijkl}\varepsilon_{kl} \tag{3}$$

$$\varepsilon_{kl} = \frac{1}{2} \left(u_{k,l} + u_{l,k} \right) \tag{4}$$

for a general elastic material, in which Q_{ijkl} are the elastic modulus components with the symmetry properties $Q_{ijkl} = Q_{jikl} = Q_{ijlk} = Q_{klij}$, and ε_{kl} is the strain tensor. It should be emphasized here that the boundary conditions

involving tractions are based on the nonlocal stress tensor t_{ij} and not on the local stress tensor σ_{ij} .

The properties of the nonlocal kernel $\alpha(|X' - X|)$ have been discussed in detail by Eringen [33]. When $\alpha(|X|)$ takes on a Greens function of a linear differential operator \mathcal{L} , i.e.

$$\mathcal{L}\alpha(|X'-X|) = \delta(|X'-X|)$$
(5)

The nonlocal constitutive relation (2) is reduced to the differential equation

$$\mathcal{L}t_{ij} = \sigma_{ij} \tag{6}$$

and the integro-partial differential Eq. (1) is correspondingly reduced to the partial differential equation

$$\sigma_{ij} + \mathcal{L}(f_i - \rho \ddot{u}) = 0 \tag{7}$$

By matching the dispersion curves with lattice models, Eringen [33, 34] proposed a nonlocal model with the linear differential operator \mathcal{L} defined by

$$\mathcal{L} = 1 - \mu^2 \nabla^2 \tag{8}$$

where $\mu = e_0 a$, (*a*) is an internal characteristic length (lattice parameter, granular size or molecular diameters) and e_0 is a constant appropriate to each material for adjusting the model to match some reliable results from experiments or other theories. Therefore, according to Eqs. (3), (4), (6) and (8), the constitutive relations may be simplified to

$$\left(1-\mu^2\nabla^2\right)t_{ij} = \left(1-(e_0a)^2\nabla^2\right)t_{ij} = \sigma_{ij} = Q_{ijkl}\varepsilon_{kl} \quad (9)$$

For simplicity and to avoid solving integro-partial differential equations, the nonlocal elasticity model, defined by the relations (6)–(9), has been widely adopted in tackling various problems of linear elasticity and micro-/nanostructural mechanics.

For general boundary value problems, like a nonzero boundary force conditions, the method for the solution of the nonlocal plate theories will be more complicated than those of the local plate theories. It is known that the force boundary conditions for the nonlocal plate models are based on the nonlocal components N_{ij} and M_{ij} defined as

$$N_{ij} = \int_{-h/2}^{h/2} t_{ij} dz, \quad M_{ij} = \int_{-h/2}^{h/2} z t_{ij} dz$$
(10)

The global governing equations of the plate structures can be derived by integrating the equations of motion (1) through the thickness. By multiplying Eq. (1) by dz, then integrating through the thickness and noting (10), we have

h

$$N_{ij,j} + \int_{-\frac{h}{2}}^{\frac{7}{2}} f_i dz = \int_{-\frac{h}{2}}^{\frac{7}{2}} \rho \ddot{u}_i dz$$
(11)

Furthermore, multiplying Eq. (1) by zdz followed by integrating through the thickness and noting (10), we have

$$M_{ij,j} + \int_{-\frac{h}{2}}^{\frac{h}{2}} z f_i dz = \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho z \ddot{u}_i dz$$
(12)

By applying the linear differential operator (8) and the differential Eq. (6) to Eq. (10), we have

$$(1-\mu^2\nabla^2)N_{ij} = N_{ij}^L \text{ and } (1-\mu^2\nabla^2)M_{ij} = M_{ij}^L$$
 (13)

where N_{ij}^L and M_{ij}^L are the local (classical) resultant forces and the local resultant moments defined by

$$N_{ij}^{L} = \int_{-h/2}^{h/2} t_{ij} dz, \quad M_{ij}^{L} = \int_{-h/2}^{h/2} z t_{ij} dz$$
(14)

Furthermore, by applying the operator to Eqs. (11) and (12), we obtain the general equations of motion for the nonlocal plate model as

$$N_{ij,j} = -\left(1 - \mu^2 \nabla^2\right) \int_{-\frac{h}{2}}^{\frac{h}{2}} f_i dz + \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho \ddot{u}_i dz - \mu^2 \int_{-\frac{h}{2}}^{\frac{h}{2}} \nabla^2 (\rho \ddot{u}_i dz)$$
(15a)

and

$$M_{ij,j} + \int_{-\frac{h}{2}}^{\frac{h}{2}} zf_i dz = \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho z \ddot{u}_i dz - \mu^2 \int_{-\frac{h}{2}}^{\frac{h}{2}} \nabla^2 (\rho z \ddot{u}_i) dz \quad (15b)$$

The differential operator ∇^2 in (15a) and (15b) is the three-dimensional Laplace operator in general. For thinplate models, it may be reduced to the two-dimensional Laplace operator by ignoring the differential component with respect to *z*, i.e. $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$. With this approximation, the equations of motion (15a) and (15b) become

$$N_{ij,j}^{L} = -\left(1 - \mu^{2} \nabla^{2}\right) \left(\int_{-\frac{h}{2}}^{\frac{h}{2}} f_{i} dz + \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho \ddot{u}_{i} dz \right)$$
(16a)

and

$$M_{ij,j}^{L} + \int_{-\frac{h}{2}}^{\frac{h}{2}} z f_{i} dz = \left(1 - \mu^{2} \nabla^{2}\right) \int_{-\frac{h}{2}}^{\frac{h}{2}} (\rho z \ddot{u}_{i}) dz$$
(16b)

The nonlocal resultant force and moment tensors, N_{ij} and M_{ij} , respectively, in (10) can be simplified as

Fig. 1 Geometry of the functionally graded materials plate resting on elastic foundations

$$N_{ij}(X) = \int_{A} \alpha \left(\left| X' - X \right| \right) N_{ij}^{L}(X') \, \mathrm{d}S(X')$$
$$M_{ij}(X) = \int_{A} \alpha \left(\left| X' - X \right| \right) M_{ij}^{L}(X') \, \mathrm{d}S(X') \tag{17}$$

where the integrals are taken along the mid-plane *s* of the plate, N_{ij}^L and M_{ij}^L are given in (14). The two-dimensional nonlocal kernel $\alpha(|X' - X|)$ in Eq. (17) can be defined to satisfy the relation (5), in which the differential operator is as given in Eq. (8) instead of a two-dimensional Laplace operator, i.e. $L = 1 - \mu^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$. This approximation is acceptable for plates with very small thickness span ratios.

Generally used three and two-dimensional nonlocal kernel functions are given the following equations, respectively,

$$\alpha(|X|) = \frac{1}{4\pi \ell^2 \xi^2 |X|} e^{-\frac{|X|}{\ell \xi}}$$
(18)

$$\alpha(|X|) = \frac{1}{2\pi\ell^2\xi^2|X|} K_0\left(\frac{|X|}{\ell\xi}\right)$$
(19)

where $\xi = \frac{\mu}{\ell}$; K_0 is the modified Bessel function and ℓ is a characteristic length of the considered structure. For more examples of different boundary value problems based on the nonlocal elasticity models, refer to Eringen [32].

The nonlocal constitutive equations of an FGM nonlocal plate can be written as:

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{xz} \end{cases}^{2} - (e_{0}\ell)^{2} \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} \right) \begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zz} \end{cases}^{2}$$

$$= \begin{bmatrix} Q_{11}(z) & Q_{12}(z) & 0 & 0 & 0 \\ Q_{12}(z) & Q_{22}(z) & 0 & 0 & 0 \\ 0 & 0 & Q_{66}(z) & 0 & 0 \\ 0 & 0 & 0 & Q_{44}(z) & 0 \\ 0 & 0 & 0 & 0 & Q_{55}(z) \end{bmatrix} \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{xz} \end{cases}$$

$$(20)$$

where $(\sigma_x, \sigma_y, \tau_{xy}, \tau_{yz}, \tau_{yx})$ and $(\varepsilon_x, \varepsilon_y, \gamma_{xy}, \gamma_{yz}, \gamma_{yx})$ are the stress and strain components, respectively. Where the elastic constants Q_{ij} in terms of Young's modulus *E* and Poisson's ratio ν are:

$$Q_{11}(z) = Q_{22}(z) = \frac{E(z)}{1 - \nu^2}, \quad Q_{12}(z) = Q_{21}(z) = \frac{\nu E(z)}{1 - \nu^2},$$
$$Q_{44}(z) = Q_{55}(z) = Q_{66}(z) = G(z) = \frac{E(z)}{2(1 + \nu)}$$
(21)

z is a distance parameter along the graded direction are such that $-h/2 \le z \le h/2$

2.2 Higher-order plate theory

The high shear models considered in this paper are defined from a variational methodology and are then variationally consistent. Consider a FGMs structure made of three isotropic layers of arbitrary thickness h, width (b_1) and length (a_1) as shown Fig. 1. The FGM nanoplate is supported at four edges defined in the (x, y, z) coordinate system with x- and y-axes located in the middle plane (z = 0) and its origin placed at the corner of the plate. It is assumed to be rested on a Winkler–Pasternak type elastic foundation with the Winkler stiffness of k_w and shear stiffness of k_p .

Consider a FGM with a porosity volume fraction $\alpha(\alpha << 1)$. The FGM is made from a mixture of a metal and a ceramic, while a core is made of an isotropic homogeneous material. The material properties of FGM are assumed to vary continuously through the plate thickness by a power law distribution as [8]:

$$P(z) = P_{\rm m} \left(V_{\rm m} - \frac{\alpha}{2} \right) + P_{\rm c} \left(V_{\rm c} - \frac{\alpha}{2} \right)$$
(22a)

where $P_{\rm m}$, $P_{\rm c}$, $V_{\rm m}$ and $V_{\rm c}$ are the material properties and the volume fraction of the metal and ceramic, respectively, the compositions represent in relation to

$$V_{\rm m} + V_{\rm c} = 1 \tag{22b}$$

The mathematical model, called a power law distribution, has been used widely in a number of research investigations, especially for the mechanical engineering field (Wattanasakulpong [8, 9], Mechab et al. [27, 28] and Navazi et al. [41]). The power law distribution based on the rule of mixture was introduced by Wakashima et al. [42] to define the effective material properties of FGMs. The volume fraction of ceramic (V_c) can then be written as follows:

$$V_{\rm c} = \left(\frac{z}{h} + \frac{1}{2}\right)^p \tag{23}$$

Hence, all properties of the FGMs with a porosity can be written as [8, 9]:

$$P(z) = (P_{\rm c} - P_{\rm m}) \left(\frac{z}{h} + \frac{1}{2}\right)^p + P_{\rm m} - (P_{\rm c} + P_{\rm m})\frac{\alpha}{2}$$
(24)

It is noted that the positive real number $p (0 \le p < \infty)$ is the power law or volume fraction index, and z is the distance from the mid-plane of the FGM plate. The FGM plate becomes a fully ceramic when p is set to zero and fully metal for large value of (p).

Thus, the Young's modulus (*E*) and material density (ρ) equations of the FGMs with a porosity can be expressed as [8, 9]:

$$E(z) = (E_{\rm c} - E_{\rm m}) \left(\frac{z}{h} + \frac{1}{2}\right)^p + E_{\rm m} - (E_{\rm c} + E_{\rm m})\frac{\alpha}{2} \quad (25a)$$

$$\rho(z) = (\rho_{\rm c} - \rho_{\rm m}) \left(\frac{z}{h} + \frac{1}{2}\right)^p + \rho_{\rm m} - (\rho_{\rm c} + \rho_{\rm m})\frac{\alpha}{2} \quad (25b)$$

However, Poisson's ratio (ν) is assumed to be constant. The material properties of FGMs plate without porosity can be obtained when α is set to zero.

The displacements of a material point located at (x, y, z) in the plate may be written as:

$$U(x, y, z) = u_0(x, y) - z \frac{\partial w_0}{\partial x} + \psi(z)\theta_x$$

$$V(x, y, z) = v_0(x, y) - z \frac{\partial w_0}{\partial y} + \psi(z)\theta_y$$

$$W(x, y, z) = w_0(x, y)$$
(26a)

The shape function $\psi(z)$ is to be specified a posteriori (see Zenkour [21]). It may be chosen such that

$$\psi'(z)\Big|_{z=\pm\frac{h}{2}} = 0, \int_{z=-\frac{h}{2}}^{z=\frac{h}{2}} \psi(z)dz = 0$$
 (26b)

where, U, V, W are displacements in the x, y, z directions, u_0, v_0 and w_0 are mid-plane displacements, θ_x and θ_y rotations of the yz and xz planes due to bending, respectively. $\psi(z)$ represents shape function determining the distribution of the transverse shear strains and stresses along the thickness.

The Love–Kirchhoff plate theory or classical plate theory (CPT) is a particular case of such an enriched kinematics based on the vanishing kinematics function $\psi(z) = 0$. The Reissner–Mindlin theory is simply obtained from the linear relationship [13, 14]:

$$\psi(z) = z \tag{27a}$$

In this case, the shape factor κ is equal to unity, as suggested for instance in literature a κ factor close to 5/6 would be more relevant for the Reissner–Mindlin plate theory (FPT, first shear plate theory). The higher-order shear plates (HPT) models considered in this paper are the model of Reddy [18], the model of Touratier [43] and the present model.

• Model of Reddy third plate theory (TPT) [18]

$$\psi(z) = z \left(1 - \frac{4z^2}{3h^2} \right) \tag{27b}$$

• Model of Touratier sinusoidal plate theory (SPT) [43]

$$\psi(z) = -\frac{h}{\pi} \sin\left(\pi \frac{z}{h}\right)$$
(27c)

 The new shape function shear deformation plate theory presented in this work:

$$\psi(z) = z - \frac{8z^3}{7h^2} e^{\left(\frac{z^2}{h^2} - \frac{1}{4}\right)}$$
(27d)

2.3 Present refined shear deformation theory

Unlike the other theories, the number of unknown functions involved in the new trigonometric shear deformation plate theory is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions.

2.3.1 Assumptions of the present plate theory

Assumptions of the present plate theory are as follows:

- (1) The displacements are small in comparison with the plate thickness and, therefore, strains involved are infinitesimal.
- (2) The transverse displacement W includes two components of bending w_b, and shear w_s. These components are functions of coordinates x, y only.

0

$$W(x, y, z) = w_0(x, y) = w_b(x, y) + w_s(x, y)$$
(28)

- (3) The transverse normal stress σ_z is negligible in comparison with in-plane stresses σ_x and σ_y .
- (4) The displacements *U* in *x*-direction and *V* in *y*-direction consist of extension, bending, and shear components.

$$U = u_0 + u_b + u_s, \quad V = v_0 + v_b + v_s$$
 (29)

The bending components u_b and v_b are assumed to be similar to the displacements given by the CPT. Therefore, the expression for u_b and v_b can be given as

$$u_{\rm b} = z \frac{\partial w_0}{\partial x} = -z \frac{\partial (w_{\rm b} + w_{\rm s})}{\partial x},$$

$$v_{\rm b} = -z \frac{\partial w_0}{\partial y} = -z \frac{\partial (w_{\rm b} + w_{\rm s})}{\partial y}$$
(30)

 θ_x and θ_y rotations of the *yz* and *xz* due to shear displacement, and w_0 includes two components of bending w_b , and shear w_s , the expression for θ_x and θ_y can be given as

$$\theta_x = \frac{\partial w_s}{\partial x}, \quad \theta_y = \frac{\partial w_s}{\partial y}$$
(31)

The shear components u_s and v_s give rise, in conjunction with w_s , to the parabolic variations of shear strains γ_{xz} , γ_{yz} and hence to shear stresses τ_{xz} , τ_{yz} through the thickness of the plate in such a way that shear stresses τ_{xz} , τ_{yz} are zero at the top and bottom faces of the plate. Consequently, the expression for u_s and v_s can be given as

$$u_{\rm s} = \psi(z) \frac{\partial w_{\rm s}}{\partial x} = \psi(z)\theta_x, \quad v_{\rm s} = \psi(z) \frac{\partial w_{\rm s}}{\partial y} = \psi(z)\theta_y$$
 (32)

Substituting Eqs. (30), (31) and (32) into Eq. (26a), the displacement field resultants are given as

$$U(x, y, z) = u_0(x, y) - z \frac{\partial w_b}{\partial x} + (\psi(z) - z) \frac{\partial w_s}{\partial x}$$
$$V(x, y, z) = v_0(x, y) - z \frac{\partial w_b}{\partial y} + (\psi(z) - z) \frac{\partial w_s}{\partial y}$$
$$W(x, y, z) = w_b(x, y) + w_s(x, y)$$
(33)

with

$$f(z) = \psi(z) - z \tag{34}$$

2.3.2 Kinematics and constitutive equations

The new shear deformation plate theory of the four variables (u_0, v_0, w_b, w_s) can be given as [22–32]

$$U(x, y, z) = u_0(x, y) - z \frac{\partial w_b}{\partial x} + f(z) \frac{\partial w_s}{\partial x}$$

$$V(x, y, z) = v_0(x, y) - z \frac{\partial w_b}{\partial y} + f(z) \frac{\partial w_s}{\partial y}$$
(35)

$$W(x, y, z) = w_0(x, y) + w_0(x, y)$$

 $W(x, y, z) = w_{b}(x, y) + w_{s}(x, y)$

The strains associated with the displacements in Eq. (35) are:

$$\begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{cases} = \begin{cases} \varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{xy}^{0} \end{cases} + z \begin{cases} \kappa_{x}^{b} \\ \kappa_{y}^{b} \\ \kappa_{xy}^{b} \end{cases} + f(z) \begin{cases} \eta_{x}^{b} \\ \eta_{y}^{b} \\ \eta_{xy}^{b} \end{cases}, \\ \varepsilon_{z} = 0, \begin{cases} \gamma_{xz} \\ \gamma_{yz} \end{cases} = g(z) \begin{cases} \gamma_{xy}^{s} \\ \gamma_{yz}^{s} \end{cases} \end{cases}$$
(36)

where

$$\varepsilon_{x}^{0} = \frac{\partial u_{0}}{\partial x}, \ \varepsilon_{y}^{0} = \frac{\partial v_{0}}{\partial y}, \ \gamma_{xy}^{0} = \frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x}, \ k_{x}^{b} = -\frac{\partial^{2} w_{b}}{\partial x^{2}},$$
$$k_{y}^{b} = -\frac{\partial^{2} w_{b}}{\partial y^{2}}, \ k_{xy}^{b} = -2\frac{\partial^{2} w_{b}}{\partial x \partial y}$$
(37)

$$k_x^s = \frac{\partial^2 w_s}{\partial x^2}, \ k_y^s = \frac{\partial^2 w_s}{\partial y^2}, \ k_{xy}^s = 2\frac{\partial^2 w_s}{\partial x \partial y}, \ \gamma_{yz}^s = \frac{\partial w_s}{\partial y},$$
$$\gamma_{xz}^s = \frac{\partial w_s}{\partial x}, \ \gamma_{yz}^s = \frac{\partial w_s}{\partial y}, \ \gamma_{xz}^s = \frac{\partial w_s}{\partial x},$$

The shape function must be chosen in such a way to satisfy the boundary conditions in the free edges $z = \pm \frac{h}{2}$:

$$f(-z) = -f(z), \ g = \left(\frac{\partial f}{\partial z} + 1\right)\Big|_{-\frac{h}{2}}^{\frac{h}{2}} = 0$$
(38)

2.3.3 Governing equations

The governing equations of equilibrium can be derived by using the principle of virtual displacements. The principle of virtual work in the present case yields

$$\begin{bmatrix} h/2\\ \int_{-h/2}^{h/2} \int_{S} \left[\sigma_{x} \delta \varepsilon_{x} + \sigma_{y} \delta \varepsilon_{y} + \tau_{xy} \delta \gamma_{xy} + \tau_{yz} \delta \gamma_{yz} + \tau_{xz} \delta \gamma_{xz} \right] dS dz + \int_{\Omega} f_{e} \delta W dS - \int_{-h/2}^{h/2} \int_{S} \rho \left[\dot{U} \delta U + \ddot{V} \delta V + \ddot{W} \delta W \right] dS dz \\\end{bmatrix} dt = 0$$
(39)

where S is the top surface.

Substituting Eqs. (35), (36) into Eq. (39) and integrating through the thickness of the plate, Eq. (47) can be rewritten as:

$$\begin{split} &\int_{S} \left[N_{x} \delta \varepsilon_{x}^{0} + N_{y} \delta \varepsilon_{y}^{0} + N_{xy} \delta \varepsilon_{xy}^{0} + M_{x} \delta k_{x}^{b} + M_{y} \delta k_{y}^{b} + M_{xy} \delta k_{xy}^{b} + S_{x} \delta k_{x}^{s} \right] \\ &+ S_{y} \delta k_{y}^{s} + S_{xy} \delta k_{xy}^{s} + Q_{yz} \delta \gamma_{yz}^{s} + Q_{xz} \delta \gamma_{xz}^{s} \right] \mathrm{d}S + \int_{\Omega} f_{\mathrm{e}} (\delta w_{\mathrm{b}} + \delta w_{\mathrm{b}}) \, \mathrm{d}S \\ &- \int_{-h/2}^{h/2} \int_{S} \rho \left[\left(u_{0,tt} - z w_{x,xtt}^{b} + f w_{x,xtt}^{s} \right) \delta \left(u_{0} - z w_{x,x}^{b} + f w_{x,x}^{s} \right) \right. \\ &+ \left(v_{0,tt} - z x_{y,ytt}^{b} + f w_{y,ytt}^{s} \right) \delta \left(v_{0} - z x_{y,y}^{b} + f w_{y,y}^{s} \right) \\ &\left(w_{,tt}^{b} + w_{,tt}^{s} \right) \delta \left(w^{b} + w^{s} \right) \right] \mathrm{d}S \, \mathrm{d}z \end{split}$$

$$(40)$$

where the stress resultants N, M, and S are defined by

$$(N_x, N_y, N_{xy}) = \int_{-h/2}^{h/2} (\sigma_x, \sigma_y, \tau_{xy}) dz$$

$$(M_x, M_y, M_{xy}) = \int_{-h/2}^{h/2} (\sigma_x, \sigma_y, \tau_{xy}) z dz$$

$$(S_x, S_y, S_{xy}) = \int_{-h/2}^{h/2} (\sigma_x, \sigma_y, \tau_{xy}) f dz$$

$$(Q_{xz}, Q_{yz}) = \int_{-h/2}^{h/2} (\tau_{xz}, \tau_{yz}) g dz$$
(41)

Based on the Winkler and Pasternak foundations, the effects of the surrounding elastic medium on the nanoplates are considered as follows:

$$f_{e} = k_{w}w - k_{p}\nabla^{2}w = k_{w}(w_{b} + w_{s}) - k_{p}\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right)$$

$$(w_{b} + w_{s})$$
(42)

where f_e is the foundation reaction per unit area applied on lower nanoplate, k_w and k_p are spring and shear modulus, respectively.

Substituting Eq. (20) into Eq. (41) and integrating through the thickness of the plate, the stress resultants are given as:

$$\begin{cases} N\\M\\S \end{cases} - (e_0 a)^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \begin{cases} N\\M\\S \end{cases} = \begin{bmatrix} A_{ij} & B_{ij} & B_{ij}^f\\B_{ij} & D_{ij} & D_{ij}^f\\B_{ij}^f & D_{ij}^f & F_{ij}^f \end{bmatrix} \begin{cases} \varepsilon\\\kappa\\\eta \end{cases},$$
$$Q - (e_0 a)^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) Q = \gamma A_{ij}^f, \tag{43}$$

2199

where A_{ij} denote the extensional stiffnesses, D_{ij} the bending stiffnesses, B_{ij} the bending–extensional coupling stiffnesses and $B_{ij}^f, D_{ij}^f, A_{ij}^f$ are the stiffnesses associated with the transverse shear effects, defined by

$$\begin{aligned}
\left\{ A_{ij}, B_{ij}, D_{ij}, B'_{ij}, D'_{ij}, F'_{ij} \right\} \\
&= \int_{-h/2}^{h/2} \left\{ 1, z, z^2, f(z), zf(z), f(z)^2 \right\} Q_{ij}(z) dz \quad (i, j = 1, 2, 6) \\
\left\{ A_{ij}^f \right\} &= \int_{-h/2}^{h/2} \left\{ g^2 \right\} Q_{ij} dz \quad (i, j = 4, 5) \end{aligned}$$
(44a)

The inertias I_i are defined by:

$$\{I_1, I_2, I_3, I_4, I_5, I_6\} = \int_{-h/2}^{h/2} \left\{1, z, z^2, f(z), zf(z), f(z)^2\right\} \rho(z) dz$$
(44b)

The governing equations of equilibrium can be derived from Eq. (39) by integrating the displacement gradients by parts and setting the coefficients δu_0 , δv_0 , δw_b , and δw_s to zero separately. Thus, one can obtain the equilibrium equations associated with the present RPT for the nonlocal plate.

$$\begin{split} \delta u_{0} : \frac{\partial N_{x}}{\partial x} + \frac{\partial N_{xy}}{\partial y} &= I_{1} \frac{\partial^{2} u_{0}}{\partial t^{2}} - I_{2} \frac{\partial^{3} w_{b}}{\partial x \partial t^{2}} + I_{4} \frac{\partial^{3} w_{s}}{\partial x \partial t^{2}} \\ \delta v_{0} : \frac{\partial N_{xy}}{\partial x} + \frac{\partial N_{y}}{\partial y} &= I_{1} \frac{\partial^{2} v_{0}}{\partial t^{2}} - I_{2} \frac{\partial^{3} w_{b}}{\partial y \partial t^{2}} + I_{4} \frac{\partial^{3} w_{s}}{\partial y \partial t^{2}} \\ \delta w_{b} : \frac{\partial^{2} M_{x}}{\partial x^{2}} + 2 \frac{\partial^{2} M_{xy}}{\partial x \partial y} + \frac{\partial^{2} M_{y}}{\partial y^{2}} - f_{e} = I_{2} \left(\frac{\partial^{3} u_{0}}{\partial x \partial t^{2}} + \frac{\partial^{3} v_{0}}{\partial y \partial t^{2}} \right) \\ &- I_{3} \left(\frac{\partial^{4} w_{b}}{\partial x^{2} \partial t^{2}} + \frac{\partial^{4} w_{b}}{\partial y^{2} \partial t^{2}} \right) + I_{5} \left(\frac{\partial^{4} w_{s}}{\partial x^{2} \partial t^{2}} + \frac{\partial^{4} w_{s}}{\partial y^{2} \partial t^{2}} \right) \\ &+ I_{1} \left(\frac{\partial^{2} w_{b}}{\partial t^{2}} + \frac{\partial^{2} S_{y}}{\partial x \partial y} - \frac{Q_{xz}}{\partial x} - \frac{\partial Q_{yz}}{\partial y} + f_{e} \right) \\ &= I_{4} \left(\frac{\partial^{3} u_{0}}{\partial x \partial t^{2}} + \frac{\partial^{3} v_{0}}{\partial y \partial t^{2}} \right) - I_{5} \left(\frac{\partial^{4} w_{b}}{\partial x^{2} \partial t^{2}} + \frac{\partial^{4} w_{b}}{\partial y^{2} \partial t^{2}} \right) \\ &+ I_{6} \left(\frac{\partial^{4} w_{s}}{\partial x^{2} \partial t^{2}} + \frac{\partial^{4} w_{s}}{\partial y^{2} \partial t^{2}} \right) + I_{1} \left(\frac{\partial^{2} w_{b}}{\partial t^{2}} + \frac{\partial^{2} w_{s}}{\partial t^{2}} \right) \end{split}$$

In this part we present some formulations for the free vibration of generic higher-order shear plate models generalized in a nonlocal framework. This nonlocal model depends on a single characteristic length $(e_0a)^2$, responsible of the small scale effects. The nonlocal generalization of the linear elastic constitutive law Eq. (9) using the nonlocal theory of Eringen [32–34] can be presented in the following differential format:

$$\begin{pmatrix} -I_1 \frac{\partial^2 u}{\partial t^2 \partial x^2} + I_2 \frac{\partial^3 w_b}{\partial t^2 \partial x^3} - I_4 \frac{\partial^3 w_s}{\partial t^2 \partial x^3} - I_1 \frac{\partial^2 u}{\partial t^2 \partial y^2} + I_2 \frac{\partial^3 w_b}{\partial x \partial y^2 \partial t^2} - I_4 \frac{\partial^3 w_s}{\partial x \partial y^2 \partial t^2} \end{pmatrix} (e_0 a)^2 + \left(I_1 \frac{\partial^2 u}{\partial t^2} - I_2 \frac{\partial^3 w_b}{\partial x \partial t^2} + I_4 \frac{\partial^3 w_s}{\partial x \partial t^2} \right) = A_{11} \frac{\partial^2 u}{\partial x^2} + A_{66} \frac{\partial^2 u}{\partial y^2} + (A_{12} + A_{66}) \frac{\partial^2 v}{\partial x \partial y} - B_{11} \frac{\partial^3 w_b}{\partial x^3} - (B_{12} + 2B_{66}) \frac{\partial^3 w_b}{\partial y^2 \partial x} + B_{11}^f \frac{\partial^3 w_s}{\partial x^3} + \left(B_{12}^f + 2B_{66}^f \right) \frac{\partial^3 w_s}{\partial y^2 \partial x}$$
(46a)

$$\begin{pmatrix} -I_1 \frac{\partial^2 v}{\partial t^2 \partial y^2} + I_2 \frac{\partial^3 w_b}{\partial t^2 \partial y^3} - I_4 \frac{\partial^3 w_s}{\partial t^2 \partial y^3} - I_1 \frac{\partial^2 v}{\partial t^2 \partial x^2} + I_2 \frac{\partial^3 w_b}{\partial t^2 \partial y \partial x^2} - I_4 \frac{\partial^3 w_s}{\partial t^2 \partial y \partial x^2} \end{pmatrix} (e_0 a)^2 + \left(I_1 \frac{\partial^2 v}{\partial t^2} - I_2 \frac{\partial^3 w_b}{\partial y \partial t^2} + I_4 \frac{\partial^3 w_s}{\partial y \partial t^2} \right) = (A_{12} + A_{66}) \frac{\partial^2 u}{\partial x \partial y} + A_{66} \frac{\partial^2 v}{\partial x^2} + A_{22} \frac{\partial^2 v}{\partial y^2} - (B_{12} + 2B_{66}) \frac{\partial^3 w_b}{\partial x^2 \partial y} - B_{22} \frac{\partial^3 w_b}{\partial y^3} + \left(B_{12}^f + 2B_{66}^f \right) \frac{\partial^3 w_s}{\partial x^2 \partial y} - B_{22}^f \frac{\partial^3 w_s}{\partial y^3}$$
(46b)

$$-\frac{\partial}{\partial x^{2}}\left(I_{2}\left(\frac{\partial^{3}u}{\partial x\partial t^{2}}+\frac{\partial^{3}v}{\partial y\partial t^{2}}\right)-I_{3}\left(\frac{\partial^{4}w_{b}}{\partial x^{2}\partial t^{2}}+\frac{\partial^{4}w_{b}}{\partial y^{2}\partial t^{2}}\right)+I_{5}\left(\frac{\partial^{4}w_{s}}{\partial x^{2}\partial t^{2}}+\frac{\partial^{4}w_{s}}{\partial y^{2}\partial t^{2}}\right)+I_{1}\left(\frac{\partial^{2}w_{b}}{\partial t^{2}}+\frac{\partial^{2}w_{s}}{\partial t^{2}}\right)+f_{e}\right)(e_{0}a)^{2}$$

$$-\frac{\partial}{\partial y^{2}}\left(I_{2}\left(\frac{\partial^{3}u}{\partial x\partial t^{2}}+\frac{\partial^{3}v}{\partial y\partial t^{2}}\right)-I_{3}\left(\frac{\partial^{4}w_{b}}{\partial x^{2}\partial t^{2}}+\frac{\partial^{4}w_{b}}{\partial y^{2}\partial t^{2}}\right)+I_{5}\left(\frac{\partial^{4}w_{s}}{\partial x^{2}\partial t^{2}}+\frac{\partial^{4}w_{s}}{\partial y^{2}\partial t^{2}}\right)+I_{1}\left(\frac{\partial^{2}w_{b}}{\partial t^{2}}+\frac{\partial^{2}w_{s}}{\partial t^{2}}\right)+f_{e}\right)(e_{0}a)^{2}$$

$$+I_{2}\left(\frac{\partial^{3}u}{\partial x\partial t^{2}}+\frac{\partial^{3}v}{\partial y\partial t^{2}}\right)-I_{3}\left(\frac{\partial^{4}w_{b}}{\partial x^{2}\partial t^{2}}+\frac{\partial^{4}w_{b}}{\partial y^{2}\partial t^{2}}\right)+I_{5}\left(\frac{\partial^{4}w_{s}}{\partial x^{2}\partial t^{2}}+\frac{\partial^{4}w_{s}}{\partial y^{2}\partial t^{2}}\right)+I_{1}\left(\frac{\partial^{2}w_{b}}{\partial t^{2}}+\frac{\partial^{2}w_{s}}{\partial t^{2}}\right)+f_{e}\right)(e_{0}a)^{2}$$

$$=B_{11}\frac{\partial^{3}u}{\partial x^{3}}+(B_{12}+2B_{66})\frac{\partial^{3}u}{\partial x\partial y^{2}}+(B_{12}+2B_{66})\frac{\partial^{3}v}{\partial x^{2}\partial y}+B_{22}\frac{\partial^{3}v}{\partial y^{3}}-D_{11}\frac{\partial^{4}w_{b}}{\partial x^{4}}-2(D_{12}+2D_{66})\frac{\partial^{4}w_{b}}{\partial x^{2}\partial y^{2}}$$

$$-D_{22}\frac{\partial^{4}w_{b}}{\partial y^{4}}-D_{11}^{f}\frac{\partial^{4}w_{s}}{\partial x^{4}}-2\left(D_{12}^{f}+2D_{66}^{f}\right)\frac{\partial^{4}w_{s}}{\partial x^{2}\partial y^{2}}-D_{22}^{f}\frac{\partial^{4}w_{s}}{\partial y^{4}}$$

$$(46c)$$

$$-\frac{\partial}{\partial x^{2}}\left(I_{4}\left(\frac{\partial^{3} u}{\partial x \partial t^{2}}+\frac{\partial^{3} v}{\partial y \partial t^{2}}\right)-I_{5}\left(\frac{\partial^{4} w_{b}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial y^{2} \partial t^{2}}\right)+I_{6}\left(\frac{\partial^{4} w_{s}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{s}}{\partial y^{2} \partial t^{2}}\right)+I_{1}\left(\frac{\partial^{2} w_{b}}{\partial t^{2}}+\frac{\partial^{2} w_{s}}{\partial t^{2}}\right)-f_{e}\right)(e_{0}a)^{2}$$

$$-\frac{\partial}{\partial y^{2}}\left(I_{4}\left(\frac{\partial^{3} u}{\partial x \partial t^{2}}+\frac{\partial^{3} v}{\partial y \partial t^{2}}\right)-I_{5}\left(\frac{\partial^{4} w_{b}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial y^{2} \partial t^{2}}\right)+I_{6}\left(\frac{\partial^{4} w_{s}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{s}}{\partial y^{2} \partial t^{2}}\right)+I_{1}\left(\frac{\partial^{2} w_{b}}{\partial t^{2}}+\frac{\partial^{2} w_{s}}{\partial t^{2}}\right)-f_{e}\right)(e_{0}a)^{2}$$

$$+I_{4}\left(\frac{\partial^{3} u}{\partial x \partial t^{2}}+\frac{\partial^{3} v}{\partial y \partial t^{2}}\right)-I_{5}\left(\frac{\partial^{4} w_{b}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial y^{2} \partial t^{2}}\right)+I_{6}\left(\frac{\partial^{4} w_{s}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{s}}{\partial y^{2} \partial t^{2}}\right)+I_{1}\left(\frac{\partial^{2} w_{b}}{\partial t^{2}}+\frac{\partial^{2} w_{s}}{\partial t^{2}}\right)-f_{e}\right)(e_{0}a)^{2}$$

$$+I_{4}\left(\frac{\partial^{3} u}{\partial x \partial t^{2}}+\frac{\partial^{3} v}{\partial y \partial t^{2}}\right)-I_{5}\left(\frac{\partial^{4} w_{b}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial y^{2} \partial t^{2}}\right)+I_{6}\left(\frac{\partial^{4} w_{s}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{s}}{\partial y^{2} \partial t^{2}}\right)-I_{6}\left(\frac{\partial^{4} w_{b}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial y^{2} \partial t^{2}}\right)+I_{6}\left(\frac{\partial^{4} w_{s}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{s}}{\partial y^{2} \partial t^{2}}\right)-I_{6}\left(\frac{\partial^{4} w_{b}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial y^{2} \partial t^{2}}\right)+I_{6}\left(\frac{\partial^{4} w_{s}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{s}}{\partial y^{2} \partial t^{2}}\right)-I_{6}\left(\frac{\partial^{4} w_{b}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial y^{2} \partial t^{2}}\right)+I_{6}\left(\frac{\partial^{4} w_{s}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{s}}{\partial y^{2} \partial t^{2}}\right)-I_{6}\left(\frac{\partial^{4} w_{b}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial y^{2} \partial t^{2}}\right)+I_{6}\left(\frac{\partial^{4} w_{b}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial t^{2} \partial t^{2}}\right)-I_{6}\left(\frac{\partial^{4} w_{b}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial t^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial t^{2}}\right)-I_{6}\left(\frac{\partial^{4} w_{b}}{\partial x^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial t^{2} \partial t^{2}}\right)+I_{6}\left(\frac{\partial^{4} w_{b}}{\partial t^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial t^{2} \partial t^{2}}\right)-I_{6}\left(\frac{\partial^{4} w_{b}}{\partial t^{2} \partial t^{2}}+\frac{\partial^{4} w_{b}}{\partial t^{2} \partial t^{2}}\right)$$

$$-D_{2}\left(\frac{\partial^{4} w_{b}}{\partial t^{4}}-F_{1}^{1}\frac{\partial^{4} w_{s}}{\partial t$$

2.3.4 Analytical solutions for vibration problems nonlocal plates

For the analytical solution of Eq. (46), the Navier method is used under the specified boundary conditions. The displacement functions that satisfy the equations of boundary conditions in the Table 1 are selected as the following Fourier series [44–46]:

$$\begin{pmatrix} u \\ v \\ w_{b} \\ w_{s} \end{pmatrix} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \begin{cases} U_{mn} \frac{\partial X_{m}(x)}{\partial x} Y_{n}(y) e^{i\omega t} \\ V_{mn} X_{m}(x) \frac{\partial Y_{n}(y)}{\partial x} e^{i\omega t} \\ W_{bmn} X_{m}(x) Y_{n}(y) e^{i\omega t} \\ W_{smn} X_{m}(x) Y_{n}(y) e^{i\omega t} \end{cases}$$

$$(47)$$

Table 1	The admissible	functions	$X_m(x)$	and Y_n	(y)	[45	5]
---------	----------------	-----------	----------	-----------	-----	-----	----

	Boundary conditions	The functions X_m and Y_n	The functions X_m and Y_n				
	At $x = 0, a_1$	$At y = 0, b_1$	$X_m(x)$	$Y_n(y)$			
s ssss s	$X_m(0) = X''_m(0) = 0$ $X_m(a_1) = X''_m(a_1) = 0$	$Y_n(0) = Y''_n(0) = 0$ $Y_n(b_1) = Y''_n(b_1) = 0$	$\sin(\eta_m x)$	$\sin(\zeta_n y)$			
$ \begin{array}{c} s\\ c \\ csss\\ s\end{array} $	$X_m(0) = X'_m(0) = 0$ $X_m(a_1) = X''_m(a_1) = 0$	$Y_n(0) = Y''_n(0) = 0$ $Y_n(b_1) = Y''_n(b_1) = 0$	$\sin(\eta_m x)[\cos(\eta_m x) - 1]$	$\sin(\zeta_n y)$			
$\begin{array}{c} s \\ c \\ c \\ cscs \\ s \end{array}$	$X_m(0) = X'_m(0) = 0$ $X_m(a_1) = X''_m(a_1) = 0$	$Y_n(0) = Y'_n(0) = 0$ $Y_n(b_1) = Y''_n(b_1) = 0$	$\sin(\eta_m x)[\cos(\eta_m x)-1]$	$\sin(\zeta_n y) \big[\cos(\zeta_n y) - 1 \big]$			
c ccss c	$X_m(0) = X'_m(0) = 0$ $X_m(a_1) = X'_m(a_1) = 0$	$Y_n(0) = Y''_n(0) = 0$ $Y_n(b_1) = Y''_n(b_1) = 0$	$\sin^2(\eta_m x)$	$\sin(\zeta_n y)$			
c c c c c c c c c c c c c c c c c c c	$X_m(0) = X'_m(0) = 0$ $X_m(a_1) = X'_m(a_1) = 0$	$Y_n(0) = Y'_n(0) = 0$ $Y_n(b_1) = Y'_n(b_1) = 0$	$\sin^2(\eta_m x)$	$\sin^2(\zeta_n y)$			
c c c c c c c c c c c c c c c c c c c	$X_m(0) = X'_m(0) = 0$ $X_m(a_1) = X'_m(a_1) = 0$	$Y_n(0) = Y'_n(0) = 0$ $Y_n(b_1) = Y''_n(b_1) = 0$	$\sin^2(\eta_m x)$	$\sin(\zeta_n y) \big[\cos(\zeta_n y) - 1 \big]$			

.

 $a_1 = 10, E = 30 \cdot 10^6, v = 0.3, K_w = 0, K_p = 0, n = m = 1 = 1$

where U_{mn} , V_{mn} , W_{bmn} , and W_{smn} are arbitrary parameters and $\omega = \omega_{mn}$ denotes the eigenfrequency associated with (*m*th, *n*th) eigenmode.

The functions $X_m(x)$ and $Y_n(y)$ are suggested here to satisfy at least the geometric boundary conditions given in Table 1, and represent approximate shapes of the deflected surface of the plate.

These functions, for the different cases of boundary conditions, are listed in Table 1 [45] noting that $\eta_m = \frac{m\pi}{a_1}$, $\zeta_n = \frac{n\pi}{b_1}$. Substituting Eq. (47) into equations of motion (46) we

Substituting Eq. (47) into equations of motion (46) we get the below eigenvalue equations for any fixed value of m and n, for free vibration problem:tabl

$$\left([K] - \omega^2[M]\right)\{\Delta\} = \{0\}$$
(48)

where $\{\Delta\}$ denotes the columns, and [K] is stiffness matrix and [M] refers to the mass matrix in the case of free vibration.

$$\{\Delta\} = \begin{cases} U_{mn} \\ V_{mn} \\ W_{bmn} \\ W_{smn} \end{cases}, \ [K] = \begin{bmatrix} K_{11} & K_{12} & K_{13} & K_{14} \\ K_{12} & K_{22} & K_{23} & K_{24} \\ K_{13} & K_{23} & K_{33} & K_{34} \\ K_{14} & K_{24} & K_{34} & K_{44} \end{bmatrix},$$
$$[M] = \begin{bmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{12} & M_{22} & a_{23} & M_{24} \\ M_{13} & M_{23} & M_{33} & M_{34} \\ M_{14} & M_{24} & M_{34} & M_{44} \end{bmatrix}$$
(49)

The elements $K_{ij} = K_{ji}$ of the coefficient matrix [K] are given by:

$$\begin{split} K_{11} &= A_{11}e_{1} + A_{66}e_{2}, \\ K_{12} &= (A_{12} + A_{66})e_{2}, \\ K_{13} &= -B_{11}e_{1} - (B_{12} + 2B_{66})e_{2}, \\ K_{14} &= B_{11}^{f}e_{1} + \left(B_{12}^{f} + 2B_{66}^{f}\right)e_{2}, \\ K_{21} &= (A_{12} + A_{66})e_{3}, \\ K_{22} &= A_{22}e_{4} + A_{66}e_{3}, \\ K_{23} &= -B_{22}e_{4} - (B_{12} + 2B_{66})e_{3}, \\ K_{24} &= B_{22}^{f}e_{2} + \left(B_{12}^{f} + 2B_{66}^{f}\right)e_{3}, \\ K_{31} &= B_{11}e_{5} + (B_{12} + 2B_{66})e_{6}, \\ K_{32} &= B_{22}e_{7} + (B_{12} + 2B_{66})e_{6}, \\ K_{33} &= \left((e_{8} + e_{9})k_{w} - (e_{5} + 2e_{6} + e_{7})k_{p}\right)(e_{0}a)^{2} \\ &- e_{10}k_{w} + (e_{8} + e_{9})k_{p} - e_{5}D_{11} - e_{7}D_{22} \\ &- 2(D_{12} + 2D_{66})e_{6}, \\ K_{34} &= \left((e_{8} + e_{9})k_{w} - (e_{5} + 2e_{6} + e_{7})k_{p}\right)(e_{0}a)^{2} \\ &- e_{10}k_{w} + (e_{8} + e_{9})k_{p} + D_{22}^{f}e_{7} + D_{11}^{f}e_{5} \\ &+ 2\left(D_{12}^{f} + 2D_{66}^{f}\right)e_{6}, \\ K_{41} &= B_{11}^{f}e_{5} + \left(B_{12}^{f} + 2B_{66}^{f}\right)e_{6}, \\ K_{42} &= B_{22}^{f}e_{7} + \left(B_{12}^{f} + 2B_{66}^{f}\right)e_{6}, \\ K_{43} &= \left((e_{5} + 2e_{6} + e_{7})k_{p} - (e_{8} + e_{9})k_{w}\right)(e_{0}a)^{2} \\ &+ e_{10}k_{w} - (e_{8} + e_{9})k_{p} - D_{11}^{f}e_{5} - D_{11}^{f}e_{7} \\ &- 2\left(D_{12}^{f} + 2D_{66}^{f}\right)e_{6}, \\ K_{44} &= \left((e_{5} + 2e_{6} + e_{7})k_{p} - (e_{8} + e_{9})k_{w}\right)(e_{0}a)^{2} \\ &+ e_{10}k_{w} - (e_{8} + e_{9})k_{p} + F_{11}^{f}e_{5} + F_{22}^{f}e_{7} \\ &+ 2\left(F_{12}^{f} + 2F_{66}^{f}\right)e_{6} - A_{44}^{f}e_{9} - A_{55}^{f}e_{8} \end{aligned}$$

$$(50)$$

$$M_{11} = I_1 \left(e_{11} - (e_1 + e_2)(e_0 a)^2 \right),$$

$$M_{12} = 0,$$

$$M_{13} = I_2 \left((e_1 + e_2)(e_0 a)^2 - e_{11} \right),$$

$$M_{14} = I_4 \left(e_{11} - (e_1 + e_2)(e_0 a)^2 \right),$$

$$M_{21} = 0,$$

$$M_{22} = I_1 \left((e_3 + e_4)(e_0 a)^2 - e_{12} \right),$$

$$M_{23} = I_2 \left(e_{12} - (e_3 + e_4)(e_0 a)^2 \right),$$

$$M_{24} = I_4 \left((e_3 + e_4)(e_0 a)^2 - e_{12} \right),$$

$$M_{31} = I_2 \left((e_5 + e_6)(e_0 a)^2 - e_{12} \right),$$

$$M_{32} = I_2 \left((e_6 + e_7)(e_0 a)^2 - e_{12} \right),$$

$$M_{33} = ((e_8 + e_9)I_1 - (e_5 + 2e_6 + e_7)I_3)(e_0 a)^2 - e_{10}I_1 + (e_8 + e_9)I_3,$$

$$M_{34} = ((e_8 + e_9)I_1 + (e_5 + 2e_6 + e_7)I_5)(e_0 a)^2 - e_{10}I_1 - (e_8 + e_9)I_5,$$

$$M_{41} = I_4 \left((e_5 + e_6)(e_0 a)^2 - e_8 \right),$$

$$M_{42} = I_4 \left((e_6 + e_7)(e_0 a)^2 - e_9 \right),$$

$$M_{43} = e_{10}I_1 + (e_8 + e_9)I_5 - ((e_8 + e_9)I_1 + (e_5 + 2e_6 + e_7)I_5)(e_0 a)^2,$$

$$M_{44} = e_{10}I_1 - (e_8 + e_9)I_6 + ((e_5 + 2e_6 + e_7)I_6 - (e_8 + e_9)I_1 + (e_5 + 2e_6 + e_7)I_6 - (e_8 + e_9)I_1 + (e_0 a)^2,$$
(51)

in which

The elements $M_{ij} = M_{ji}$ of the coefficient matrix [*M*] are given by:

$$\{e_{1}, e_{2}, e_{11}\} = \int_{0}^{a} \int_{0}^{b} X'(x)Y(y) \{X'''(x)Y(y), X'(x)Y''(y), X'(x)Y(y)\} dxdy$$

$$\{e_{3}, e_{4}, e_{12}\} = \int_{0}^{a} \int_{0}^{b} X(x)Y'(y) \{X''(x)Y'(y), X(x)Y'''(y), X(x)Y'(y)\} dxdy$$

$$\{e_{5}, e_{6}, e_{7}\} = \int_{0}^{a} \int_{0}^{b} X(x)Y(y) \{X'''(x)Y(y), X''(x)Y''(y), X(x)Y'''(y)\} dxdy$$

$$\{e_{8}, e_{9}, e_{10}\} = \int_{0}^{a} \int_{0}^{b} X(x)Y(y) \{X(x)Y(y), X(x)Y''(y), X(x)Y(y)\} dxdy$$

(52)

Fig. 2 Shape strain functions of different shear deformation theories of the plate

Table 2 The firstnondimensional higher order	Frequencies	$\frac{b_1}{a_1}$	$\frac{a_1}{h}$	Theory	$(e_0 a)^2$					
frequencies $\bar{\omega} = \omega h \sqrt{\rho/G}$ of					0	1	2	3	4	5
simply supported plate	ω	1	10	CPT [47]	0.0963	0.0880	0.0816	0.0763	0.0720	0.0683
				FPT [47]	0.0930	0.0850	0.0788	0.0737	0.0696	0.0660
				TPT [47]	0.0935	0.0854	0.0791	0.0741	0.0699	0.0663
				Present	0.0936	0.0855	0.0793	0.0742	0.0699	0.0664
		2	10	CPT [47]	0.0602	0.0568	0.0539	0.0514	0.0493	0.0473
				FPT [47]	0.0589	0.0556	0.0527	0.0503	0.0482	0.0463
				TPT [<mark>47</mark>]	0.0591	0.0557	0.0529	0.0505	0.0483	0.0464
				Present	0.0591	0.0558	0.0529	0.0505	0.0484	0.0465

 $a_1 = 10, E = 30 \times 10^6, v = 0.3, K_w = 0, K_p = 0, n = m = 1 = 1$

Table 3 The frequency $\frac{1}{2}\sqrt{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	K _w	K _p	р	$(e_0 a)^2 = 0$		$(e_0 a)^2 = 4$		
$\omega = \omega b^2 / \pi^2 \sqrt{\rho_c h} / D_c,$				Sobhy [41]	Present	Sobhy [41]	Present	
graded material nanoplate	0	0	0	1.9318	1.9318	1.4441	1.6358	
without or resting on elastic foundations for different values of inhomogeneity parameter			0.5	1.4969	1.4902	1.1189	1.1139	
			2.5	1.2572	1.2534	0.9397	0.9369	
$(a_1 / h = 10)$			5.5	1.2087	1.2066	0.9035	0.9020	
			10.5	1.1609	1.1595	0.8678	0.8667	
	100	0	0	2.1780	2.1780	1.7598	1.7599	
			0.5	1.8354	1.8271	1.5427	1.5357	
			2.5	1.6910	1.6854	1.4704	1.4677	
			5.5	1.6738	1.6705	1.4686	1.4656	
			10.5	1.6499	1.6477	1.4585	1,4566	

For nontrivial solutions of Eq. (48), the following determinants should be zero:

$$\operatorname{Det}\left([K] - \omega^2[M]\right) = 0 \tag{53}$$

The exact solution of Eq. (53) for the FGM nanoplate under various boundary conditions can be constructed. The plate is assumed to have simply-supported (S) and clamped (C) edges or have combinations of them, and they are given as:

Table 4 Effects of volume
fraction index p and nonlocal
parameter on the free vibration
$\bar{\omega} = \omega a_1^2 \sqrt{\left(\rho_{\rm c} h / D_{\rm c}\right)}$ of simply
supported functionally graded
nanoplate

α	$(e_0 a)^2$	Theory	p							
			0	0.5	1	2	3.5			
0	0	СРТ	24.2357	22.3689	21.4674	20.8704	20.7717			
		FPT	23.8296	22.0899	21.2470	20.6848	20.5841			
		TPT	23.8299	22.0942	21.2471	20.6742	20.5577			
		SPT	23.8305	22.0947	21.2475	20.6740	20.5563			
		Present	23.8311	22.0951	21.2478	20.6757	20.5609			
	1	CPT	22.8949	21.3324	20.5939	20.1309	20.0870			
		FPT	22.5373	21.0895	20.4036	19.9720	19.9271			
		TPT	22.5376	21.0933	20.4036	19.9630	19.9046			
		SPT	22.5380	21.0938	20.4040	19.9627	19.9035			
		Present	22.5386	21.0941	20.4042	19.9642	19.9073			
	2	CPT	21.8830	20.5572	19.9441	19.5835	19.5812			
		FPT	21.5632	20.3421	19.7767	19.4449	19.4423			
		TPT	21.5634	20.3454	19.7767	19.4369	19.4228			
		SPT	21.5639	20.3458	19.7770	19.4368	19.4218			
		Present	21.5643	20.3461	19.7773	19.4381	19.4252			
0.2	0	CPT	24.5911	22.2414	20.9036	19.7784	19.4134			
		FPT	24.1645	21.9749	20.7235	19.6666	19.3222			
		TPT	24.1646	21.9792	20.7236	19.6595	19.3033			
		SPT	24.1652	21.9797	20.7239	19.6592	19.3022			
		Present	24.1659	21.9799	20.7241	19.6601	19.3054			
	1	CPT	23.1841	21.2093	20.1029	19.2015	18.9426			
		FPT	22.8075	20.9772	19.9480	19.1069	18.8666			
		TPT	22.8076	20.9810	19.9480	19.1010	18.8510			
		SPT	22.8082	20.9813	19.9483	19.1007	18.8501			
		Present	22.8088	20.9817	19.9485	19.1015	18.8527			
	2	CPT	22.1203	20.4371	19.5086	18.7770	18.5977			
		FPT	21.7827	20.2316	19.3728	18.6954	18.5331			
		TPT	21.7828	20.2349	19.3729	18.6902	18.5197			
		SPT	21.7833	20.2353	19.3731	18.6901	18.5190			

 $a_1/h = 10, m = n = 1, K_w = 10, K_p = 10$ 13.5 11.0 (a) (b) 10.5 13.0 10.0 12.5 $\overline{\omega}$ 9.5 $\overline{\omega}$ 12.0 CPT CPT 9.0 α=0.2 FPT FPT α=0 ТРТ TPT 11.5 8.5 SPT SPT Present Present 11.0 50 8.0 35 40 45 50 55 10 15 20 25 35 40 5 30 45 55 5 10 15 20 25 30 a/h a/h

Present

21.7838

20.2355

19.3733

18.6908

18.5212

Fig. 3 The effect of thickness ratio (a_1/h) on nondimensional fundamental frequency of (SSSS) square plate $(p = 3.5, (e_0 a)^2 = 0, K_w = K_p = 0)$

Fig. 4 The effect of thickness ratio (a_1/h) on nondimensional fundamental frequency of (CCCC) square plate $(p = 2, (e_0a)^2 = 1, K_w = 100, K_p = 10)$

Fig. 5 The effect of thickness ratio and nonlocal parameters $(e_0a)^2$ on nondimensional fundamental frequency of (CSCS) square plate $(p = 1.5, K_w = 100, K_p = 10)$

3 Results and discussion

The analytical free vibration solutions presented in Eqs. (48) and (53) are numerically evaluated here for an isotropic plate to discuss the effects of nonlocal parameter $(e_0a)^2$ on the plate vibration response. The material properties used in the present study are as follows: $E_{\rm m} = 70$ GPa, $\rho_{\rm m} = 2707$ kg/m³ for aluminum, $E_{\rm c} = 380$ GPa, $\rho_{\rm c} = 3800$ kg/m³ for alumina, $\nu_{\rm c} = \nu_{\rm m} = \nu = 0.3$ where E, ν, ρ are Young modules, Poisson's ratio and plate density.

In all examples, the parameters of the found are given in the dimensionless form $K_{\rm w} = k_{\rm w} a_1^4 / D_{\rm c}$, $K_{\rm p} = k_{\rm p} a_1^2 / D_{\rm c}$ and $\bar{\omega} = \omega a_1^2 \sqrt{(\rho_c h/D_c)}$ where $D_c = E_c h^3 / 12(1-\nu^2)$ is the reference bending rigidity of the plate.

In this work, an analytical method was used to study the free vibration analysis of FGM nanoplates subjected with porosities resting on Winkler Pasternak elastic foundations based on two new variable refined plates theories. This theoretical formulation included the CPT, the first order shear deformation theory (FPT) and the higher order shear deformation theories (TPT, SPT and present model). The present results have shown the influences of porosity (α) and nonlocal parameters (e_0a)², constituent material distribution and plate aspect ratio on the natural frequencies of the plate.

	$\frac{b_1}{a_1}$	Theory	SSSS			CCCC			CSCS		
			$(K_{\rm w}, K_{\rm p})$			$(K_{\rm w}, K_{\rm p})$			$(K_{\rm w}, K_{\rm p})$		
			(0,0)	(100,0)	(100, 10)	(0,0)	(100, 0)	(100, 10)	(0,0)	(100, 0)	(100, 10)
0	$\frac{1}{2}$	СРТ	26.2543	28.4916	37.6295	49.7607	50.9158	61.3976	44.1815	45.4903	56.1368
	2	FPT	24.7964	27.1779	36.7307	42.5856	43.9953	56.3106	39.4892	40.9996	52.9241
		TPT	24.6003	27.0027	36.6135	41.7934	43.2362	55.7708	38.9239	40.4613	52.5511
		SPT	24.5918	26.9950	36.6084	41.7657	43.2091	55.7525	38.9018	40.4403	52.5368
		Present	24.6235	27.0233	36.6270	42.1081	43.5393	55.9983	39.0276	40.5601	52.6221
	1	CPT	11.9045	16.3690	22.7391	21.7220	24.4239	31.5116	20.4219	23.2701	30.9992
		FPT	11.6112	16.1644	22.6027	20.4024	23.2778	30.6791	19.4521	22.4412	30.4240
		TPT	11.5690	16.1354	22.5837	20.2265	23.1264	30.5710	19.3193	22.3287	30.3474
		SPT	11.5671	16.1340	22.5828	20.2187	23.1198	30.5662	19.3134	22.3236	30.3440
		Present	11.5741	16.1389	22.5860	20.2471	23.1443	30.5835	19.3350	22.3419	30.3565
	2	CPT	7.7106	13.6617	18.5346	15.4549	19.1074	24.7514	13.9885	17.9373	24.2124
		FPT	7.5885	13.5967	18.4902	14.7031	18.5168	24.3164	13.5151	17.5806	23.9645
		TPT	7.5706	13.5874	18.4838	14.6003	18.4370	24.2584	13.4484	17.5308	23.9302
		SPT	7.5698	13.5869	18.4834	14.5956	18.4335	24.2557	13.4454	17.5286	23.9288
		Present	7.5727	13.5885	18.4847	14.6429	18.4706	24.2832	13.4612	17.5404	23.9371
0.2	$\frac{1}{2}$	CPT	21.0169	23.7910	34.3341	39.6195	41.0664	53.5382	35.2102	36.8475	49.4398
	2	FPT	20.1454	23.0514	33.9126	35.2764	36.9716	51.0247	32.4071	34.2381	47.9055
		TPT	19.9661	22.9013	33.8313	34.5168	36.2621	50.6153	31.8813	33.7532	47.6382
		SPT	19.9569	22.8936	33.8274	34.4830	36.2311	50.5988	31.8567	33.7306	47.6274
		Present	19.9867	22.9187	33.8402	34.7596	36.4915	50.7629	31.9668	33.8324	47.6847
	1	CPT	9.56084	14.8449	21.7905	17.4218	20.7501	28.8861	16.3757	19.8722	28.6694
		FPT	9.38471	14.7399	21.7292	16.6238	20.1066	28.4760	15.7930	19.4137	28.3962
		TPT	9.34623	14.7174	21.7165	16.4603	19.9769	28.3955	15.6710	19.3191	28.3419
		SPT	9.34424	14.7162	21.7159	16.4516	19.9702	28.3914	15.6646	19.3143	28.3393
		Present	9.3508	14.7200	21.7181	16.4791	19.9917	28.4047	15.6853	19.3301	28.3481
	2	CPT	6.1978	12.9837	18.1415	12.4123	16.8243	23.1501	11.2328	15.9668	22.9138
		FPT	6.1244	12.9524	18.1223	11.9565	16.5039	22.9366	10.9479	15.7783	22.7975
		TPT	6.1081	12.9456	18.1182	11.8610	16.4381	22.8934	10.8867	15.7384	22.7738
		SPT	6.1072	12.9454	18.1180	11.8558	16.4346	22.8912	10.8834	15.7363	22.7725
		Present	6.1100	12.9465	18.1187	11.8922	16.4601	22.9086	10.8970	15.7452	22.7780

Table 5 Effects of elastic foundation stiffnesses K_w , K_p and the aspect ratio $\frac{b}{a}$ on the free vibration $\bar{\omega} = \omega a_1^2 \sqrt{(\rho_c h/D_c)}$ of three boundaries conditions square plates p = 3.5, a/h = 10, $(e_0 a)^2 = 1$, m = n = 1

Figure 2a, b illustrates the shear strain shape function of different models. This figure also shows that [18] the present model has the same shape functions determining the same distribution of the transverse shear strains and stresses along the thickness. In the first-order shear deformation plate theory (FPT) Reissner–Mindlin [13, 14], the in-plane displacements are expanded up to the first term in the thickness coordinate, and the relations of normals to the mid-surface are assumed independent of the transverse deflection. Note that the condition in (31) is not satisfied and then the FPT yields a constant value of transverse shearing strain through the thickness of the plate Fig. 2b, and thus requires shear correction factors in order to ensure the proper amount of transverse energy. The actual values of shear correction coefficients of the present FPT are 5/6.

The TPT [18] accounts not only for transverse shear strains, but also for a parabolic variation of the transverse shear strains through the thickness. The forms of the assumed displacement functions for (TPT) Reddy [18] and (SPT) Touratier [43], the present model are satisfied the conditions of zero transverse shear stresses on the top and bottom surfaces of the plate (Fig. 2b). No shear correction factors are needed in computing the shear stresses for other theories, because a correct representation of the transverse shearing strain is given. It can be seen that the present model is in good agreement of (TPT) Reddy [18] and (SPT) Touratier [43]

Fig. 6 The effect of thickness ratio (a_1/h) and Winkler elastic foundation K_w on nondimensional fundamental frequency of (CCSS) square plate (p = 2.5, $(e_0 a)^2 = 0.5$, $K_p = 10$)

Fig. 7 The effect of thickness ratio (a_1/h) and Pasternak elastic foundation K_p on nondimensional fundamental frequency of (CCSS) square plate (p = 2.5, $(e_0 a)^2 = 0.5$, $K_w = 100$)

In Table 2, the effects of plate aspect ratio $(b_1 = a_1)$, side-to-thickness ratio $(a_1 = h)$ and nonlocal parameter $(e_o a)^2$ on the natural frequencies of simply supported nanoplates for differents theory (CPT) [47], FPT [47], TPT [47], and the present result are given. However, the $\bar{\omega}$ slightly decreases as the nonlocal parameter increases and plate aspect ratio decreases. It can be observed that the CPT [47] gives results higher than those obtained by the shear deformation plate theories, indicating to the shear deformation influence, It can be seen that the present result is in good agreement of (TPT) [47] and (FPT) [47]. Table 3 presents the natural frequency $\bar{\omega}$ of a local $((e_0a)^2 = 0)$ and nonlocal $((e_0a)^2 = 4)$ FGM square nanoplate without or resting on elastic foundations for different values of inhomogeneity parameter (p) compared with results of Sobhy [48]. It is found that the presence of elastic foundations has a significant effect on the results, where it leads to a considerable increase the natural frequency $\bar{\omega}$. On the other hand, with the change in the power law index (p) (inhomogeneity parameter), regardless of the elastic foundations, the natural frequency decreases as the parameter (p) increases. It is also noted that the frequency of the nonlocal theory is always smaller than of the local theory,

BC	Theory	p = 0			p = 0.5			p = 3.5		
		$a_1/h=5$	10	20	$\overline{a_1/h} = 5$	10	20	$\overline{a_1/h} = 5$	10	20
SSSS	СРТ	23.4127	25.5647	26.2437	22.1294	23.8087	24.3335	20.6560	21.9784	22.3511
	FPT	22.5135	25.1953	26.1382	21.6336	23.586	24.268	20.6107	21.9109	22.3286
	TPT	22.5154	25.1955	26.1383	21.6408	23.5896	24.2699	20.6058	21.8967	22.3234
	SPT	22.5170	25.1961	26.1384	21.6414	23.5899	24.2700	20.6055	21.8961	22.3233
	Present	22.5175	25.1966	26.1387	21.6421	23.5903	24.2704	20.6063	21.8985	22.3242
CCCC	CPT	35.4332	40.5240	42.1346	31.8754	35.5985	36.7431	26.8415	29.0091	29.4962
	FPT	31.5145	38.5305	41.5288	29.5333	34.3061	36.3471	26.5224	28.5334	29.3344
	TPT	31.5323	38.5335	41.5289	29.5688	34.3272	36.3535	26.4877	28.4395	29.2988
	SPT	31.5404	38.5367	41.5296	29.5734	34.3293	36.3541	26.4879	28.4346	29.2968
	Present	31.5362	38.5382	41.5305	29.5719	34.3302	36.3545	26.4897	28.4501	29.3031
CSCS	CPT	33.6932	39.3055	41.2451	30.5731	34.8803	36.3525	26.1989	29.1183	29.9864
	FPT	30.8245	37.8665	40.8078	28.9064	33.9631	36.0702	26.0256	28.8018	29.8755
	TPT	30.8355	37.8683	40.8080	28.9312	33.9780	36.0748	26.0096	28.7382	29.8506
	SPT	30.8413	37.8707	40.8086	28.9340	33.9793	36.0751	26.0105	28.7349	29.8495
	Present	30.8395	37.8721	40.8094	28.9340	33.9804	36.0758	26.0111	28.7454	29.8538
CCSS	CPT	30.3000	33.8613	34.9767	27.6628	30.2720	31.0697	24.1110	25.7423	26.1261
	FPT	27.5849	32.5896	34.5993	26.0522	29.4632	30.8275	23.8489	25.4562	26.0316
	TPT	27.5959	32.5914	34.5995	26.0770	29.4765	30.8316	23.8135	25.3989	26.0109
	SPT	27.6013	32.5934	34.6000	26.0798	29.4775	30.8320	23.8129	25.3961	26.0098
	Present	27.8250	32.7178	34.6392	26.2283	29.5577	30.8568	23.9008	25.4428	26.0252
CSSS	CPT	29.0866	32.8578	34.1010	26.7654	29.6467	30.5851	23.6985	25.7142	26.2858
	FPT	27.1384	31.9657	33.8378	25.6459	29.0884	30.4184	23.5671	25.5283	26.2229
	TPT	27.1445	31.9666	33.8378	25.6624	29.0974	30.4211	23.5530	25.4903	26.2087
	SPT	27.1483	31.9680	33.8382	25.6646	29.0982	30.4213	23.5526	25.4886	26.2080
	Present	27.1798	31.9851	33.8436	25.6855	29.1092	30.4248	23.5677	25.4996	26.2119
CCCS	CPT	34.4788	39.8300	41.6051	31.1555	35.1733	36.4821	26.4723	29.0293	29.7094
	FPT	31.0643	38.0983	41.0779	29.1361	34.0591	36.1394	26.2134	28.6303	29.5720
	TPT	31.0794	38.1011	41.0783	29.1662	34.0773	36.1451	26.1855	28.5511	29.5415
	SPT	31.0860	38.1037	41.0787	29.1701	34.0790	36.1454	26.1859	28.5472	29.5398
	Present	31.1673	38.1586	41.0972	29.2263	34.1148	36.1573	26.2164	28.5769	29.5508

Table 6 Effects of index parameter p and side-to-thickness ratio (a_1/h) on the free vibration $\bar{\omega}$ of functionally graded material square nanoplate

 $(e_0 a)^2 = 0.5, \ \alpha = 0.2, K_w = 100, K_p = 10, m = n = 1$

the present results are in good agreement with the solutions of Sobhy [48].

Table 4 presents dimensionless fundamental frequencies of FGM nanoplates with and without porosity parameter (α) for deferent value of nonlocal parameter (e_0a)² and volume fraction of material (p) for the various theories (CPT, FPT, TPT, SPT) compared with the present result. In general, the frequency results decrease as the increase of nonlocal parameter and volume fraction of material (p) values for with and without porosity for deferent theories. The present results are in good agreement with the solutions of (FPT), (TPT) and (SPT) theories.

Figures 3 and 4 show the variation of fundamental frequencies with the side-to-thickness ratio for square FGM nanoplate with and without porosity parameter (α) and volume fraction of material (p) for the various theories (CPT, FPT,TPT, SPT) compared with the present result, respectively. It can be observed that the CPT gives results higher than those obtained by the first shear plate theory (FPT), third plate theory (TPT) and sinusoidal plate theory (SPT) and the present results, but I note that the fundamental frequencies due to FPT, TPT, SPT, and present model increase with increasing the side-to-thickness ratio and decrease with increasing values of porosity volume index (α) and the present result is in good agreement with the solutions of the FPT, TPT and SPT.

In Fig. 5. The plate aspect ratio is taken as 1, and the side-to-thickness ratio is taken as 5, 10, 15, 25, 30, 35, 40, 45, 50; while the nonlocal parameter is considered as 0, 1, 3, 4, 5. Note that when $(e_0a)^2 = 0$, one obtains the results

Fig. 8 The effect of thickness ratio a_1/h on nondimensional fundamental frequency of various boundary square plate $(p = 2, (e_0a)^2 = 2, \alpha = 0.2, K_w = 100, K_p = 0$

Fig. 9 The effect of (*p*) and porosity volume index α on nondimensional fundamental frequency of (CCCC) square plate $((e_0a)^2 = 1.5, K_w = 100, K_p = 10)$

of local model for FGM nanoplates with and without porosity parameter (α) respectively. I note that the fundamental frequencies of the present result increases with increasing the side to-thickness ratio and decrease with increasing of the values of porosity volume index (α).

Table 5 present the effects of plate aspect ratio (b_1/a_1) , Effects of elastic foundation stiffness K_w , K_p and porosity volume index (α) on the fundamental frequency for the various boundary conditions (SSSS), (CCCC) and (CSCS) for FGM nanoplates for different theories are given. The CPT give result higher than those obtained by the FPT, TPT, SPT and the present results, The maximum difference between present theory and the CPT appears in the case of (CCCC) plate and (CSCS). The fundamental frequency decrease with increase porosity volume index. It can be seen that the present result is in good agreement with the solutions of the FPT, TPT and SPT.

Figures 6 and 7 reveals the variation of fundamental frequency of the side- to-thickness ratio (a_1/h) for various values of foundation parameters (K_w , K_p) for FGM nanoplates with and without porosity parameter (α). It is to be seen that the fundamental frequency increases with the increase of Winkler Pasternak elastic foundations (K_w , K_p).

Table 6 shows the variation of fundamental frequencies with the side-to-thickness ratio and volume fraction of material (*p*) for the various boundary conditions for porous FGM nanoplate are given, the various theories (CPT, FPT,TPT, SPT) compared with the present result respectively in Table 6. the CPT gives result higher than those obtained by the FPT, TPT, SPT and the present results. The maximum difference between present theory and the CPT appears in the case of (CCCC) plate and (CCCS). the fundamental frequency increase with increase volume fraction of material (*p*) and the side-to-thickness ratio (a_1/h) the same for Fig. 8. It can be seen that the present result is in good agreement with the solutions of the FPT, TPT and SPT.

Figure 9 shows the influence of porosities on natural frequencies of (CCCC) FGM nanoplate for various volume fractions of material (*p*). The numerical result based on HSPT in this figure reveals that the fundamental frequencies decrease as the porosity parameter (α) and volume fraction of material (*p*) increases.

4 Conclusion

Functionally graded materials are a new class of composite structures that are of great interest for engineering design and manufacture. In this study, a nonlocal elasticity model for free vibrations of FGMs nano plate on elastic medium with porosities was developed using exponential shear deformation plate theory. The model can be extended to the analysis of the vibrations of beams, plates, shells, solid, etc. The model allows the analysis of the small-size effects such as micro metric or nano metric effects. In the present model, the number of unknown functions was reduced to only two functions. The obtained results show that the frequency values decrease as of (p) values for every boundary condition increase. The frequencies of the plates increase dramatically within the range of spring constant factors around 100 to 10. Additionally, the porosity within functionally graded plates is one of the important aspects that lead to considerable changes in frequencies. The frequencies decrease as the porosity volume fraction increases for every value of the volume fraction index. Our results are in good agreements with those founded in the literature. For testing the fiability and the accuracy of the developed model, it is recommend to compare it with finite element model. This comparison will be done in future work of the authors.

References

- 1. Koizumi M (1993) The concept of FGM. Ceram Trans Funct Gradient Mater 34:3–10
- Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG (1999) Functionally graded materials: design, processing and application. Kluwer Academic Publishers, London
- 3. Magnucka-Blandzi E (2009) Dynamic stability of a metal foam circular plate. J Theor Appl Mech 47:421–433
- Magnucka-Blandzi E (2010) Non-linear analysis of dynamic stability of metal foam circular plate. J Theor Appl Mech 48(1):207–217
- Magnucka-Blandzi E (2008) Axi-symmetrical deflection and buckling of circular porous-cellular plate. Thin-Walled Struct 46(3):333–337
- 6. Belica T, Magnucki K (2006) Dynamic stability of a porous cylindrical shell. PAMM 6(1):207–208
- Belica T, Magnucki K (2013) Stability of a porous-cellular cylindrical shell subjected to combined loads. J Theor Appl Mech 51(4):927–936
- Wattanasakulpong N, Ungbhakor V (2014) Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Sci Technol 32:111–120
- Wattanasakulpong N, Prusty BG, Kelly DW, Hoffman M (2012) Free vibration analysis of layered functionally graded beams with experimental validation. Mater Des 36:182–190
- Ebrahimi F, Mokhtari M (2015) Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method. J Braz Soc Mech Sci Eng 37(4):1435–1444
- Winkler E (1867) Die Lehre von der Elasticitaet und Festigkeit, Teil 1,2. Dominicus, Prague, (As noted in L.Fryba, History of Wincler Foundation, Vehicle system dynamics supplement 24:7–12
- Pasternak PL (1954) On a new method of analysis of an elastic foundation by means of two foundation constants.Cosudarstrennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture. USSR, Moscow, pp 1–56
- Reissner E (1945) the effect of transverse shear deformation on the bending of elastic plates. Trans ASME J Appl Mech 12:69–77
- Mindlin RD (1951) Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. Trans ASME J Appl Mech 18:31–38
- Librescu L (1967) On the theory of anisotropic elastic shells and plates. Int J Solids Struct 3:53–68
- Levinson M (1980) An accurate simple theory of the static and dynamics of elastic plates. Mech Res Commun 7:343–350
- Bhimaraddi A, Stevens LK (1984) A higher order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates. Trans ASME J Appl Mech 51:195–198
- Reddy JN (1984) A simple higher-order theory for laminated composite plates. Trans ASME J Appl Mech 51:745–752
- Ren JG (1986) A new theory of laminated plate. Compos Sci Technol 26:225–239

- Kant T, Pandya BN (1988) A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates. Comp Struct 9:215–264
- Zenkour AM (2004) Analytical solution for bending of cross-ply laminated plates under thermo-mechanical loading. Comp Struct 65:367–379
- Shimpi RP (2002) Refined plate theory and its variants. AIAA J 40:137–146
- 23. Shimpi RP, Patel HG (2006) A two variable refined plate theory for orthotropic plate analysis. Int J Solids Struct 43:6783–6799
- 24. Shimpi RP, Patel HG (2006) Free vibrations of plate using two variable refined plate theory. J Sound Vib 296:979–999
- Kim SE, Thai HT, Lee J (2009) A two variable refined plate theory for laminated composite plates. Compos Struct 89:197–205
- 26. El Meiche N, Tounsi A, Ziane N, Mechab I, Adda Bedia EA (2011) A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int J Mech Sci 53:237–247
- 27. Mechab I, Ait Atmane H, Tounsi A, Belhadj HA, Adda Bedia EA (2010) A two variable refined plate theory for the bending analysis of functionally graded plates. Acta Mech Sin 26:941–949
- Mechab I, Mechab B, Benaissa S (2013) Static and dynamic analysis of functionally graded plates using Four-variable refined plate theory by the new function. Compos Part B 45:748–757
- 29. Thai Huu-Tai, Choi Dong-Ho (2013) Analytical solutions of refined plate theory for bending, buckling and vibration analyses of thick plates. Appl Math Model 37:8310–8323
- Thai H-T, Kim S-E (2012) Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory. Appl Math Model 36:3870–3882
- Kim SE, Thai HT, Lee J (2009) Buckling analysis of plates using the two variable refined plate theory. Thin Wall Struct 47:455–462
- 32. Thai HT, Kim SE (2010) free vibration of laminated composite plates using two variable refined plate theory. Int J Mech Sci 52:626–633
- Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710
- Eringen AC (2002) Nonlocal continuum field theories. Springer, New York
- Lu BP, Zhang PQ, Lee HP, Wang CM, Reddy JN (2007) Nonlocal elastic plate theories. Proc R Soc A 463:3225–3240
- Aghababaei R, Reddy JN (2009) Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J Sound Vib 326:277–289
- Lu P, Zhang PQ, Lee HP, Wang CM, Reddy JN (2007) Nonlocal elastic plate theories. Proc Roy Soc A Math Phys Eng Sci 463:3225–3240
- Satish N, Narendar S, Gopalakrishnan S (2012) Thermal vibration analysis of orthotropic nanoplates based on nonlocal continuum mechanics. Phys E Low Dimens Syst Nanostruct 44:1950–1962
- Narendar S, Gopalakrishnan S (2012) Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech 223:395–413
- Nami MR, Janghorban M (2015) Free vibration analysis of rectangular nanoplates based on two-variable refined plate theory using a new strain gradient elasticity theory. J Braz Soc Mech Sci Eng 37(1):313–324
- Navazi HM, Haddadpour H, Rasekh M (2006) An analytical solution for nonlinear cylindrical bending of functionally graded plates. Thin Walled Struct 44:1129–1137
- Wakashima K, Hirano T, Niino M (1990) Space applications of advanced structural materials. ESA SP 330:97

- Touratier M (1991) An efficient standard plate theory. Int J Eng Sci 29(8):901–916
- 44. Zenkour AM, Sobhy M (2013) Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler-Pasternak elastic substrate medium. Phys E 53:251–259
- 45. Sobhy M (2013) Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos Struct 99:76–87
- Shen HS, Chen Y, Yang J (2003) Bending and vibration characteristics of a strengthened plate under various boundary conditions. Eng Struct 25:1157–1168
- Alibeigloo A, Pasha Zanoosi AA (2013) Static analysis of rectangular nano-plate using three-dimensional theory of elasticity. Appl Math Model 37:7016–7026
- Sobhy M (2015) A comprehensive study on FGM nanoplates embedded in an elastic medium. Compo Struct. doi:10.1016/j. compstruct.2015.08.102