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List of symbols
A  Coefficient matrix of constraints
b  Right-hand side of constraints
cw  Cost of produced water
cwi  Cost of injected water
f  Objective function
f̂   Kriging model (surrogate function for objective function)
F  Fitness function
g  Inequality constraints
ĝ  Kriging model (surrogate function for inequality 

constraints)
h  Equality constraints
ĥ  Kriging model (surrogate function for equality 

constraints)
I  Injection wells
k  Permeability
nt  Number of control cycles
nw  Number of wells
p  Pressure
P  Producer well
q  Well rates
Q  Maximum rate allowed for well set of the field
r  Oil price
t  Time step
T  Concession period
v  Violation of the constraints
x  Design variables
Z  Gaussian function

Greek symbols
α  Ration between maximum production and injection rates
β  Unknown constant (for Kriging model)

Abstract In oil Reservoir Engineering application, a prob-
lem of great interest is the dynamic optimization of waterflood-
ing management. In this work, the net present value (NPV) is 
taken as the function to be maximized, in which the allocated 
rates of wells are considered as design variables. Alternatively, 
the switching times of the control cycles can also be consid-
ered as design variables. This assumption increases flexibility 
to the management. Despite this, the formulation of this prob-
lem leads to a highly nonlinear, multimodal objective function. 
Therefore, to conduct the management, a hybrid optimization 
strategy is proposed here considering surrogate models. The 
hybrid strategy combines different methods at two different 
stages, a global and local. In this sense, the global search is 
driven by the genetic algorithm (GA) and the local search is 
driven by the sequential approximation optimization (SAO) 
method. The proposed methodology was successful in iden-
tifying wells that should be late started or shut-in before the 
end of the concession period and in handling different kinds of 
production strategies. It was also verified that an increasing on 
operation flexibility results in NPV improvement. Cycle dura-
tion variables proved to be useful in decreasing the number of 
design variables while maintaining recovery efficiency.
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γ  Penalty parameter
δ  Over injection parameter
Δ  Size of the trust region
Δτ  Time size of control cycles
λ  Activation parameter
σ2  Variance

1 Introduction

In Oil Reservoir Engineering applications one problem 
of great interest is the dynamic optimization of produc-
tion scheduling, considering constraints at total field rate 
meaning that all wells share common injection and produc-
tion units. The waterflooding optimal management prob-
lem, which is by far the most commonly used method to 
improve oil recovery, is studied here. The objective is to 
maximize the exploitation of the field using as controls the 
rates of injector and producer wells.

The application of different optimization techniques in 
the field of upstream in the oil industry began in the 1950s 
and has been developing ever since. There are three major 
lines of study within the context of optimization of oil pro-
duction [1]. One highlights the operation of oil fields, related 
to equipment and production facilities and wells. Another is 
related to the development oil field, related to quantity and 
distribution of development of wells (not exploration). The 
last one is related to the management oil field through the 
dynamic allocation of the flows of the wells.

There is a vast literature on the dynamic rate alloca-
tion optimization for waterflooding. One may classify the 
methods according to the degree of intrusion into the sim-
ulator code. The highly intrusive methods make use of the 
adjoint technique to compute the gradient of the objective 
function [2], and are among the most efficient methods 
[3–6].

Adjoint methods require a large programming effort to be 
implemented and are not available in all commercial simula-
tor codes at the present time. The semi-intrusive methods make 
use of reduced order models [7, 8], or time of flight concept in 
streamline simulators to equalize water breakthrough in groups 
of producer wells [9]. Finally the non-intrusive methods use the 
simulator as a black-box and are purely data driven.

Algorithms typically use evolutionary techniques [10–
12], pattern search methods [13] and surrogate-based meth-
ods [14]. Another class of derivative-free algorithms use 
approximate gradients of the objective function based on 
stochastic methods [15] and ensemble methods [16], which 
may be corrected by additional finite difference computa-
tions [17] or be incorporated into a quadratic interpolation 
model [18].

Some researchers believe that the creation of hybrid 
methods can result in tools that succeed in the optimization 

process. Hybridization is already common practice in many 
fields. A hybrid algorithm may arise from the combination of 
two (or more) different strategies to solve one task. In princi-
ple, each strategy can be used independently, but this would 
produce solutions concentrated only in some specific charac-
teristics. If the combination is efficient, unlike the independ-
ent use, chances are for a better solution to be found more 
quickly.

Güyagüler [19] proposed a hybrid optimization tech-
nique, based on the genetic algorithm (GA) with the pol-
ytope algorithm (simplex) and the Kriging technique. 
Hybridization of genetic algorithm with simplex introduced 
hill climbing into the stochastic search and also allowed the 
use of proxies created and calibrated iteratively throughout 
the run and adopting simple surrogate models in place of 
expensive numerical simulations.

The choices of available algorithms to assist in the optimi-
zation process are numerous; however, the type of algorithm 
to be considered often depends on the characteristics of the 
problem. The optimization performed with the hybrid strat-
egy considered here in is implemented in two steps. In the 
first step, a global search algorithm is responsible for identi-
fying the region where the global optimum may be located. 
In the second step, a local search algorithm refines the solu-
tion found on the previous step. To perform a global search, a 
genetic algorithm (GA) was considered [20], and to perform 
the local search a sequential approximate optimization (SAO) 
was used [21, 22]. Kriging-based surrogates are used in both 
stages.

Some considerations are taken to improve the perfor-
mance of the GA. Some of them are related to constraints 
handling, because it is well known that evolutionary algo-
rithms have difficulty to deal with it. Other one is related to 
the surrogate model where the search process is performed, 
since it has an interest in a good characterization of the 
behavior of real functions, in the entire domain, without 
wasting evaluations on points from unpromising regions.

The main idea is to combine techniques into a tool 
where the user does not need to provide many settings to 
achieve the optimal solution of the problems.

2  Multimodality issues

The presence of multimodality in functions in some prob-
lems is characteristics that hinder the work of mathemati-
cal programming algorithms; therefore, to find the optimal 
solution for such problems, such algorithms need to be 
applied to multiple starting points. Various attempts rep-
resent multiple executions where different solutions can 
be found with no guarantee that the solution is the global 
optimum of the problem. Considering this, we could say 
that mathematical programming algorithm would not be 
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the best alternative to solve problems in which one seeks 
a global optimal solution and the involved function present 
multimodality characteristics.

Because of the difficulties, an alternative would be to 
adopt more robust search methods to deal with multimo-
dality. In general, classes of algorithms that can perform 
this task are the evolutionary algorithms. However, the 
computational cost for this is quite high; therefore, when 
considering practical engineering problems, the use of such 
schemes is not a feasible option to be considered.

In short, we can say that both approaches mentioned 
above have useful features to obtain optimal solutions; 
however, the negative characteristics of them, in some 
situations, can avoid their use. To overcome the difficul-
ties, and explore the positive aspects of the algorithms, an 
option that comes up is a combination of methods to create 
hybrid strategies and perform the search process.

3  Waterflooding problem

3.1  Definition

Waterflooding is the most commonly used method to 
improve oil recovery and maintain the reservoir at a 
proper pressure level. Optimization techniques can 
be applied to improve waterflooding sweep efficiency 
through the propagation of the water front. In this sense, 
one problem of great interest is the dynamic optimiza-
tion of producing scheduling, leading to optimal rate 
allocation to the injectors and producers. In this prob-
lem, the net present value (NPV) is considered as the 
objective function and the constraints are related to the 
rates: total filed, limit values and voidage-type replace-
ment [23].

3.2  Mathematical formulation

Mathematically the waterflooding problem can be formu-
lated as follows:

(1)

Maximize: NPV = f (q) =

T
∑

t=0

[

1

(1+ d)t
· Ft(qt)

]

subject to:
∑

p∈P

qp,t ≤ Ql,max, t = 1, . . . , nt

∑

p∈I

qp,t ≤ Qinj,max, t = 1, . . . , nt

qlp,t ≤ qp,t ≤ qup,t , p = 1, . . . , nw, t = 1, . . . , nt
∑

p∈P

qp,t ≤
∑

p∈I

α · qp,t ≤ δ ·
∑

p∈P

qp,t , t = 1, . . . , nt

where q = [q1
Tq2

T . . . qTnt ] is the vector of well rates for 
all control cycles; qt = [q1,t , q2,t , . . . , qnw,t] is the vector of 
well rates at control cycle t; qp,t is the liquid rate of well p 
at control cycle t; nt is the total number of control cycles; 
and nw is the total number of wells. In the objective func-
tion d is the discount rate and τt is the time at the end of the 
tth control cycle. The cash flow at control cycle t, which 
represents the oil revenue minus the cost of water injection 
and water production, is given by

where Δτt is the time size of the tth control cycle; P and I 
are the sets of production and injection wells, respectively; 
qp,t

o and qp,t
w are the average oil and water rates at the pth pro-

duction well at tth control cycle; ro is the oil price; cw and 
cwi are the costs of producing and injecting water. Ql,max 
is the maximum allowed total production liquid rate and 
Qinj,max is the maximum allowed total injection rate of the 
field. Superscripts l and u denote, respectively, the lower 
and upper bounds of design variables. Superscripts o and w 
denote, respectively, oil and water phases.

The last constraint requires that, for all cycles, the total 
injection rate belongs to an interval that goes from the total 
production rate to δ times this value, where δ ≥ 1 is the 
over injection parameter and α is the ratio between Qinj,max 
and Ql,max. This is a more general form of the so-called 
voidage replacement constraint used by many researchers 
as a means to maintain the reservoir properly pressurized 
[3, 24–26]. Although reduction of the voidage replacement 
fraction, at the end of the production period may improve 
NPV [27], this practice may produce undesirable effects, 
such as drop pressure on the reservoir, consequently, this 
would result on the production of gas on it [28]. This con-
straint is not a mandatory part of the optimization process 
and may be deleted from the formulation if the user deems 
appropriate.

The design variables are the well rates in each control 
cycle. Let well rates be scaled by their respective maximum 
allowable field rates:

Design variables, xp,t, are then the allocated rate for well 
p at time at cycle t. We consider two alternative formula-
tions for this problem: full capacity operation (FCO) and 
non-full capacity operation (NCO) [29].

The commonly used approach to these problems is to 
subdivide the concession period into a number of control 
cycles, nt, whose switching times are fixed (see Fig. 1).

(2)F(qt) = �τt





�

p∈P

(roq
o
p,t − cwq

w
p,t)−

�

p∈I

(cwiqp,t)



,

(3)
xp,t = qp,t

/

Ql,max, p ∈ P; xp,t = qp,t/Qinj,max, p ∈ I .
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Another step to make both of the mentioned strategies 
(FCO and NCO) more flexible is to consider the time 
of control switching as design variables. Although the 
number of design variables increases, the time of control 
switching can be made more intelligent, matching events 
like optimum water breakthrough, pressure needs of the 
reservoir and shutting-in of wells or the whole field. 
Also, due to this additional flexibility it is possible to 
obtain optimal management schedules with less control 
cycles.

Under previous paragraph considerations, the time inter-
val of each control cycle, except for the last, is a design 
variable as depicted in Fig. 1. Scaling the time intervals by 
the concession period, T, one gets

Henceforth, we will call the previously defined fixed 
time strategies as FCO-FT and NCO-FT and the strategies 
which considers the time of control switching as design 
variables as FCO-VT and NCO-VT.

A general formulation for the waterflooding problem, 
considering all variables scaled, can be formulated as 
follows:

Computation of the objective functions of the above prob-
lems requires a complete reservoir simulation. As simu-
lations can take several hours to run, the optimization 
algorithm is coupled to surrogate models constructed as 
described in the following sections.

(4)x�τ ,t = �τt/T , t = 1, . . . , nt − 1.

(5)

Maximize: NPV = f (x) =

T
∑

t=0

[

1

(1+ d)t
· Ft(xt)

]

subject to:
∑

p∈P

xp,t ≤ 1, t = 1 . . . nt

∑

p∈I

xp,t ≤ 1, t = 1 . . . nt

nt−1
∑

t=1

x�τ ,t ≤ 1

xlp,t ≤ xp,t ≤ xup,t , p = 1 . . . nw, t = 1 . . . nt

xl�τ ,t ≤ x�τ ,t ≤ xu�τ ,t , t = 1 . . . nt − 1,
∑

p∈P

xp,t ≤
∑

p∈I

α · xp,t ≤ δ ·
∑

p∈P

xp,t , t = 1 . . . nt

4  Optimization strategies

4.1  Approximations: surrogate models

The surrogate functions have been used aiming a fast com-
putation, and also to get a smooth and/or simplified func-
tion for the computationally expensive models (high fidel-
ity). The essential is that high-fidelity functions (costly) can 
be replaced by simpler functions, which are used during the 
optimization process.

The Kriging data fitting scheme is the approach used 
in this work to build the surrogate models. The main idea 
of this model is to assume that errors are not independent 
but rather assume that they are correlated to the distance 
between corresponding points modeled by a Gaussian pro-
cess around each sample point. The main advantages of this 
scheme are to easily accommodate irregularly distributed 
sample data, and the ability to model multimodal functions 
with many peaks and valleys. Moreover, Kriging models 
provide exact interpolation at the sample points [23].

Kriging technique involves interpolation or numerical 
regression (polynomial) of a set of results generated from 
the real model [30, 31]. Therefore, to build such a model, 
the first step is to generate a set of points (sample) that are 
unique and limited by the boundaries of the design space. 
This technique is known in the literature as design of exper-
iments (DOE) [30, 31]. The most common approaches are: 
Latin Hypercube (LHS), Quasi-Monte Carlo (QMC), and 
Latinized Centroidal Voronoi Tessellation (LCVT) [32]. It 
has been found that for the specific problem of optimized 
waterflooding management LCVT outperforms the others 
in general and is, therefore, used in this study [33].

Once m sample points are generated, predictor expres-
sions are developed to evaluate the function at untried 
design points. This is based on the “ordinary Kriging” 
approach which models the true function as [31]:

where β is an unknown constant and Z(x) is a Gaussian 
random function with zero mean and variance σ2.

After the construction of the approximation form, some 
model assessment strategies are required to check if a gen-
erated model is adequate. Such measure also provides some 
guidelines for selecting the best approximation model. The 
strategies considered are the same detailed in [23].

4.2  Hybrid strategy

4.2.1  Global search: genetic algorithm (GA)

As previously mentioned, a GA, implementation from 
MATLAB, is the global strategy considered on optimiza-
tion process. GAs, as powerful and broadly applicable 

(6)f (x) = β + Z(x)

Fig. 1  Control cycles’ switching times
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stochastic search and optimization techniques, are perhaps 
the most widely known types of evolutionary computa-
tion methods today. In the past decade, the GA community 
has turned much of attention to optimization problems in 
industrial engineering resulting in a large field of research 
and applications [34].

In general, a genetic algorithm has five basic compo-
nents, as summarized by Michalewicz [35]:

•	 A genetic representation of solutions to the problem;
•	 A way to create an initial population of solutions;
•	 An evolution function rating solutions in terms of their 

fitness;
•	 Genetic operators that alter the genetic composition of 

children during reproduction;
•	 Values for the parameters of GA.

In general, GAs follow the steps below:

1. Generation of initial population;
2. Fitness evaluation for all individuals in population;
3. Application of genetic operators to generate new popu-

lation (selection, crossover and mutation);
4. Checking convergence; if not reached, return to step 2 

and repeat the process.

It is well known that evolutionary algorithms have prob-
lems to deal with constrained optimization, and it is not 
different in GA. Some techniques have been developed in 
attempt to overcome this difficulty. In most applications of 
GAs to constrained optimization problems, the penalty func-
tion method has been used [36]. In this work is used an adap-
tive penalty method [37] which does not require any type of 
user-defined penalty parameter and uses information from 
the population. Moreover, to make the global search proce-
dure more effective a filter scheme is proposed in which the 
level of feasibility in the initial population is assured.

4.2.1.1 Constraints handling Constraint handling meth-
ods used in classical optimization algorithms can be clas-
sified into two groups [36]: (i) generic methods that do 
not exploit the mathematical structure (whether linear or 
nonlinear) of the constraint, and (ii) specific methods that 
are only applicable to a special type of constraints. Generic 
methods, such as the penalty function method, the Lagrange 
multiplier method, and the complex search method [38, 39] 
are popular, because each one of them can be easily applied 
to any problem without much change in the algorithm. 
However, the performance of these methods in most cases 
is not satisfactory.

On other hand, specific methods for constraints han-
dling, such as the cutting plane method, the reduced gradi-
ent method, and the gradient projection method [38, 39], 

are applicable either to problems only having convex feasi-
ble regions or to problems having a few variables.

Since GAs are generic search methods, most applica-
tions of them to constraint optimization problems have 
used the penalty function. The penalty function approach 
involves a number of penalty parameters which must be 
set right in any problem to obtain feasible solutions. This 
dependency of GAs performance on penalty parameters 
has led researchers to develop sophisticated penalty func-
tion approaches such as multi-level penalty functions 
[40], dynamic penalty functions [41], and penalty func-
tions involving temperature-based evolution for penalty 
parameters with repair operators [42]. All these approaches 
require extensive experimentation for setting up appropri-
ate parameters needed to define the penalty function [36].

In special situations, closed genetic operators (in the 
sense that when applied to feasible parents they produce 
feasible offspring) can be designed if enough design space 
knowledge is available [43]. Special decoders [44]—that 
always generate feasible individuals from any given geno-
type—have been devised, but no applications considering 
implicit constraints have been published.

The GA from the MATLAB global optimization toolbox 
has some alternatives to deal with constrained problems, 
but in this work, two alternatives of constraints handling 
were considered because the available methods could not 
find results for the studied cases.

Chromosome repairing procedure: For this process, ini-
tially a randomly population is generated. After this, the 
level of violation related to the linear constraints defined 
in Eq. (5) is verified. From this stage two parameters (λl, 
λu) are created. The first one is called inferior activation 
parameter, which refers to the individuals that activate the 
constraints by lower bounds

The second parameter is created in a similar way. It is 
called superior activation parameter, which refers to the 
individuals that activate the constraints by upper bounds

Next, a randomly value λ in the interval [λl, λu] is picked. 
This λ is named feasibility parameter. These parameters are 
generated for each unfeasible individual in the initial popu-
lation. The use of λ guarantees that the imposed constraints 
will not be violated, but it is not correct to affirm that the 
individual is completely in feasible region because some of 
its coordinates could be out of its limits.

After the application of the feasibility parameter, the coor-
dinates of the individual are ranked to be corrected if nec-
essary. The coordinates are ranked in a descending order. In 
case of any coordinate be out of the limits, a coordinate cor-
rection is made to send the individual to the feasible region.

(7)A · (�lx) = bl

(8)A · (�ux) = bu
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In case of upper bound violation, the excess is relocated 
to the next feasible coordinate as the design variables rank 
goes on. When more than one coordinate violate the lim-
its, the excess is summed to be redistributed. When the 
lower bound is violated, the amount necessary to bring it 
to the lower bound value is taken from the next feasible 
coordinates.

After an unfeasible individual be transformed into a fea-
sible one, its coordinates are relocated in the chromosome 
(the original positions). To consider this process is crucial 
for creating the initial population. The GA implementation 
considered here presents difficulty to solve the waterflood-
ing problem, when it was used without any feasible indi-
vidual in the initial population. In various tests considered, 
the optimization process has been finished without any fea-
sible solution found.

It is important to mention that the above procedure is 
used to create the initial population for GA and to create 
some feasible samples to build the global surrogate model 
used in the global search of the optimization process (more 
details in Sect. 4.2.1.2).

The chromosome repairing is a good choice to han-
dling the linear constraints, although it cannot be used as 
the only method for this task, because it would interfere 
directly in the search process. For example, if there are 
violated children generated by the crossover operator, they 
would be genetically modified by the repairing process, 
and this would change the main characteristics of the GA, 
in a sense that every violated children generated would be 
subjected to a kind of driven mutation process. It would 
happen in the children generated by the mutation operator 
too.

Adaptive penalty method: The adaptive penalty method 
(APM) presented in [39] adaptively quantifies the penalty 
coefficients of each constraint using information from the 
population such as the average value of the objective func-
tion and the level of violation of each constraint. The fit-
ness function is written as:

where

where 〈f(x)〉 is the average of the objective function values 
in the current population and γj is the penalty parameter for 
the jth constraint, and m is the number of constraints. It is 
defined at each generation by:

(9)F(x) =

{

f (x) if x is feasible,

f̄ (x)+
∑m

j=1 γjvj(x) otherwise

(10)f̄ (x) =

{

f (x) if f (x) > �f (x)�,

�f (x)� otherwise

(11)γj = |�f (x)�|
�vl(x)�

m
∑

l=1

[�vl(x)�]2

and 〈vj(x)〉 is the violation of the lth constraint averaged 
over the current population. The idea is that the values of 
the penalty coefficients should be distributed in a way that 
those constraints which are more difficult to be satisfied 
should have a relatively higher penalty coefficient. Details 
of the proposed definition can be seen in [43].

To make clearer, consider Fig. 2 in which both feasible 
and infeasible solutions are shown. Among the six infea-
sible solutions, the individuals #3, #4, #5 and #6 have 
their objective function values (represented by opened cir-
cles), less than the average objective function and, accord-
ing to the proposed method (see Eq. 10), this leads to 
f̄ (x) = �f (x)�. The solutions #1 and #2 have objective func-
tion values which are greater than the population objective 
function average. Thus, for this case f̄ (x) = f (x).

4.2.1.2 Adaptive surrogate model The definition of 
a surrogate model that can define the overall behavior of 
the functions involved in the problem is not trivial, since 
it has an interest in a good characterization of the behav-
ior of real functions without wasting evaluations on points 
from unpromising regions. In addition, when considering 
constrained optimization, the requirements are increased 
because it is important to build surrogate models that can 
represent the behavior from the real functions in feasible 
region while representing unfeasible region reasonably, 
since, in general, the global solution is located within the 
limits of the feasible region.

An alternative is to create a “weak” surrogate model 
which is enriched as the search process is performed. A 
scheme of surrogate model with addition of points on 
waterflooding optimization problem was considered with 
the particle swarm algorithm in the master thesis presented 
by Souza [45]. A similar scheme is considered in this work.

Initially, two samples are created: the first one is the ini-
tial sample, which has a representative number of points 
which belongs to the feasible region (it was considered 
60 %—just a little more than half of the samples); and the 

Fig. 2  A pictorial description of the function f̄ (x)
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second is the “update” sample, which has only feasible 
points to update the surrogate model (both samples are cre-
ated with the chromosome repairing procedure help—pre-
viously mentioned).

The initial surrogate model is created with the initial 
sample; the optimization is performed with the GA on it. 
When the search is finished, the consistency of the solution 
is checked. If the accuracy of the model is not satisfactory, 
the model is updated with addition of new samples. The 
samples taken to update the model consist on the solution 
found by the GA and some points from the update sample 
(in this work where chosen three points randomly). The 
model is updated until there are points available on the 
update sample or the consistency of the solution is reached.

The consideration of the “solution” point to update the 
model improves the representation of the behavior on the 
region where it was found by GA; however, it should not 
be considered alone as it can be a local optimum. The addi-
tion of feasible samples improves model in other feasible 
regions.

The computational aspects of this strategy can be sum-
marized as follows:

1. Create the initial sample (with 60 % in feasible region) 
and the update sample;

2. Compute the function evaluations of the initial sample;
3. Construct a global surrogate model for the functions;
4. Optimize the problem using GA with the approximated 

functions;
5. Evaluate the solution found by GA on the real func-

tion;
6. Check the global convergence criteria of the strategy:

6.1. If reached, the process is finished;
6.2. Otherwise, the solution found by GA is added to the 

initial sample as well as the points taken from the update 
sample (three points, which are evaluated on real func-
tions), and returns to step 3.

4.2.2  Local search: sequential approximate optimization 
(SAO)

A local strategy named Sequential Approximate Optimi-
zation (SAO) is used to compose the hybrid strategy in 
this study. The SAO methodology decomposes the origi-
nal optimization problem into a sequence of optimization 
subproblems, confined to small subregions of optimization 
design space, called trust regions, whose extents are adap-
tively managed by the SAO strategy depending on surro-
gate accuracy [21, 46]. Surrogate functions (low cost) are 
created and used by the optimizer. Mathematically, each 
subproblem, at the kth SAO iteration, is defined as:

In the above equations, f̂ k(x), ĝki (x) and ĥkj (x) are, respec-
tively, the surrogate objective and the constraints func-
tions constructed for the current iteration, A and b are the 
matrix and right-hand side of linear constraints, xkc is the 
center point of the trust region, Δk is the size of the trust 
region at the current iteration, and xl and xu are, respec-
tively, the lower and upper bounds of the design varia-
bles. The initial trust region is a subregion taken from the 
entire domain which considers the initial point é central 
point.

Each subproblem formulated in Eq. (12) defines SAO 
iteration. The main steps involved in the computations are:

1. Compute the expensive and/or non-smooth objective 
function and constraints at the central point in the sub-
region;

2. Construct surrogate model in the subregion;
3. Optimize within the subregion using the surrogate 

objective function and constraints;
4. Compute the true objective function and constraints at 

the optimum identified in step 3;
5. Check for convergence;
6. Move/shrink/expand the subregion according to the 

accuracy of the approximated model compared to the 
true function and constraint values;

7. Impose local consistency;
8. Check for overall optimization convergence. If it is 

achieved stop the SAO procedure; otherwise return to 
step 3.

To update the trust region size for each optimization 
subproblem the approach considered takes into considera-
tion the accuracy of surrogate functions against the true 
functions. For more details see [23]. More details about the 
SAO algorithm can be checked in [22, 23].

5  Examples

In this section, the tools described previously are employed 
in a study case. The studies are conducted using MATLAB. 
The reservoir numerical simulations are performed using 
IMEX Commercial Software from CMG [47].

(12)

Maximize: f̂ k(x)

subject to: ĝki (x) ≤ 0, i = 1 . . .m

ĥkj (x) = 0, j = 1 . . . n

Ax ≤ b
∥

∥

∥
x − xkc

∥

∥

∥

∞
≤ �k

xl ≤ x ≤ xu
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5.1  Brush Canyon Outcrop Synthetic Case

This reservoir is composed of a complex geologic model 
constructed from geostatistical techniques and data from 
outcrop, which is close to a real reservoir model, although 
it is a synthetic case where the first studies were presented 
in [10].

The generated model reproduces typical of a deposi-
tional turbidity formations system in deep water, represent-
ing the most important type of reservoir found in sedimen-
tary basins along the Brazilian coast. The petrophysical 
parameters were correlated, as can be seen in [48].

The features and the main characteristics of the model 
for this reservoir are presented in Table 1 and in Fig. 3.

Although the model incorporates a high degree of uncer-
tainty, it is not considered in the studies performed here.

For the optimization problem, the production of the plat-
form is limited to 5000 m3/day, and the total injected water 
is limited to 5750 m3/day. As the well rates are the design 
variables, the boundaries are imposed as the limitations on 
these rates.

For the producers, the rates can vary from 0 to 900 m3/
day, and for the injectors, the rates can vary from 0 to 
1500 m3/day. Normalizing the boundaries according the 
Eq. (3) gives to the producers a range of 0 ≤ xp,t ≤ 0.18, 
t = 1…nt, p ε P, while gives to the injectors a range of 
0 ≤ xp,t ≤ 0.2609, t = 1…nt, p ε I.

The concession period is 24 years, and when considering 
the time of control switching as design variable, the related 
design variables are normalized according the Eq. (4).

A simplified version of VPL is used considering the 
revenues from the oil, and the production and injection 
costs (see Eqs. 1, 2). To calculate the NPV it is considered: 
ro = 25.00/m3, cw = 5.00/m3, cwi = 2.00/m3 and 0.093 as 
internal return rate.

Next sections present solutions for two operation strate-
gies: full capacity/fixed time (FCO-FT) and non-full capac-
ity/variable time (NCO-VT). Normalized producer rates in 
the base case for all strategies are: xp,t = 0.143, t = 1…nt, 
p ∊ P, while for all injectors, xp,t = 0.2, t = 1…nt, p ∊ I. 
These values correspond to uniform rate allocation to all 
wells. The corresponding NPV value is $2.6209 × 108.

5.1.1  Optimal solution: FCO‑FT case

This section discusses solutions obtained for the fixed time, 
full capacity operation of the example. Two different num-
bers of control cycles were considered as shown in Fig. 4. 
In this case, the number of design variables is ten per con-
trol cycle, two less than the total number of wells.

Table 1  Summary of model characteristics

Simulation mesh 43 (4,300 m) × 55 (5,500 m) × 6 
(vary)

Porosity 16–28 %

Horizontal permeability (kh) 157–2,593 mD

Vertical permeability (kv) 30 % of kh

Rock compressibility at 1,019  
Kgf/cm2

2 × 10−7 (Kgf/cm2)−1

Contact between fluids Without contact WOC and GOC

Pressure of saturation (psat) 101.97 Kgf/cm2

Viscosity at Tres and psat 0.77 cp

Gas–oil formation ratio (GOFR) 78.1 m3/m3 std

Fig. 3  Brush Canyon Outcrop model (permeability field)

Fig. 4  Control cycles considered on concession period
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Fig. 5  Performance of FCO-FT with different control cycles
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The consideration of these two cases with different num-
ber of control cycles did not provide a big difference in the 
results obtained. The explanation for this can be perceived 
from Fig. 5.

Considering the hybrid strategy, the result found for the 
NPV, by the GA in the global search, was $2.7173× 108, 
which does not represent great improvement when compar-
ing with the base case.

Taking the solution provided by the GA, and considering 
this solution as the initial point, for SAO in the local search, 
our best fixed time result for final NPV is $3.1767× 108, 
which represents a 21.21 % of improvement over the base 
case.

For this case, a better result was already found. It is pre-
sented by Horowitz [23]. The NPV found in that work was 
$3.2282× 108, which represents a 23.17 % of improve-
ment over the base case (more details for this result can be 
found in [23]).

Tables 2 and 3 list optimum well rates for the case with 
six control cycles, which involves 60 independent design 
variables. As can be readily seen producer wells P-6, P-8, 
P-10, and P-12 are all operating at their maximum liquid 
rate. Figure. 6 shows the optimal rates of the remaining 
producers.

5.1.2  Optimal solution: NCO‑VT case

Increasing the number of variables could afford an 
improvement on the NPV over the one on the base case, 

but, as can be seen in Fig. 5, it was considered six times 
more design variables and the result was not so different.

As mentioned in the mathematical formulation of the 
problem, a step that makes the production strategies more 
flexible is to consider the time of control switching as design 
variables. Although the number of design variables increases, 
the time of control switching can be made more intelligent. 
Due to this additional flexibility it is possible to obtain opti-
mal management schedules with less control cycles.

Table 2  Optimization results 
for producer wells for six 
control cycles on FCO-FT case

Producers rates (m3/day)

P-3 P-4 P-5 P-6 P-8 P-10 P-12

500 0 900 900 900 900 900

0 500 900 900 900 900 900

0 500 900 900 900 900 900

0 500 900 900 900 900 900

0 500 900 900 900 900 900

0 500 900 900 900 900 900

Table 3  Optimization results for injector wells for six control cycles 
on FCO-FT case

Injectors rates (m3/day)

I-1 I-2 I-7 I-9 I-11

1466 0 1352 1466 1466

1466 668 684 1466 1466

1466 1139 213 1466 1466

1466 1352 0 1466 1466

1466 719 633 1466 1466

1466 1466 690 1466 662
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For this reason, this case considers the non-full capac-
ity with variable time operation. Only the case with three 
control cycles is discussed. In this case, the range for the 
time of control switching variables is 0 ≤ x�τ ,t ≤ 0.4 , 
t = 1…nt − 1, and the limits for the rates are the same 
presented in the FCO-FT case. The total number of design 
variables now is 38. The over injection parameter is taken 
as δ = 1.15 (see Eq. 1).

Again, the proposed methodology was considered. The 
result found for the NPV, by the GA in the global search, 
was $3.5578× 108, and now, it represents a great improve-
ment when comparing with the base case. But it is not the 
final result.

Considering this solution as the initial point, for 
SAO in the local search, our best result for final NPV is 
$3.6233× 108, which is 14 % higher than the two previous 
solutions (FCO-FT cases), and corresponding to 38.25 % 
improvement when compared to the base case.

A result for this case can also be found in Horowitz [23]. 
The NPV found in that work was $3.6100× 108, which 
represents a 37.74 % of improvement over the base case 
(more details for this result can be found in [23]).

Tables 4 and 5 show the values of the design variables, 
and the results obtained in both case can also be compared 
in Fig. 7.

The most flexible management strategy is NCO-VT, 
which creates more opportunities to increase NPV by the 
possibility of shutting-in and late starting of production 
and injection wells. The inclusion of control cycle dura-
tion in the formulation is effective in reducing significantly 
the number of design variables while maintaining recovery 
efficiency. On the other hand, it has been observed that this 
technique increases the nonlinearity of the problem which 
may become multimodal.

6  Conclusions

The optimization of waterflooding management problem 
needs a large amount of function evaluation which means a 
large amount of reservoir simulation. It is computationally 
expensive. A powerful strategy to tackle this problem is the 
use of surrogate models based on data fitting techniques. 
Extensive comparative studies of performance in water-
flooding problems indicate that LCVT sampling coupled 
with Kriging data fitting is the technique of choice to con-
struct an effective surrogate model to deal with this kind of 
problems.

A hybrid global/local optimization strategy is used to 
solve the problem performing the optimization process 
in two steps, a global search (performed by GA) fol-
lowed by a local search (performed by SAO). Although 
the SAO is an efficient optimization method, the hybrid 
methodology considered here overcomes the need to 
perform several initial point tries on reservoir optimiza-
tion problems.

The waterflooding problem is formulated using liquid 
rates of wells as controllable variables. Duration of control 
cycles may also be included as design variables. The objec-
tive function is a simplified NPV. Different operational con-
ditions may be modeled such as Full Capacity Operation 
(FCO) and Non-full Capacity Operation (NCO). In FCO, 
both injection and production units are forced operate at 

Table 4  Optimization results 
for producer wells for six 
control cycles on NCO-VT case

Time (days) Producers rates (m3/day)

P-3 P-4 P-5 P-6 P-8 P-10 P-12

0 900 523 113 900 877 900 787

88 900 523 113 900 877 900 787

176 900 523 113 900 877 900 787

Table 5  Optimization results for injector wells for six control cycles 
on NCO-VT case

Time (days) Injectors rates (m3/day)

I-1 I-2 I-7 I-9 I-11

0 618 598 822 1500 1462

88 618 598 822 1500 1462

176 618 598 822 1500 1462
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Fig. 7  Performance of NCO-FT with different control cycles
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their maximum capacity at all times whereas in NCO this 
condition is relaxed.

The most flexible management strategy is NCO with var-
iable duration of control cycles. This creates more opportu-
nities to increase NPV by the possibility of shutting-in and 
late starting of production and injection wells. The inclu-
sion of control cycle duration in the formulation is effective 
in reducing significantly the number of design variables 
while maintaining recovery efficiency. On the other hand, it 
has been observed that this technique increases the nonlin-
earity of the problem which may become multimodal.

The cases considered involve a high nonlinear objective 
function and also presents several constraints functions. 
These aspects together turn out the problem too difficult to 
be solved by the GA (in charge of the first stage of the opti-
mization). To improve its performance, some tools were 
considered to increase the capability to find a good feasible 
solution.
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