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non-Fourier and Fourier heat conduction models are com-
pletely different from each other.
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1 Introduction

Micro-beams play an important role in micro- and nano-
electromechanical systems (MEMs and NEMs), e.g., bio-
sensors, actuators, micro-pumps, atomic force microscopes 
(AFMs), micro-mirrors, and micro-resonators [1–4]. Some 
experimental observations resulted in the size-dependent 
mechanical behavior in micro-scale structures [5, 6]. Due to 
the weakness of the classical continuum theory to explain 
the experimentally detected small-scale effects in the size-
dependent behavior of micro-scaled systems, various non-
classical theories such as the nonlocal, strain gradient, and 
couple stress were introduced to eliminate the shortcoming 
in dealing with micron structures.

The couple stress theory is one of the non-classical 
theories introduced by some researchers, e.g., Toupin [7], 
in early 1960s in which higher-order stresses, known as 
the couple stress tensor, are taken into account, besides 
the classical force stress tensor. Yang et al. [8] suggested 
a modified couple stress theory in which a new higher-
order equilibrium equation, i.e., the equilibrium equation of 
moments of couple stresses, was considered, as well as the 
classical equilibrium equations. This consideration causes 
the symmetry of the couple stress tensor.

On the other hand, the classical parabolic heat conduc-
tion theory is not capable of predicting reliable results in 
many practical situations, because it is based on Fourier 
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law which implicitly postulates the propagation speed of 
thermal disturbances to be infinite in contrast with what is 
observed in reality. Of course, this law gives valid results 
in many practical situations. In small-scale systems, Fou-
rier law is inaccurate, due to the fact that response time is 
in the picoseconds-order, and consequently the wave nature 
of thermal propagation becomes noticeable. In these appli-
cations, the results obtained by utilizing Fourier heat con-
duction model have significant differences with the exper-
imental results [9, 10]. Tzou [11] developed a hyperbolic 
heat conduction model which is a special case of the dual-
phase-lagging conduction equation. This model considers a 
finite propagation speed for thermal disturbances by apply-
ing thermal relaxation time as a material property.

In the last decade, numerous researches include the 
static, dynamic, and thermal analyses have been accom-
plished on micro-structures, using non-classical continuum 
mechanics theories, and hyperbolic heat conduction models 
(for instance, see these studies that are based on the nonlo-
cal [12, 13], strain gradient [14, 15], modified couple stress 
[16, 17], theories, and non-Fourier heat conduction mod-
els [18, 19]). In what follows, investigations of mechani-
cal and thermal behaviors of micro-beams are reviewed 
by means of modified couple stress theory, and hyperbolic 
heat conduction model. In this regard, Asghari et al. [20] 
presented the formulation of FG Timoshenko micro-beams 
and studied their static and free-vibration behaviors based 
on the modified couple stress theory. In addition, based on 
this theory Ke et al. [21, 22] investigated the size-effect on 
the dynamic stability of functionally graded micro-beams, 
and nonlinear vibration behaviors of micro-beams, respec-
tively. Park and Gao [23], and Kong et al. [24] studied the 
static and dynamic problems of size-dependent Bernoulli–
Euler beams. Taati et al. [17] developed a formulation for 
static behavior of the viscoelastic Euler–Bernoulli micro-
beams. Ma et al. [25] presented a microstructure-dependent 
Timoshenko beam model, which can be used to obtain the 
static and free-vibration parameters of the simply supported 
micro-beams.

Researches on thermo-elastic vibration of beams have 
been widely developing. Landau and Lifshitz [26] obtained 
an exact solution for the attenuation coefficient of thermo-
elastic vibration. Givoli and Rand [27] studied the thermo-
elastic coupling effects on the dynamic behavior of rods. 
As the thermal excitation frequency is near the natural fre-
quency of theory, they found that the natural response of 
the rod varies significantly. Massalas and Kalpakidis [28, 
29] looked into the thermo-elastic vibration behaviors 
of a simply supported beam, using the Euler–Bernoulli 
and Timoshenko beam models, respectively. Manolis and 
Beskos [30] investigated the effect of thermal damping 
and axial loads on the vibration of beams imposed to fast 
heating at one of the ends. But, the coupling effect between 

the stress and temperature fields was ignored. Lifshitz and 
Roukes [31] achieved an analytical solution for the thermo-
elasticity damping in micro-beams and explored the effect 
of different geometrical parameters on them.

For the first time, Taati et al. [32, 33] developed some 
size-dependent thermo-elasticity models which include 
effects of couple terms for dynamic analysis of Timoshenko 
micro-beams. These novel models are based on the com-
bination of non-Fourier heat conduction model and one of 
the non-classical continuum mechanics theories (namely 
the modified couple stress [32], and strain gradient theories 
[33]). To the best of authors’ knowledge, vibrational fre-
quencies of micro-beam resonators consisting of thermal 
coupling have not been derived by simultaneously consider-
ing the size-dependent effects on the thermal and mechani-
cal behaviors of micro-beam resonators. This paper tries to 
fill the gap in the literature by finding an analytical solution 
for micro-beam resonators with two boundary condition 
cases, i.e., clamped and isothermal, and also simply sup-
ported and isothermal at the beam ends. For this purpose, 
the size-dependent generalized thermo-elasticity model, 
including a thermal relaxation time and a length scale 
parameter in heat conduction [32], and constitutive equa-
tions have been, respectively, utilized. Finally, the effects of 
end conditions, geometrical ratios, and length scale param-
eter on the vibrational frequencies are investigated.

2  Problem definition

In most of MEMs, the micro-resonators can be modeled as 
elastic beams with rectangular cross-sections with either 
fully clamped or simply supported ends. Hence, a beam 
with length L, width b, and thickness h is considered to 
study the vibration behavior of micro-resonators, as shown 
in Fig. 1. The coordinate system is composed of the beam 
axis (the x coordinate), and axes correspond to the width 
and thickness (the y and z coordinates), respectively. Also, 
the origin is placed at the centroid of the cross section in 
the right hand side of the beam. In the initial equilibrium 
condition, the beam is unstrained, un-stressed, at a uniform 
temperature of T0. There is no heat flux across the top and 
bottom surfaces of the beam.

2.1  Timoshenko beam model

On the basis of Timoshenko beam model, the transverse cross-
sections of the beam remain planar after deformation, but are 
not restrained to be perpendicular to the bending axis. Hence, 
this model is capable of taking into account the shear effect 
on the transverse deflection, as well as the bending effect. The 
components of the displacement vector field, u =

(

ux, uy, uz
)

 
in a Timoshenko beam model can be defined as follows:
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where the function u(x, t) denotes the axial displacement 
of points at the middle surface (z = 0), and the functions 
w(x, t) and ψ(x, t) stand for the rotation angle (about y 
axis) and transverse deflection of the beam cross-sections, 
respectively. Furthermore, parameter t denotes the time.

2.2  Modified couple stress theory

The modified couple stress theory developed by Yang et al. 
[8] is employed to in the present formulations. This theory 
is derived from the classical couple stress theory [7], which 
has been well established by some researchers. Based on 
the theory, an additional equilibrium equation is considered 
for the moments of couple, which causes the couple stress 
tensor to be symmetric. Moreover, the strain energy density 
function is only dependent on the strain and the symmet-
ric part of the curvature tensor, and hence, only one length 
scale parameter is involved in the constitutive relations. 
According to the theory, the variation of the strain energy U 
for an anisotropic linear elastic material occupying region 
Ω can be written as [8]:

In Eq. (2), εij and χij denote the components of the strain 
tensor ε and the symmetric part of the curvature tensor χ, 
which are defined as:

(1)

ux = u(x, t)+ zψ(x, t),

uy = 0,

uz = w(x, t),

(2)δU =

∫

Ω

(

σijδεij + mijδχij

)

dΩ .

(3)εij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

,

Also, the components of the infinitesimal rotation vector 
θ = 1

2
curl(u) are introduced by θi. For linear isotropic elas-

tic materials, constitutive relations of the symmetric part of 
the force stress and the deviatoric part of the couple stress 
tensor with the kinematic parameters are given as [8]:

where σij and mij are called the force and higher-order 
stresses, respectively. Furthermore, the parameters λ and 
μ in the constitutive equation of the classical stress σ are 
Lame constants. The parameter l, which appears in the con-
stitutive Eq. (6), is the material length scale parameter. It 
should be noted that the Lame constants can be represented 
in terms of the Young’s modulus E, and Poisson’s ratio v as 
� = Ev

(1+v)(1−2v)
 and µ = E

2(1+v)
.

2.3  Non‑Fourier heat conduction model

Cattaneo [9] introduced a constitutive heat conduction rela-
tion as follows:

where q is the heat flux vector, and k and τ are the thermal 
conductivity and thermal relaxation time, respectively. The 
function T  represents the temperature distribution. As τ is 
equal to zero, the classic Fourier constitutive heat conduc-
tion relation can be obtained by neglecting term of thermal 
source, the energy equation can be shown as:

(4)χij =
1

2

(

∂θi

∂xj
+

∂θj

∂xi

)

.

(5)σij = �tr(ε)δij + 2µεij,

(6)mij = 2µl2χij,

(7)τ
∂q

∂t
+ q = −k �∇T ,

Fig. 1  Beam configuration, 
coordinate system, geometric 
characteristics and boundary 
conditions
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In Eq. (8), ρ and cp indicate the density and specific heat, 
respectively. Eliminating vector q between Eqs. (7) and (8) 
leads to a hyperbolic equation for temperature as:

in which ∇2 is Laplace operator.

3  Theoretical formulation

In this section, the basic equations for the free-vibration 
analysis of micro-resonators including thermo-elastic cou-
pling terms are derived. In order to do this, first the equa-
tions of motion associated with the boundary conditions 
are derived by considering the thermal effects. Then, the 
non-Fourier thermal conduction equation of a micro-beam 
containing the thermo-elastic coupling term is achieved. 
Finally, the normalized forms of the coupled thermo-elastic 
equations are expressed.

3.1  Dynamic equilibrium equations

Based on the displacement field assumed within the 
Timoshenko beam model, the strain and curvature compo-
nents are obtained as the following:

Based on Eqs. (2) and (10), the strain energy variation of a 
micro-beam, considering the modified couple stress theory 
can be expressed as [32]:

(8)−�∇ · q = ρcp
∂T

∂t
.

(9)k∇2T = ρcp

(

∂T

∂t
+ τ

∂2T

∂t2

)

,

(10)
εxx =

∂u

∂x
+ zψx,x , εxz = εzx =

1

2

(

ψx + w,x

)

,

χ s
xy = χ s

yx =
1

4

(

ψx,x − w,xx

)

.

where

β = EαT/(1− 2v) is the thermal modulus, in which αT 
denotes the coefficient of linear thermal expansion. Fur-
thermore, θ = T − T0 is the temperature difference of any 
point of the beam from the reference temperature T0.

On the other hand, the variation of the kinetic energy 
within the Timoshenko beam model can be computed from 
the following equation [32]:

On the basis of Eqs. (11) and (13), using the Hamilton prin-
ciple, the dynamic equilibrium equations of a micro-beam, 
including thermal effects are as follows:

(12)

N
T =

∫

A

βθdA = b

h/2
∫

−h/2

βθdz, M
T =

∫

A

βθzdA = b

h/2
∫

−h/2

βθzdz.

(13)

δT = ρ

L
∫

0

(

A
(

u,t δu,t + w,tδw,t

)

+ Iψx,tδψx,t

)

dx

= −ρ

L
∫

0

(

A
(

u,tt δu+ w,ttδw
)

+ Iψx,ttδψx

)

dx

+ ρ

L
∫

0

(

A
(

u,t δu+ w,tδw
)

,t
+ I

(

ψx,tδψx

)

,t

)

dx.

(14)

δu : EAu,xx −
1

2
N
T
,x = ρAu,tt ,

δψx :

(

EI +
µl2A

4

)

ψx,xx −
1

2
M

T
,x − µA(ψx + w,x)

−
µl2A

4
w,xxx = ρIψx,tt ,

δw : µA

(

ψx,x + w,xx +
l2

4
(ψx,xxx − w,xxxx)

)

= ρAw,tt .

(11)

δU =

L
∫

0

[(

−EAu,xx +
1

2
NT
,x

)

δu+

(

−

(

EI +
µl2A

4

)

ψx,xx +
1

2
MT

,x + µA (ψx + w,x)

+
µl2A

4
w,xxx

)

δψx − µA

(

ψx,x + w,xx +
l2

4
(ψx,xxx − w,xxxx)

)

δw

]

dx

+

[(

EAu,x −
1

2
NT

)

δu

]x=L

x=0

+

[((

EI +
µl2A

4

)

ψx,x −
1

2
MT −

µl2A

4
w,xx

)

δψx

]x=L

x=0

+

[

µA

(

ψx + w,x +
l2

4
(ψx,xx − w,xxx)

)

δw

]x=L

x=0

−

[

µl2A

4
(ψx,x − w,xx)

]

δw,x
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Moreover, the boundary conditions at the points located on 
the edges of the micro-beam, at x = 0 and x = L, can be 
obtained as:

3.2  Thermal heat conduction equation

The non-Fourier thermal conduction equation, containing 
the thermo-elastic coupling terms, is:

Substituting the displacement components from Eq. (1) 
into Eq. (16), results in:

Assuming that the temperature increment varies in terms 
of a sin(pz) function thorough the thickness direction [31, 
32], where p = π/h, and by substituting this function into 
Eq. (17), one obtains the following result:

Then, multiplying Eq. (18) by bβz, and integration thor-
ough the thickness, yields:

3.3  Normalized coupled thermo‑elastic equations

By substituting Eq. (18) into (14) and using Eq. (19), the 
coupled thermo-elastic equations of a micro-beam are 
expressed herein:

(15)

EAu,x −
1

2
N
T = 0, OR δu = 0,

(

EI +
µl2A

4

)

ψx,x −
1

2
M

T −
µl2A

4
w,xx = 0, OR δψx = 0,

ψx + w,x +
l2

4
(ψx,xx − w,xxx) = 0, OR δw = 0,

ψx,x − w,xx = 0, OR δ

(

∂w

∂x

)

= 0.

(16)

k
∂2θ

∂xi∂xi
= ρcp

(

∂θ

∂t
+ τ

∂2θ

∂t2

)

+ βT0

(

∂2ui

∂t∂xi
+ τ

∂3ui

∂t2∂xi

)

.

(17)

k
(

θ,xx + θ,zz
)

= ρcv
(

θ,t + τθ,tt
)

+ βT0
(

u,tx

+zψx,tx + τ
(

u,ttx + zψx,ttx

))

.

(18)
NT = bβ

+h/2
∫

−h/2

θdz = 0.

(19)
k
(

MT
,xx − p2MT

)

= ρcp

(

MT
,t + τMT

,tt

)

+ T0β
2I
(

ψx,tx + τψx,ttx

)

.

The clamped and simply supported end conditions are 
defined as:

The following dimensionless quantities are defined to 
transform the coupled thermo-elastic equations and the 
boundary conditions into the non-dimensional form:

In Eq. (22), the parameters ψ̃ζ, w̃ and Φ indicate the dimen-
sionless angle of rotation, deflection and thermal moment, 
respectively. Thus, the normalized forms of the governing 
Eqs. (20) are introduced as:

(20)

(

EI +
µl2A

4

)

ψx,xx −
1

2
MT

,x

− µA(ψx + w,x)−
µl2A

4
w,xxx − ρIψx,tt = 0,

µA

(

ψx,x + w,xx +
l2

4
(ψx,xxx − w,xxxx)

)

− ρAw,tt = 0.

k
(

MT
,xx − p2MT

)

− ρcp

(

MT
,t + τMT

,tt

)

− T0β
2I
(

ψx,tx + τψx,ttx

)

= 0.

(21)

Clamped-Isothermal Ends:

ψx = 0, w = 0, ψx,x − w,xx = 0, θ = 0.

Simple-Isothermal Ends:
(

EI +
µl2A

4

)

ψx,x −
1

2
MT −

µl2A

4
w,xx = 0,

w = 0, ψx,x − w,xx = 0, θ = 0.

(22)
ζ =

x

L
, τ =

t

L
C, C =

√

E

ρ
,

ψ̃ζ = ψx , w̃ =
w

h
, Φ =

MT

EAh
.

(23a)

A1ψ̃ζ ,ζ ζ − ψ̃ζ ,ττ − A2ψ̃ζ + A3w̃,ζ ζ ζ − A4w̃,ζ − A5Φ,ζ = 0,

(23b)

A6ψ̃ζ ,ζ ζ ζ − A7 ψ̃ζ ,ζ + A8w̃,ζ ζ ζ ζ − A9w̃,ζ ζ + w̃,ττ = 0,

(23c)

A10ψ̃ζ ,τζ + A11ψ̃ζ ,ττζ −Φ,ζζ + A12Φ,ττ + A13Φ,τ + A14Φ = 0.
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Also, the coefficients Ai in (23a–23c) are defined in the 
Appendix 1. Similarly, the normalized boundary conditions 
are as follows:

4  Exact solution and numerical results

4.1  Solution methodology

The normal mode analysis is employed to obtain the natu-
ral vibration frequencies, including thermo-elastic damp-
ing for two types of boundary conditions, including: the 
clamped-isothermal and the simply supported-isothermal, 
at the two ends of the micro-beams. It can be shown that 
the dimensionless kinematic parameters ψ̃ζ and w̄ as well as 
the thermal moment Φ change harmonically with the same 
frequency. Hence, all the quantities are assumed to be a 
harmonic function [34], i.e.:

By substituting Eq. (25) into Eq. (23a–23c), we obtain:

(24)

Clamped-Isothermal Ends:

ψ̃ζ = 0, w̃ = 0,

A6ψ̃ζ ,ζ + A8w̃,ζ ζ = 0, Φ = 0.

Simple-Isothermal Ends:

A1ψ̃ζ ,ζ + A3w̃,ζ ζ − A5Φ = 0, w̃ = 0,

A6ψ̃ζ ,ζ + A8w̃,ζ ζ = 0, Φ = 0.

(25)

w̃ = w̃(ζ )eiΩt ,

ψ̃ζ = ψ̃ζ (ζ )e
iΩt ,

Φ = Φ(ζ)eiΩt

(26a)
A1ψ̃

′′
ζ +Ω2ψ̃ζ − A2ψ̃ζ + A3w̃

′′′ − A4w̃
′ − A5Φ

′ = 0,

(26b)A6ψ̃
′′′
ζ − A7ψ̃

′
ζ + A8w̃

′′′′ − A9w̃
′′ −Ω2w̃ = 0,

(26c)
iΩA10ψ̃

′
ζ −Ω2

A11ψ̃
′
ζ −Φ ′′ −Ω2

A12Φ + iΩA13Φ + A14Φ = 0.

By differentiating Eq. (26c) with respect to ζ and eliminat-
ing Φ ′ between the resulting equation and Eq. (26a), one 
can obtain:

where the coefficients ai in Eq. (27) are introduced in 
Appendix 2. By using Eqs. (26b) and (27), the uncoupled 
equation is found to be:

The coefficients pi in Eq. (28) are given in Appendix 2. Then, 
the solution of the dimensionless deflection w̃ is given by:

where ±�i (for i = 1, . . . , 4) are the roots of the character-
istic equation p1�8 + p2�

6 + p3�
4 + p4�

2 + p5 = 0 and Bi 
and Ci are constants.After calculating the deflection, we can 
substitute Eq. (29) into Eq. (27) to get the solution for the 
dimensionless rotation ψ̃ζ:

in which

Similarly, by substituting the dimensionless rotation from 
Eq. (30) into (23c), one of the thermal moments Φ can be 
obtained as follows:

where

(27)

a1(ψ̃ζ )
′′′′ + a2(ψ̃ζ )

′′ + a3ψ̃ζ + a4w̃
′′′′′ + a5w̃

′′′ + a6w̃
′ = 0,

(28)p1
d8w̃

dζ 8
+ p2

d6w̃

dζ 6
+ p3

d4w̃

dζ 4
+ p4

d2w̃

dζ 2
+ p5 = 0.

(29)w̃(ζ ) =

4
∑

i=1

(Bi sinh(�iζ )+ Ci cosh(�iζ )),

(30)ψ̃ζ (ζ ) =

4
∑

i=1

di(Bi sinh(�iζ )+ Ci cosh(�iζ )),

(31)di = −
a4�

5
i + a5�

3
i + a6�i

a1�
4
i + a2�

2
i + a3

.

(32)Φ(ζ) =

4
∑

i=1

ei(Bi sinh(�iζ )+ Ci cosh(�iζ )),

Table 1  Comparison of non-dimensional frequencies based on different theories for the non-Fourier heat conduction model

Non-dimensional frequencies Case I Case II

Classical theory Modified couple stress theory Classical theory Modified couple stress theory

Ω1 1.98− j0.87e−11 2− j0.69e−11 1.72− j0.73e−11 1.75− j0.61e−11

Ω2 −1.98− j0.87e−11 −2− j0.69e−11 −1.72− j0.73e−11 −1.75− j0.61e−11

Ω3 0.54e−5 − j0.22e−9 0.6e−5 − j0.17e−11 0.45e−5 − j0.16e−9 0.52e−5 − j0.1e−11

Ω4 −0.54e−5 − j0.22e−9 −0.6e−5 − j0.17e−11 −0.45e−5 − j0.16e−9 −0.52e−5 − j0.1e−11

Ω5 j13.97 j15.17 j7.27 j11.78

Ω6 −j13.97 −j15.17 −j7.27 −j11.78
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By imposing the clamped-isothermal conditions from 
Eq. (24) in equations of the dimensionless kinematic 
parameters, introduced by Eqs. (29), (30) and (32), the fol-
lowing equations are derived:

(33)
ei =

(

iΩA10 −Ω2A11

)

�i

�
2
i +Ω2A12 − iΩA13 − A14

.

(34)











































































































































































































































































w̃(ζ = 0) = 0

⇒

4
�

i=1

Ci = 0,

w̃(ζ = 1) = 0

⇒

4
�

i=1

(Bi sinh(�i)+ Ci cosh(�i)) = 0,

ψ̃ζ (ζ = 0) = 0

⇒

4
�

i=1

diCi = 0,

ψ̃ζ (ζ = 1) = 0

⇒

4
�

i=1

di(Bi sinh(�i)+ Ci cosh(�i)) = 0,

(A6ψ̃ζ ,ζ + A8w̃,ζ ζ )(ζ = 0) = 0

⇒

4
�

i=1

�i(diA6Bi + A8�iCi) = 0,

(A6ψ̃ζ ,ζ + A8w̃,ζ ζ )(ζ = 1) = 0

⇒

4
�

i=1

�i

�

(diA6 cos(�i)+ A8�i sinh(�i))Bi

+(diA6 sin(�i)+ A8�i cos(�i))Ci

�

= 0,

Φ(ζ = 0) = 0

⇒

4
�

i=1

eiCi = 0,

Φ(ζ = 1) = 0

⇒

4
�

i=1

ei(Bi sinh(�i)+ Ci cosh(�i)) = 0

For the simply supported conditions, the two following 
equations are replaced instead of the third and the fourth 
equations (ψ̃ζ (ζ = 0) = ψ̃ζ (ζ = 1) = 0) in Eq. (34) as:

In order to obtain the non-trivial solution, the constants 
Bi and Ci must be non-zero. Therefore, the following fre-
quency equation can be regarded as:

where gijs are expressed for both boundary conditions in 
Appendix 3. The dimensionless frequency Ω can be calcu-
lated by solving Eq. (36).

4.2  Numerical results

Let the material length scale parameters l and relaxation 
time τ be equal to zero, then the size-dependent coupled 
thermo-elastic equations and the boundary conditions of a 
Timoshenko micro-beam can be obtained on the basis of 

(35)
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A1ψ̃ζ ,ζ + A3w̃,ζ ζ − A5Φ

�

(ζ = 0) = 0

⇒

�

A1ψ̃ζ ,ζ + A3w̃,ζ ζ

�

(ζ = 0) = 0

⇒

4
�

i=1

�i(diA1Bi + A3�iCi) = 0,

�

A1ψ̃ζ ,ζ + A3w̃,ζ ζ − A5Φ

�

(ζ = 0) = 0

⇒

�

A1ψ̃ζ ,ζ + A3w̃,ζ ζ

�

(ζ = 0) = 0

4
�

i=1

�i

�

(diA1 cos(�i)+ A3�i sinh(�i))Bi

+(diA1 sin(�i)+ A3�i cos(�i))Ci

�

= 0
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Table 2  Comparison of non-dimensional frequencies based on different theories for the Fourier heat conduction model

Non-dimensional frequencies Case I Case II

Classical theory Modified couple stress theory Classical theory Modified couple stress theory

Ω1 15.52 13.8 12.25 10.35

Ω2 −15.52 −13.8 −12.25 −10.35

Ω3 2.02 2.02 0.97 0.95

Ω4 −2.02 −2.02 −0.97 −0.95

Ω5 j0.067 j0.067 j0.024 j0.024
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the classical theory. Hence, corresponding results to each 
type of theory are obtained and compared. For obtaining 
numerical results, it is assumed that the micro-beam is 
made of silicon [31]:

Moreover, it is assumed that T0 = 293 K. There is a lack 
of experimental data for the value of the thermal relaxation 
time τ. However, a range of 10–50 μs have been reported 
for various materials [35]. In this study, τ is set to be 16 μs 
for derivation of numerical results from the exact solution.

In Tables 1 and 2, the non-dimensional frequencies 
based on non-Fourier and Fourier heat conduction models 
for a micro-beam with the clamped and isothermal bound-
ary conditions (case I) and the simply supported and iso-
thermal boundary conditions (case II) at the two ends are 
presented. From Table 1, it is seen that real part of the fre-
quencies and the complex magnitude of the pure imaginary 
frequencies, predicted by the modified couple stress theory, 
are larger than those of classical theory; whereas, the imag-
inary parts of the complex frequencies are smaller. Further-
more, two complex conjugate frequencies are identically 
calculated. It can be concluded from Table 2 that most of 
these non-dimensional frequencies are real numbers. Also, 
the modified couple stress theory predicts the non-dimen-
sional frequencies equal to or smaller than the classical 
theory for the two cases of the boundary conditions consid-
ered. By making comparison between the numerical results 
in Tables 1 and 2, it can be concluded that values of vibra-
tional frequencies and consequently the vibration behavior 
predicted by the non-Fourier and Fourier heat conduction 
models, differ significantly from each other. In Tables 3 
and 4, the non-dimensional frequencies are given for dif-
ferent values of L/h, based on the non-Fourier and Fourier 
heat conduction models, respectively. Taking a look at the 
results obtained in Table 3, it can be induced that unlike 
their imaginary part, the values of the real part of the non-
dimensional frequencies for the non-Fourier heat conduc-
tion model are increased by rise in L/h. The effect of aspect 
ratio (L/h) on the non-dimensional frequencies which are 
obtained based on Fourier heat conduction model is more 
drastic than those of the non-Fourier model.

Since there are no results in the literature on the size-
dependent coupled thermo-elastic behavior, in order to 
validate the results, some obtained results for the natural 
frequency in the special case of l = 0, i.e., the results of the 
classical continuum theory, are compared with those pre-
sented by Sun et al. [36]. The variation of the minimum 
dimensionless frequency versus dimensionless thickness of 
the beam (h/h0) is depicted in Fig. 2. The beam thickness 

E = 169GPa, ρ = 2330
kg

m3
,

cv = 713
J

kg
K, αT = 2.59× 10−6 1

K
, v = 0.22 and k = 156W/mK.
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varies from h/h0 = 0.1 to h/h0 = 1.0, wherein h0 is equal 
to 20 μm. Figures 3 and 4 demonstrate the variation of the 
minimum dimensionless frequency by increasing h0/l for 
the clamped-isothermal end conditions (case I) and the 
simply supported-isothermal end conditions (case II). From 
Figs. 3 and 4, it can be observed that the minimum values 
of the real part of dimensionless frequency are reduced 
continuously as the value of h0/l increases. In addition, the 
difference between the values predicted for various values 
of aspect ratio (L/h) becomes smaller with the decrease of 
h0/l.

5  Conclusion

In this paper, an exact solution for vibrational fre-
quencies of micro-beam resonators was developed by 
employing the generalized thermo-elastic model pre-
sented by Taati et al. [32]. This size-dependent model 
is based on the modified couple stress and non-Fourier 
heat conduction theories, which have the capability of 
capturing the size-effect in micro-scaled structures. The 
uncoupled governing equations were obtained by per-
forming mathematical operations. Then, the exact gen-
eral solutions of dimensionless deflection, rotation and 
thermal moment were presented for any boundary condi-
tions at beam ends [please see Eqs. (29), (30) and (32)]. 
Eventually, the frequency equation was acquired by 
imposing end conditions. The dimensionless frequencies 

Table 4  Comparison of non-dimensional frequencies for different 
L/h based on the Fourier heat conduction model

Non-
dimensional 
frequencies

L/h = 6 L/h = 8 L/h = 10

Case I Case II Case I Case II Case I Case II

Ω1 15.52 12.13 19.45 16.32 23.55 19.53

Ω2 −15.52 −12.13 −19.45 −16.32 −23.55 −19.53

Ω3 2.02 0.95 2.02 0.95 2.02 0.95

Ω4 −2.02 −0.95 −2.02 −0.95 −2.02 −0.95

Ω5 j0.072 j0.031 j0.088 j0.044 j0.11 j0.051

Fig. 2  Variation of the minimum dimensionless frequency versus 
dimensionless thickness based on the non-Fourier heat conduction 
model and classical theory for case I of boundary condition

Fig. 3  Variation of the minimum dimensionless frequency with the 
increase of h0/l for the clamped-isothermal end conditions (case I)

Fig. 4  Variation of the minimum dimensionless frequency with the 
increase of h0/l for the simply supported-isothermal end conditions 
(case II)
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were computed for two boundary condition cases, i.e., 
the clamped and isothermal, the simply supported and 
isothermal, which are widely used in most of MEMS. 
It can be readily concluded from numerical results that, 
values of vibrational frequencies, and so consequently 
the vibration behaviors predicted by the non-Fourier and 
Fourier heat conduction models, prove to be completely 
different from each other. As a result, the frequency 
response is extremely sensitive to values of the thermal 
relaxation time.

Acknowledgments The authors gratefully acknowledge the finan-
cial and other supports of this research, provided by Islamic Azad 
University, Eslam-shahr Branch, Tehran, Iran.

Appendix 1

(37)

A1 = 1+ 3

(

l

h

)2
(µ

E

)

,

A2 = 12
(µ

E

)

(

L

h

)2

,

A3 = −3
(µ

E

)

(

h

L

)(

l

h

)2

,

A4 = 12
(µ

E

)

(

L

h

)

,

A5 = 6
L

h
,

A6 = −
1

4

(µ

E

)

(

h

L

)(

l

h

)2

,

A7 =
µ

E

(

L

h

)

,

A8 =
1

4

(µ

E

)

(

h

L

)2(
l

h

)2

,

A9 =
µ

E
,

A10 =
T0β

2IC

KEAh
,

A11 =
T0β

2IτC2

KEAhL

A12 =
ρcp

k

(

Eτ

ρ

)

,

A13 =
ρcp

k

(

L

√

E

ρ

)

,

A14 = π2

(

L

h

)2

.

Appendix 2

Appendix 3
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,
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1
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+ A11 +
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(
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(A1A14 + A2),

a3 =

(

A14 + iΩA13 −Ω2A12

A5

)

(Ω2 − A2),

a4 = −
A3

A5

,

a5 =
A4

A5

+

(

A14 + iΩA13 −Ω2A12

A5

)

A3,

a6 = −

(

A14 + iΩA13 −Ω2A12

A5

)

A4.

(39)

For both case of boundary conditions

g1i = 0 (i = 1, 3, 5, 7),

g1i = 1 (i = 2, 4, 6, 8),

g2i = sinh(�i) (i = 1, 3, 5, 7),

g2i = cosh(�i) (i = 2, 4, 6, 8),

g5i = �idiA6 (i = 1, 3, 5, 7),

g5i = A8�
2
i (i = 2, 4, 6, 8),

g7i = 0 (i = 1, 3, 5, 7),

g7i = ei (i = 2, 4, 6, 8),

g8i = ei sinh(�i) (i = 1, 3, 5, 7),

g8i = ei cosh(�i) (i = 2, 4, 6, 8),

g6i = �i(diA6 cos(�i)+ A8�i sinh(�i))

(i = 1, 3, 5, 7),

g6i = �i(diA6 sin(�i)+ A8�i cos(�i))

(i = 2, 4, 6, 8),

Clamped-Isothermal Ends:

g3i = 0 (i = 1, 3, 5, 7),

g3i = di (i = 2, 4, 6, 8),

g4i = di sinh(�i) (i = 1, 3, 5, 7),

g4i = di cosh(�i) (i = 2, 4, 6, 8),

Simple-Isothermal Ends:

g3i = �idiA1 (i = 1, 3, 5, 7),

g3i = A3�
2
i (i = 2, 4, 6, 8),

g4i = �i(diA1 cos(�i)+ A3�i sinh(�i))

(i = 1, 3, 5, 7),

g4i = �i(diA1 sin(�i)+ A3�i cos(�i))

(i = 2, 4, 6, 8).
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