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of the fraction of particles following Fick’s law is derived. 
A notion of entropy related to the particular energy states 
is introduced. Selected examples are presented showing the 
concentration profile evolution for different rates of energy 
transfer.

Keywords Anomalous diffusion · Bi-flux · Time-
dependent parameters · Fourth order PDE · Energy states

1 Introduction

The purpose of this paper is to extend the analytical formu-
lation of a new diffusion process [1–3] introducing time-
dependent parameters. The motivation leading to intro-
ducing the new process comes from the formulation of a 
population dynamics model. Actually if we try to model the 
invasion process of a given species intended to conquer and 
occupy some territory it is advisable to consider two dis-
tinct motions with different velocities, namely the soldiers 
and the colonizers. Clearly, soldiers move faster than col-
onizers. The governing equation obtained to describe this 
peculiar population dynamic problem is interesting enough 
to be extended to the field of complex physical phenomena. 
The new equation, however, for the correct interpretation 
of the added terms, requires the presence of a flux potential 
that, as far as we know, has not yet been considered in the 
current literature.

The new potential induces the formation of a secondary 
flux that is function of the curvature variation of the con-
centration as explained in previous papers. The second-
ary flux requires the introduction of two new parameters, 
the concentration fraction incorporated in this new flux 
(1 − β) and a new diffusion coefficient R controlling the 
mass transfer time rate associated to the secondary flux. It 
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is interesting to notice that the secondary flux may delay 
or accelerate the diffusion process depending on the values 
of the new parameters introduced in the governing equation 
and the initial and boundary conditions as well. The com-
bination of the new coefficients β and R, for a given diffu-
sion coefficient D provide a very large spectrum of possible 
behaviors allowing for the simulation of several process 
without introduction of unnecessary non-linearity.

Several types of anomalous diffusion processes have 
been extensively reported that could possibly be analyzed 
using the present approach. Delayed diffusion, to give an 
example, has been observed in a large number of experi-
ments [4, 5]. The governing equations used to solve this 
class of problems are, however, the classical diffusion equa-
tion with source/sink terms to adjust experimental results 
to the analytical formulation. Integro-differential equations 
have also been used particularly for reaction diffusion pro-
cesses with time delay [6]. Other approaches make use of 
nonlinear diffusion coefficients to help the interpretation of 
experimental results. Recent experimental and theoretical 
works in the fields of plasma physics [7, 8] superconduc-
tors [9] and the efflux mechanism of cholesterol via aque-
ous diffusion [10, 11] show clearly that the classical diffu-
sion equation doesn’t represent satisfactorily the physics of 
the phenomena. However, the time variation characteristics 
reported for these three last cases suggest that the theory 
presented here may be of some help. It may be particularly 
helpful in biological phenomena due to energy exchanges 
coming from the biochemical reactions occurring simulta-
neously with the diffusion process. Osmotic processes [12] 
and flow in porous media [13] are other examples where 
anomalous diffusion can be found.

In this paper, we will extend the theory to the case where 
a key parameter, namely β, that defines the volumes of the 
two sets moving with distinct velocities, is function of time. 
We may consider this behavior as an evolutionary process. 
The influence of anisotropy introducing a perturbation on 
the secondary flux will also be presented.

2  The basics of the diffusion model

Consider a discrete model consisting of a row of cells such 
that each cell can communicate with the neighboring ones. 
Let the contents of each cell be partly redistributed to the 

adjacent cells in equal portions and partly retained in the 
cell at each time step. Figure 1 represents the distribution 
process for a characteristic time step Δt. The fundamental 
idea is therefore to assume that the contents of a cell n at a 
time t changes at each time interval Δt such that a fraction 
β is equally redistributed to the right, n + 1, and left, n − 1, 
neighboring cells while the remaining portion stays tem-
porarily confined in the same cell n. The set of equations 
derived with the help of the discrete approach representing 
this distribution law reads:

where 0 ≤ β ≤ 1. Clearly with β = 1 the above equations 
represent the discrete formulation scheme leading to the 
well-known second order classical diffusion equation. But 
with β �= 1 a new equation is obtained. After the proper 
operations and assuming the continuity requirements for 
the function q(x, t) we get [2, 3]:

The fourth order term with negative sign introduces the 
effect of retention. The coefficients D and R are general-
ized constants. It is important to keep the parameters β and 
β(1 − β) explicitly in the equation because they are con-
trol parameters expressing the balance between diffusion 
and retention when both are activated simultaneously. The 
retention effect reaches its maximum effect for β = 0.5. 
Clearly, retention cannot be activated without diffusion, 
that is, while diffusion can take place without retention, the 
complementary process, that is, retention without diffusion 
is not possible.

According to the derivation above the effect of tempo-
rary retention cannot be consistently modeled without the 
presence of the fourth order differential term. It is also 
remarkable that the discrete approach shows that non-linear 
terms are not required to represent temporary retention for 
the case of homogeneous isotropic media. This means, as 
it should be expected, that temporary retention belongs to 
the class of primary phenomena and, in general, is not a 
secondary perturbation on the diffusion process as usually 
assumed for modeling anomalous diffusion.

Note that we are defining temporary retention and not 
sinks that would subtract a fraction of particles definitively 
from the system.

Equation (1) shows clearly the existence of two differ-
ent diffusion processes. The variable q(x, t) represents the 
mass concentration and it is not difficult to see that two 
distinct velocity potentials come into play one of them 
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Fig. 1  Contents redistribution scheme for a generalized cell n
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corresponding to the second order differential term and 
the other one corresponding to the fourth order differential 
term. Particles belonging to the fraction β follow the clas-
sical Fick’s law, it is the primary flux that will be called Ψ1 
and particles belonging to the fraction (1 − β) follow a new 
law, it is the secondary flux that will be called Ψ2. Note 
that throughout this paper the fraction β will be considered 
independent of x. Considering Eq. (1) and anticipating the 
mathematical structure of the integrand in the mass conser-
vation principle it is not difficult to see that the fluxes are 
given respectively by:

Indeed if we assume these two laws for the flux rates 
corresponding, Ψ1 to the fraction of particles β diffusing 
according to Fick’s law and Ψ2 ruling the complementary 
fraction (1 − β) the mass conservation principle gives:

This leads immediately to:

D and R are respectively the diffusion and reactivity 
coefficients that can be functions of x and t. The physi-
cal meaning of the primary flux is well known, namely, 
the particle concentration distribution tends to smooth out 
along the space variable. The particles move from higher 
concentration regions toward lower concentration regions. 
The secondary flux is concerned with the curvature varia-
tion of the concentration distribution. Recall that the cur-
vature of the function q(x, t) is proportional to the second 
derivative 

(

∂2q
/

∂x2
)

 of the concentration. Therefore, the 
secondary flux grows with the increase in the curvature.

Figure 2 shows two possible configurations of the con-
centration function. The secondary flux is always oriented 

�1 = −D
∂q(x, t)

∂x
e1

�2 = Rβ
∂3q(x, t)

∂x3
e1

∫

V

q(x, t +�t)− q(x, t)

�t
ds+

∫

∂V

[

β�1 + (1− β)�2

]

· e1 ds = 0

(2)

∂q(x, t)

∂t
= ∂

∂x

[

βD
∂p(x, t)

∂x

]

− ∂

∂x

[

β(1− β)R
∂3p(x, t)

∂x3

]

in the direction of increasing curvature of the concentration 
profile. Since increasing curvature means local accumula-
tion, the secondary flux may be interpreted as a process that 
favors local concentration. It is also remarkable that the 
intensity of the secondary flux increases linearly with the 
fraction β of particles belonging to the primary flux. There-
fore, the fraction β is a control parameter for the intensity 
of the secondary flux.

In this paper, we will consider diffusion in an isotropic 
medium, therefore D and R constants, but the fraction β 
may vary in time. That is, we are considering a dynamical 
process where particles may move from the set defined by 
β to the set defined by (1 − β) and vice versa.

In previous papers [2, 3] we have introduced the bi-flux 
hypothesis for isotropic media with time independent coef-
ficients. It was shown that the bi-flux assumption might be 
correlated with two set of particles scattering in two differ-
ent energy states for β constant.

Let us now consider a particular system to illustrate the 
behavior of the concentration variation where all parame-
ters (β, D, R) are constant, the domain of definition is given 
by x ≥ 0 and t ≥ 0. The initial condition reads:

and the boundary conditions are given by:

and as x → ∞ the function an all the derivatives vanish. 
Under these assumptions the solution of Eq. (1) reads:

where ρ = β(1− (1− β)r) and r = Rk2/D.
 The primary flux and the secondary flux are:

Equation (3) is the function of the concentration varia-
tion with space and time. The time variation is controlled 
by the parameter ρ. For positive values of ρ, the density 

q(x, 0) = q0 exp (−kx)

∂p
/

∂x
∣

∣

x=0
= −kq0e

Dk2ρt
and ∂3p

/

∂x3
∣

∣

∣

x=0
= −q0k

3
e
Dk2ρt

(3)q(x, t) = q0 exp
(

−kx + Dk2ρt
)

�1 = −q0k exp
(

−kx + Dk2ρt
)

and �2 = −βq0k
3 exp

(

−kx + Dk2ρt
)

Fig. 2  Direction of the second-
ary flux as function of the 
curvature variation. Secondary 
and primary fluxes may be in 
the same direction or opposite 
to each other
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grows with time for all x. If ρ is negative, the concentration 
decreases and tends to zero as t → ∞ (Fig. 3).The param-
eter ρ is a function of β. For β = 1 we have ρ = 1 and 
the solution reproduces the classical result, the concentra-
tion increases at a rate Dk2. If β = 0 there is no diffusion, 
the system is stationary. Now if 0 < β < 1 the roots of ρ 
are β1 = 0 and β2 = 1 − 1/r. Now if r < 1 the root β2 is 
negative and in the interval 0 < β < 1 the values of ρ will 
be positive as shown in the Fig. 4. This means that the con-
centration will increase steadily although at a lower rate as 
compared with the classical diffusion, that is ρ < Dk2. This 
is due to the secondary flux that in this case has the oppo-
site direction of the primary flux, removing particles from 
the system. Nevertheless the evolution in time is character-
ized as a densification process. Now if r > 1 there is a root 
in the interval (0, 1) and for β < (1 − 1/r) we have ρ < 0. 
This means that we have a rarefaction process, that is, the 
particles removed from the process due to the secondary 
flux exceed the number of particles injected by the primary 
flux. The concentration decrease to zero as t → ∞. Particu-
larly for β = 1 − 1/r the process is stationary correspond-
ing to a stagnation point. Figure 4 shows the variation of 
ρ/Dk2 with β for some values of r.

Finally for r = 1 the curve ρ/Dk2 is tangent to the hor-
izontal axis. It is a limiting curve or a separatrix. All the 
curves above this separatrix correspond to densification 
processes. Curves below the separatrix cross the horizon-
tal axis ρ/Dk2 = 0 at β = βstag and enter a region where 
rarefaction prevails. That is ρ/Dk2 < 0 for β < βstag, where 
βstag = (1 − 1/r).

3  The bi‑flux process under two excitation states

Let us explain first what we understand by excitation state. 
Consider a particle moving with linear velocity v and rotat-
ing with angular velocity ω. The linear momentum p and 
the angular momentum L are given respectively by p = mv 
and L = md̄2ω where m is the mass of the particle and d̄ 
is the effective gyration radius. Let us call active energy 
or translational energy the kinetic energy associated to the 
linear momentum. That is if p is the linear momentum of 
a given particle P, its active energy is ep = p2

/

2m where 
m is the mass of the particle. The rotational energy eω cor-
responds to the kinetic energy generated by the angular 
momentum L, that is eω = L2

/

2md̄2. Any particle may 
be moving with linear momentum p and angular momen-
tum L, the total energy e however remains constant, 
e = ep + eω = constant. We will consider that energy con-
servation is true for all particles under consideration, that 
is, the system is conservative.

Now suppose that we have a system consisting of N 
particles where the particles are divided into two sub-
sets, N1 = βN and N2 = (1 − β)N. The energy den-
sity or specific energy (energy/volume) correspond-
ing to N1 and N2 are respectively, E1 = β�2

1

/

2q and 
E2 = (1− β)

(

�
2
2

/

2q + Eω(β)
)

. Therefore, we assume 
that all particles excited in the state E1 do not rotate, all 
kinetic energy is stored as active energy, while the kinetic 
energy corresponding to the state E2 is stored as active 
energy and rotational energy Eω(β) as well. Note that since 
the system is conservative we have E = E1 + E2 → con-
stant. We may consider the rotational energy as a hidden 
form of energy and the parameter (1 − β) as the probability 
of occurrence of rotational energy. Indeed for pure Fickian 
processes (1 − β) = 0 there is no rotational energy in the 
system, Eω(1) = 0, and for (1 − β) = 1 all energy is stored 
as rotational energy Eω(0) = E. Let us call Eω(0) = E∗

ω. 
Recall that if β = 0 then Ψ2 = 0. The contribution of the 
rotational energy of all particles to E2 is wrapped up in the 
energy density term Eω(β).

Suppose now that we are dealing with a dynamic sys-
tem, that is, there is a continuous internal energy exchange 
in the system E1 ↔ E2. The energy distribution is clearly 
controlled by the parameter β. Therefore, to perform the 
analysis of a dynamical diffusion process as exposed above 

Ψ1

Ψ2

t=t2 

q(x,t) 

x 

Fig. 3  Solution of the concentration distribution for q(x, 
t) = q0exp(−kx + Dk2ρt) with ρ > 0. Mass is added to the system

Fig. 4  Variation of the concentration parameter ρ/Dk2 with the dif-
fusing fraction β for different values of r. Points on the horizontal 
axis correspond to stagnation, points above and below the horizontal 
axis correspond to densification and rarefaction respectively
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in an isotropic medium it suffices to assume the fraction 
β(t) varying in time and the diffusing particles distrib-
uted between two time-dependent energy states. Note that 
Eq. (1) still holds for β = β(t).

As suggested above, in diffusion processes particles 
collide continuously exchanging linear momentum and 
angular momentum. In principle, at each collision, active 
energy may be converted into rotational energy and the 
other way around. In our particular universe, we will con-
sider two distinct and opposite phase states. The phase state 
S1 is such that active energy is always converted into rota-
tional energy while in the phase state S2 rotational energy 
is always converted into active energy. Let us introduce the 
following rules that apply in our particular universe.

1. In an isolated system the total kinetic energy remains 
constant, therefore, E1 + E2 = β�2

1

/

2q + (1− β)
(

�
2
2

/

2q + Eω(β)
)

= constant for all t.
2. In an isolated system subjected to the phase state S1 

the rotational energy increases and the active energy 
decreases continuously. Therefore, in an isolated sys-
tem S1 lim

t→∞
E1 → 0 and lim

t→∞
E2 → lim

t→∞
Eω(β). This 

means that β = β(t) is a function of time and β(t) → 0 
as t → ∞.

3. In an isolated system subjected to the phase state S2 
the active energy increases and the rotational energy 
decreases continuously. Therefore, in an isolated sys-
tem S2 lim

t→∞
E1 → E and lim

t→∞
Eω(β) → 0. This 

means that β = β(t) is a function of time and β(t) → 1 
as t → ∞.

According to the hypothesis introduced above, a com-
plex diffusion process consisting of a very large number of 
micro-states is reduced to two fundamental non-stationary 
states governed by a primary volumetric flow rate Ψ1 and a 
secondary volumetric flow rate Ψ2 that represent the overall 
average of micro-states (see “Appendix”). If the system is 
in the phase state S1 as time increases it tends to the station-
ary state Eω. For a system in the phase state S2, all particles 
will be excited in the energy state E1 after a sufficient long 
time. Now as β = β(t) is function of time, as time varies the 
parameter 0 < β < 1 covers the whole energy distribution 
spectrum for both cases.

4  The energy transfer principle

4.1  Isolated system in the phase state S1

Consider a one-dimensional problem defined in some 
interval x ∈ [a, b]. Let us assume that the distribution of 
particles in states E1 and E2 is independent of x but may 

vary in time. The system is isolated and according to the 
model exposed in the previous section the system tends to 
rest meaning that the total active energy tends to zero as 
t → ∞. Since the system is isotropic, the linear momen-
tum tends uniformly to zero for all x as t → ∞, that is 
lim
t→∞

p(x, t) → 0. Consequently lim
t→∞

β(x, t) → 0. Under 
these conditions, let us find an expression for the decay of 
the fraction β as function of time. Clearly the probability of 
interaction among particles is proportional to β inducing a 
reduction of particles in state E1. That is, the variation δβ is 
proportional to β. This means that the change of the exci-
tation state, active energy into rotational energy (p → L), 
is more intense when the number of particles in state E1 is 
large β ≫ 0.

Besides the probability of interaction among particles 
the rate of the variation δβ depends on the energy contained 
in the state E1 or alternatively on complementary state E2. 
Let T(t) be the variable that measures the active energy con-
tained in the state E1. It might be an indirect measure of the 
linear momentum of the particles in the system. Since the 
system is isolated and the total energy is constant, T(t) is 
also an indirect measure of the rotational energy. Let Eω(T) 
represent the rotational energy. Clearly Eω(T) is decreasing 
functions of T (Fig. 5).

At very large energy levels T ≫ 0 the rate of variation 
of the rotational energy Eω(T) with respect to the energy 
parameter T is low. But for T small big variations of the 
angular momentum occurs for relatively low decrease 
of the energy parameter T. Therefore, it is reasonable to 
assume as a first approximation:

The variation δβ depends therefore on two determinant 
parameters:

1. The fraction of particles in the state Eω given by β.

(4)Eω(T) = F

(

T0

T

)

Eω(T)

T

Fig. 5  Variation of the rotational energy with the parameter T
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2. The variation of the rotational energy given by 
−δ(Eω(T)). The negative sign meaning that β decreases 
as Eω increases.

With the hypotheses above, it is possible to define the 
variation of β:

Now with Eq. (4) we may write:

Introducing the expression above in the equation for δβ we 
get:

After integration:

where Fu = dF
/

du. Now define:

The function Sω may be understood as the entropy referring 
to the present theory applied to isolated systems. Introduc-
ing this expression in (5) we get:

With:

We finally obtain:

Assuming now the simplest expression for the energy 
Eω(T), that is, according to (4) Eω(T) = K1(T0/T), Fu = K1 
and with (5) it is readily obtained:

That after integration gives the general expression:

Therefore, Sω = −S0 ln β or Sω = S0 ln
(

N1

/

N
)

. We will 
call the variable Sω as ω-entropy. It is a measure of the 
relative organization of particles in two states S1 and S2. 

δβ = β
(−δEω)

K0
whereK0 is a given energy parameter

δEω = − T0

T2

dF

du
δT where u = T0/T

δβ = β
1

K0

T0

T2

dF

du
δ(T)

(5)β = exp

(
∫

(

T0

K0

1

T
Fu

)

1

T

∂T

∂t
dt

)

Sω = 1

T
Fu

β = exp

(

T0

K0

∫

Sω
∂

∂t
ln Tdt

)

∂

∂t
ln T = g(Sω) and

K0

T0
= S0

β = exp

(
∫

Sω

S0
g(Sω)dt

)

(6-a)β = exp

(

− 1

S0

∫

∂Sω

∂t
dt

)

(6-b)β = exp

[

−Sω(t)

S0

]

Sω indicates the equivalent number of particles excited in 
a pure rotational energy state or likewise at rest, mean-
ing xi = constant (i = 1,2,3), in a given inertial frame. 
That is, as Sω → ∞ or similarly β → 0 the relative dis-
tances among all particles tend to remain fixed and the 
system approaches a stationary state. If it would be only 
possible to measure the active energy, then for very large 
values of Sω an external observer would conclude that 
the system is inactive or “dead”. Maybe only the mass 
could be detected and the rotational energy stored in 
the system would be hidden, it would be a kind of “dark 
energy”.

Since the active energy for this system is a decreas-
ing function of time and the variation rate of change is 
inversely proportional to the active energy level it is reason-
able to admit that ∂Sω/∂t = U0t where U0 is a constant of 
the system. From which follows Sω = U0t

2/2, and finally:

4.2  Isolated system in the phase state S2

This system, sustained by the phase state S2 has the oppo-
site property of the previous one, that is, the collision 
between two particles always transforms angular momen-
tum into linear momentum but not the other way around. 
This means that ultimately the initial rotational energy will 
be totally converted into active energy. Suppose that ini-
tially the total energy in the system is stored under the form 
of rotational energy E∗

ω.That is, the fraction β increases 
gradually from β(0) = 0 up to β(t*) = 1 which is the maxi-
mum possible value. We want to analyze the behavior of 
the phase change up to t = t*.

The evolution of the fraction β, with a first approxi-
mation for the energy function, is given by the expres-
sion (6-a) derived before with the exponent multiplied by 
−1. Indeed we have now Sω(0) > Sω(t) for all t > 0 and 
consequently δβ = β(δEω) which explains the change in 
sign. Now the simplest approximation for the variation of 
the ω-entropy coherent with the variation for S1 is given 
by ∂Sω/∂t = −Û0t

−3. Note that now the ω-entropy is a 
decreasing function of time given by Sω = Û0t

−2/2. There-
fore, we may write from (6-b):

Note that under the above assumptions t* → ∞.
This case, the S2 phase state, is more complex than 

the first one S1. The transfer of rotational energy to active 
energy is not so easy and would require an external poten-
tial field to initiate and probably to sustain the process. 
Therefore, the present approach is only a first approxima-
tion. Note that the phase S1 is related to extinction while S2 

β = exp
(

−t2/τ 20

)

where U0/2S0 = 1/τ 20 .

β = exp
(

−τ 20 /t
2
)

where Û0/2S0 = τ 20 .
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is related to creation which is always more difficult to be 
analyzed and simulated.

5  Selected examples

Consider the bi-flux diffusion process defined on the inter-
val [−1, 1] for an isotropic supporting medium. If the frac-
tion β is function of time the governing equation is:

Assume that the primary and secondary fluxes vanish at 
the boundaries, x = 1 and x = −1. The boundary condi-
tions therefore read:

Let the initial condition be:

∂q

∂x
= β(t)D

∂2q

∂x2
− (1− β(t))β(t)R

∂4q

∂x4

∂q

∂x

∣

∣

∣

∣

x=±1

= 0 and
∂3q

∂x3

∣

∣

∣

∣

x=±1

= 0

Suppose that initially, t = 0, the system is subjected to a 
pure Fickian process, that is, only the primary flux exists. 
Since there is no energy exchange with the surroundings, 
according to our hypothesis, the primary flux will decrease 
and the secondary flux will increase as time increases. 
Energy is continuously transferred from the primary flux 
to the secondary flux. Now for an isolated system starting 
with a full Fickian diffusion regime, that is β(0) = 1 Eq. (6-
a) prevails, that is:

The diffusion and reactivity coefficients are taken D = 0.1 
and R = 0.008 respectively. Figure 6 shows the concen-
tration profile for different values of the parameter τ0. For 
values relatively high, τ0 = 1/

√
2 the freezing process is 

low and stabilizes close to the uniform solution, that is, 
q(x, t)
lim t→∞

= const. Note that both fluxes are blocked at the 

q(x, 0) = 0.25(1+ cos (πx)) − 1 ≤ x ≤ 1

β = exp (−t/τ0)
2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

q(
x,

t)

D=0.1, R=0.008,beta=exp(-2t2)

t=100dt
t=1000dt
t=7000dt

(1/τ )2=2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

q(
x,

t)

D=0.1, R=0.008,beta=1

t=100dt
t=1000dt
t=7000dt

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

q(
x,

t)

D=0.1, R=0.008,beta=exp(-10t2)

t=100dt
t=1000dt
t=7000dt

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

q(
x,

t)

D=0.1, R=0.008,beta=exp(-100t2)

t=100dt
t=1000dt
t=7000dt

(1/τ0)
2
=0

(1/τ0)
2
=10 (1/τ0)

2
=100

(1/τ0)
2
=2

Fig. 6  Evolution of the concentration profile in an isolated system. Energy is being transferred from S1 to S2 at different rates 1/τ0. For 1/τ0 = 0, 
β = 1, Fickian diffusion
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ends x =+1 and x = −1 and the diffusion process imposes 
q(x, t) constant as t → ∞. As the value of τ0 decreases, 
the freezing progression is quicker. For τ0 = 0, 1 there is 
almost no time to initiate the diffusion process and the den-
sity distribution after a sufficient long time is almost the 
same as the initial conditions. Figure 7 shows the time vari-
ation of the concentration at x = 0. For values of τ0 < 0.1, 
the steady state is reached very quickly and the final con-
centration distribution remain close to the initial condition. 
Since β goes to zero as time increases in all the cases, the 
primary flux will vanish and the concentration profile q(x, 
t) will freeze for very large t. It is interesting to observe that 
the gradient of the concentration alone is not determinant to 
trigger the diffusion process, it is also necessary the pres-
ence of particles in state E1. If the system has attained the 
limiting state E2 = E∗

ω, than there is no flow irrespective of 
the concentration profile. 

Now consider the second case where the system belongs 
to the phase state S2 initially free of active energy but sub-
jected to a continuous influx of active energy at the expense 
of rotational energy. Let the boundary conditions be the 
same as before and take the following initial condition:

Initially the system is inactive; there is no flux at all, nei-
ther primary nor secondary. Now, since rotational energy 
is being continuously transformed into active energy the 
fraction β will steadily increase. The law governing this 
behavior is given by β = exp

(

−τ 20 /t
2
)

 as explained before. 
Figure 8 shows the evolution of the bi-flux process for dif-
ferent values of τ0. For very low energy transfer rates, τ0 
large, the system tends to equilibrium very slowly. For low 
values of τ0, the system behaves almost like a pure Fickian 
process. Note that since there is no flow at the boundaries 
the system tends to the steady state with the concentration 
q(x, t) constant along the domain [−1, 1]. The variation of 

q(x, 0) = 0.25(2− cos (πx))

the concentration with time, q(0, t), at x = 0, for various 
values of τ0 is shown in Fig. 9. Here the fraction β of parti-
cles belonging to the Fickian diffusion increases steadily in 
time. Therefore, eventually the final concentration profile 
will coincide with the expected profile for a Fickian pro-
cess that is a uniform distribution on the region −1 < x < 1. 
The evolution of q(0, t) shown in the Fig. 9 shows clearly 
this tendency.

The influence of anisotropy in the secondary flow may 
be examined taking R as a function of x. Consider the prob-
lem defined above where the Fick’s diffusion decays expo-
nentially at a rate exp(−2/t2) as shown in Fig. 6. Let R be 
defined as follows:

Now since the reactivity coefficient is function of x the 
Eq. (2) prevails. Solving this equation the solution shown 
in the Fig. 10 shows the disturbance in the solution intro-
duced by this type of anisotropy. High values of the reac-
tivity coefficient for the interval 0 ≤ x ≤ 1 tends to accel-
erate the diffusion process. The concentration distribution 
is displaced to the right showing a clearly asymmetric dis-
persal on the x axis. For this case, the reactivity coefficient 
induces a preference of the flux towards the right. For liv-
ing organisms, this could represent better competitive con-
ditions on the right side of the domain. It is also interesting 
to note that the variation of R(x) speeds up the concentra-
tion evolution q(x, t) for x > 0 also indicating the preference 
for this interval of the domain. The steady state as t → ∞ 
tends to an asymmetric distribution with preference for the 
right.

6  A Gedankenexperiment

Although there is not yet a concrete experiment to test the 
theory, there are situations where the bi-flux theory is the 
best model. Indeed, suppose a group of bikers initially 
gathered on a relatively small region of a straight road. The 
bikers and the respective bikes are all similar. The bikes 
carry an inertia wheel or more precisely a flywheel assem-
bled on the rear axle. The bikers may couple or uncouple 
the flywheel to the rear wheel through a device connected 
to the handlebar. The flywheel is initially at rest and dis-
connected from the rear wheel. Therefore, all the energy 
expended by the bikers is used to gain linear momentum.

Now let us assume that the natural tendency of the bik-
ers is to avoid clustering. Therefore, they will disperse 
traveling from places with high bikers concentration to 
places with low bikers concentration. Then it is acceptable 
to introduce for this behavior the same law governing the 
ordinary diffusion processes. It is assumed that the track is 

For − 1 ≤ x ≤ 0 R(x) = 0.008

For 0 ≤ x ≤ 1 R(x) = 0.008+ 80x
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uniform along all the trajectory traveled by the bikers and 
that all bikers react similarly when exposed to the same cir-
cumstances. This is to say that the diffusion coefficient is 
constant for the dispersion process.

Now suppose that at some given time, a fraction (1 − β) 
of the total number of bikers receive a signal requiring that 
they delay the scattering process. Subsequently they cou-
ple the flywheel to the rear wheel while keeping pedaling 
the bikes with the same energy. Clearly, a fraction of that 
energy will be transferred to activate the flywheel angular 
momentum that is now integrated to the system. Conse-
quently, the linear momentum will decrease and the flux 
rate as well.

This second group certainly moves according to a new 
law. The bikers concentration cannot be precisely deter-
mined by the classical diffusion model anymore.

Generalizing the diffusion equation and introducing new 
physical constants, as the diffusion coefficient D(x, t, αi) as 
function of space or time, or both, would lack of scientific 
consistency. Indeed, despite the fact that the parameters 
αi could be determined by comparing analytical results 
with experiments, this procedure is nevertheless artificial. 
Adjusting experimental results to analytical results is not 
a warranty that the theory describes correctly the physical 
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phenomenon. If this kind of solution were to be applied to 
this case, the best that we could expect would be a mean 
value for the bikers concentration. The real phenomenon 
would be lost and the diffusion coefficient would not be 
a physical constant but a parameter adjusted to a specific 
case. The bi-flux process cannot be simulated with a sec-
ond order PDE. Therefore, to solve this problem the bi-flux 
approach is the more adequate. The fourth order equation is 
a better approximation to model the real physical phenom-
enon. It introduces a new variable, namely the distribution 
parameter β that determines the fraction of particles scat-
tering according to the Fick’s law. Now, it is not impossible 
that the diffusion coefficient, even if independent of x and 
t, may, in some particular cases, be a function of the con-
centration β. This is another advantage of the new approach 
that allows for the variation of the diffusion coefficient with 
the fraction of particles scattering according to the Fick’s 
law.

To the best of our knowledge, the theory presented here 
is new and therefore there are no related experimental 
results. Population dynamics and capital flow are two types 
of phenomenon that call for a bi-flux theory. However, 
experiments and parameter identification that would help to 
validate the models are still missing.

There are other theories that introduce a fourth term in 
the diffusion process. These theories assume a second order 
approximation for the diffusion coefficient that leads to a 
nonlinear fourth order PDE [14]. The expanded governing 
equation for these cases refines the results of the classical 
theory, however, the assumption of a single flow process 
is preserved. In the theory proposed here, the fourth order 
equation is not associated to second order effects. It repre-
sents a parallel behavior comparable to the main diffusion 
process.

7  Conclusion

It was shown that the more realistic dynamical behav-
ior of particles scattering in a substrate comprising the 
contribution of both, the linear momentum and angu-
lar momentum, to the kinetic energy can be taken into 
account. The variation of the rotational energy contribu-
tion is obtained indirectly through the variation of the 
translational kinetic energy given by the secondary flux 
Ψ2. It is remarkable that the introduction of the rotational 
energy in the dynamics of the particles requires the intro-
duction of the secondary flux Ψ2 and therefore the intro-
duction of the fourth order equation to model the diffu-
sion phenomenon.

Since for real systems the translational and rotational 
energies are function of time it is necessary to introduce the 
variable β as function of time as well. As shown in the pre-
ceding sections the theory uses the fundamental kinematical 
principles of mechanics in a particular “universe” in order 
to derive a consistent time variation for the fraction β. The 
solution leads to the introduction of the variable Sω which 
is entropy equivalent in the new “universe” that tends spon-
taneously to a peculiar energy state, with increasing val-
ues of Sω, provided that it is isolated from external energy 
sources. We believe that the reasoning leading to this new 
variable Sω, despite the fact that the limiting states may be 
ideal states, helps to better understand the notion of entropy 
of the classical thermodynamics. Consider for instance an 
isolated system, if for t = 0 the rotational energy vanishes 
then β = 1, the ω-entropy is ln(1) = 0 and the translational 
or active energy is at the maximum level. As time increases 
the system goes through all possible combinations of 
micro-states and the entropy increases without limit as β 
tends to zero. The maximum entropy corresponds to the 
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state where all kinetic energy is stored as rotational energy 
and translational energy vanishes. Therefore, the maxi-
mum ω-entropy corresponds to a state where the distances 
among all particles remain constant reaching a freezing 
configuration. This state is consistent with the classical 
thermodynamics assumption of absolute zero temperature. 
The universe “stands still” in some inertial reference frame. 
Now suppose that the observable fraction of kinetic energy 
is only the energy associated to the linear momentum, then 
the “stationary” universe in the state E∗

ω is invisible and 
the energy stored in this state is a kind of “dark energy”, 
it is non-observable. Maybe the better interpretation of the 
ω-entropy is a state where translational energy is irrecover-
able or rotational energy is irreversible. Another interesting 
observation is that the state E∗

ω may be reached with a non-
uniform concentration profile, than it is possible to have 
∂q/∂x ≠ 0 and no motion. This means that the rotational 
energy somehow cancels the potential energy required to 
induce the Fickian flux.

Another essential contribution of this theory is the intro-
duction of active behavior of the particles. Changing of 
states may be only possible if particles interact or if they 
may change state due to some internal property. Therefore, 
this new approach is a better model for biological systems 
and energized particles diffusing in a particular energy 
field.

The abnormal diffusion of enzymes reported recently 
indicates that the perturbation is due the thermal energy 
released from a particular reaction taking place in the 
enzyme itself [15]. The new observed behavior is mod-
eled with the classical second order theory where the dif-
fusion coefficient is considered as a particular function of 
the reaction rate. It is expected to obtain the net diffusion 
coefficient as the authors correctly sustain. Assuming the 
classical solution an adjusted diffusion coefficient is deter-
mined using experimental observations. The new coeffi-
cient is proposed as D = D0 + αV. Again, despite the fact 
that the experiments reported in the paper are conducted 
under extremely care, the coefficients determined experi-
mentally may not reflect the real physicochemical behav-
ior. The net value of the diffusion coefficient could be the 
mean value obtained from the two distinct fluxes, primary 
and subsidiary.

Maybe the theory introduced here could be of some help 
provided that the chemical reaction modifying the diffusion 
process is progressive in time, that is, the reaction is not 
triggered simultaneously for all the particles which appar-
ently is the case. But to perform this analysis the measure-
ments should be different in order to evaluate the new vari-
able β and the new reactivity coefficient R.

The bi-flux diffusion process as described here is an 
open research theme. The determination of the parameters 
β and R presents a considerable challenge. Preliminary 

analysis using the inverse approach technique suggests a 
close interdependence between these variables [16, 17]. 
Also the inclusion of sources and sinks will certainly 
expand the applicability spectrum of the theory.

We believe that the present theory is worthwhile being 
explored and improved. It opens several opportunities 
to people interested in both theoretical and experimental 
work.
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Appendix

The present theory may be extended to simulate the dynam-
ics of an arbitrary number of microstates. Clearly a real 
process could be better simulated by a multi-flux diffusion 
phenomenon since particles flow with different velocities. 
It is expected that, even if initially there is only one prevail-
ing flux, after a short time the single-flux breaking effect 
phenomenon will raise an enormous number of microstates. 
That is, the model closer to the possible real case must be 
generalized as to include several partitions consisting of set 
of particles in different excitation states. Thus assuming m 
nested excitation states {E1, E2, … Em} let βi be the frac-
tion of mass belonging to the excitation state Ei. Since all 
the particles in the system must be in some excitation state 
it is necessary that β1 + β2 + · · · + βn = 1. The governing 
equation for this case, assuming that the diffusion occurs in 
an isotropic medium, reads [3].

The fluxes are given by:

Again Ψ1 is the primary flux while Ψn (n > 1) are subsidi-
ary fluxes consisting of nested states such that the state 
n + 1 exists if and only if the state n also exists. The coef-
ficient D1 is the well-known diffusion coefficient and Dn 
(n > 1) are the reactivity coefficients. The problem now 
is that we lack the determination of the reactivity coeffi-
cients Dn and the partitions coefficients βn besides treat-
able mathematical tools to perform a sufficiently detailed 
analysis of Eq. (7).The theory introduced in the previ-
ous sections assumes a drastic simplification reducing 
the system to two representative states Ψ1 and Ψ2 where 

(7)
∂q

∂t
+

m
∑

n=1

(−1)nβ1β2 . . . βnDn

∂2nq

∂x2n
= 0

(8)�n =
(

−1
n
)

β1β2 . . . βn−1Dn

∂2n−1q

∂x2n−1
e1 with n = 1, . . . ,m
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the first correspond to the fundamental primary state and 
the second represents the average of the possible subsidi-
ary states. Though this approach reducing the phenom-
enon to a bi-flux process, or equivalently to a dual energy 
excitation state represents a considerable simplification it 
is a second order approximation of the real phenomenon. 
Indeed the classical approach considers just a single class 
of random motion representing the scattering of particles 
in some supporting medium. Several works have been 
devoted to the diffusion process considered as the result 
of the Brownian motion of a very large number of parti-
cles where the relevant energy state may be associated 
to the kinetic energy generated by the linear momentum 
of all particles. The angular momentum is ignored. But 
as we have shown if the angular momentum plays a sig-
nificant role the process than the system may be turn to 
be considerable complex. The system of Eqs. (7) and (8) 
may be considered the analytical equivalent of statistical 
mechanics.
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