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Abstract This work presents the model of a shear-frame-

type structure composed of six flexible beams and three

rigid masses. Fixed on the ground, outside the structure,

two voltage-controlled electromagnetic actuators are used

for vibration control. To model the flexible beams, unidi-

mensional finite elements were used. Nonlinear equations

for the actuator electromagnetic force, noise in the position

sensor, time delays for the control signal update and volt-

age saturation were also considered in the model. For

controlling purposes, a discrete linear quadratic regulator

combined with a predictive full-order discrete linear

observer was employed. Results of numerical simulations,

where the structure is submitted to an impulsive distur-

bance force and to a harmonic force, show that the oscil-

lations can be significantly reduced with the use of the

electromagnetic actuators.

Keywords Structures � Vibration control �
Electromagnetic actuators � Discrete linear quadratic

regulator

List of symbols

A State matrix of the continuous state-space equations

a Air gap cross section

B Input matrix of the continuous state-space equations

C Output matrix of the state-space equations

c Control vector

f Force vector

G State matrix of the discrete state-space equations

H Input matrix of the discrete state-space equations

I Identity matrix

i Total electric current in one actuator

ia1 Total electric current in actuator 1

ia2 Total electric current in actuator 2

Kn Beam element stiffness matrix

la Length of the flexible beams between the ground andm1

lb Length of the flexible beams between m1 and m2

lc Length of the flexible beams between m2 and m3

ln Length of a beam element

Mn Beam element mass matrix

N Number of turns of the electromagnetic actuator coil

P Solution matrix of the algebraic Riccati equation

q Vector of state variables

q̂ Vector of estimated state variables

r Actuator electric resistance

s Distance between the actuator surface and the

ferromagnetic mass surface

sa1 Distance between actuator 1 surface and m1 left surface

sa2 Distance between actuator 2 surface and m1 right

surface

t Continuous time

Ua1 Total voltage in actuator 1

Ua2 Total voltage in actuator 2

uG Structure displacement vector

vG Structure velocity vector
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1 Introduction

When dynamic forces are applied in structures, undesired

oscillations may occur. There are many ways to minimize

those oscillations. Passive, semi-active and active methods

are extensively described in the literature. A common

passive method consists of using dynamic vibration

absorbers, also known as tuned mass dampers, constructed

with a mass and a spring (or a mass, a spring and a viscous

damper), as described in [10, 15, 16, 24, 27, 34]. Despite its

effectiveness when periodic forces are applied, they are

limited to some frequency range. To allow an effective

operation in a wider force frequency range, [14] proposes

the use of multiple degrees of freedom vibration absorbers.

Other type of passive solutions can be achieved with the

use of resonant circuit shunted piezoelectrics [23, 25, 27,

31], use of viscoelastic materials [10] or shape memory

alloys [9]. Alternative techniques, as the use of passive

electromagnetic dampers, can be found in [22].

Semi-active methods often bring better vibration

reduction but without the power consumption required by

the active methods. The magnetorheological dampers,

described in detail by [19, 23], are commonly mentioned in

literature. Examples of those dampers with different con-

trollers can be found in [3, 12, 33], where special attention

is given for control of structural vibration caused by

earthquakes. Another type of a semi-active technique can

be found in [30], where a coil-based electromagnetic

vibration control device has been used.

The most effective class of vibration control devices are

of the active type. They can be used to reduce the oscil-

lations due to periodic disturbances in wider frequency

ranges as well as oscillations caused by impulsive distur-

bances. Different active methods for vibration control can

be used. A widely used method consists in employing

piezoelectric actuators, as shown in [1, 2, 7, 8], where they

are used in combination with different controllers. In [25],

an active–passive piezoelectric network is presented.

Another active technique consists in using reaction masses,

as presented in [5, 13]. In [13], a comparison between the

performance of an active controller that uses reaction

masses and a passive controller is presented. Recently,

electromagnetic actuators, assembled and fixed outside the

structure, have been used to control vibration of flexible

beams. In [11, 18, 32], a single actuator is employed. In

[17], two actuators are used, allowing electromagnetic

forces in opposite directions. In [29], two actuators are

used to control the vibration of a moving mass attached to a

rigid arm that can rotate with respect to the ground.

The use of electromagnetic actuators is very efficient

and they are assembled outside and without any physical

contact with the structure whose oscillations need to be

controlled. This makes their use an interesting solution

when actuators cannot be assembled directly at the struc-

ture. Besides, when oscillations that were not expected

during the design stage need to be reduced, the use of those

external actuators may be cheaper than modifying a

structure that has already been constructed. Despite the

mentioned vantages of the electromagnetic actuators they

have a main drawback, the relative motion between the

actuator surface and the actuated part of the structure needs

to be very small [26, 28], usually less than 1 mm. But if

this motion can be kept small, the use of electromagnetic

actuators assembled outside the structure is viable.

In this work, electromagnetic actuators will be

employed to control the vibrations of a structure due to an

impulsive force. For that, a model of the structure, actuator

and the controller will be developed and simulation results

will be presented to show the effectiveness of this vibration

control technique.

2 Structure, actuators and position sensor

According to the scheme below, the shear-frame-type

structure considered at this work is composed of three rigid

masses (m1, m2 and m3), connected to each other with

flexible elements (b3, b4, b5 and b6). The first rigid mass is

also connected to the ground with flexible elements (b1 and

b2). To control the vibrations, two electromagnetic actua-

tors (a1 and a2) are fixed to the ground in such a way to

exert forces in m1. To have magnetic forces acting at the

structure, m1 should consist of a ferromagnetic material or

should have ferromagnetic material at its surfaces facing

the actuators. To measure m1 displacement, a position

sensor (p) is assembled near one of its lateral surfaces. For

controlling purposes, it will be considered that a digital

computer is used.

Considering that the thickness of the flexible structures

is much smaller than its width and considering that b1 is

identical and parallel to b2, that b3 is identical and parallel

to b4, and, that b5 is identical and parallel to b6, it can be

assumed that the masses will only move parallel to the

ground fixed X axis. Therefore, all the analysis will be

made considering forces applied in this direction, accord-

ing to Fig. 1, where a disturbance force, f(t), applied at m3

is shown.

2.1 Structure model

If the length of each flexible element is significantly larger

than its width and thickness, unidimensional finite elements

can be used for modeling purposes. Considering that the

rigid masses will move only in directions parallel to X axis,

beam elements with two knots and four degrees of freedom

can be employed for the discretization of the flexible
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elements in the structure (b1, b2, b3, b4, b5 and b6). The

degrees of freedom of a beam element n are represented in

Fig. 2.

The stiffness matrix and the consistent mass matrix of a

flexible beam element with constant specific mass q, con-
stant cross section area A, constant area moment of inertia

I, constant elasticity modulus E and with length ln are,

respectively, given by [15]:

Kn ¼ EI

12=l3n 6=l2n �12=l3n 6=l2n
6=l2n 4=ln �6=l2n 2=ln

�12=l3n �6=l2n 12=l3n �6=l2n
6=l2n 2=ln �6=l2n 4=ln

2
664

3
775 ð1Þ

Mn ¼
qA
420

156ln 22l2n 54ln �13l2n
22l2n 4l3n 13l2n �3l3n
54ln 13l2n 156ln �22l2n
�13l2n �3l3n �22l2n 4l3n

2
664

3
775 ð2Þ

For a flexible beam with constant cross-sectional area of

width w and thickness h:

A ¼ hw ð3Þ

I ¼ hw3=12: ð4Þ

If two beam elements with the same length are used for

the discretization of each flexible beam in the structure, a

model with 12 beam elements and 15 degrees of freedom is

obtained. The subscript G is used to indicate that the

degrees of freedom are referred to the whole structure

(global degrees of freedom). The structure also contains

three rigid elements m1, m2 and m3 (Fig. 3).

The global stiffness matrix, KG, and the consistent mass

matrix, MG, represented with Eqs. (5) and (6), can be

obtained from the mass and stiffness matrices of each beam

element according to the methods discussed in [15]:

KG ¼
k1;1 � � � k1;15

..

. . .
. ..

.

k15;1 � � � k15;15

2
64

3
75 ð5Þ

Fig. 1 Shear frame structure

Fig. 2 Beam element with two knots and four degrees of freedom Fig. 3 Discretized structure
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MG ¼
m1;1 � � � m1;15

..

. . .
. ..

.

m15;1 � � � m15;15

2
64

3
75 ð6Þ

The elements of the matrices above are given in the

‘‘Appendix’’. Since u5G , u10G and u15G describe, respec-

tively, the displacements of m1, m2 and m3, those masses

were added at the components m5;5, m10;10 and m15;15 of the

global consistent mass matrix.

Considering that the structure has proportional damping,

then, according to [15, 24], the viscous damping matrix,

DG, can be calculated with Eq. (7).

DG ¼ aMG þ bKG: ð7Þ

If the first two modal damping factors, f1 and f2, and the

first two natural angular frequencies of the structure (x1

and x2) are known, the coefficients a and b can be cal-

culated using with the following system of equations [15]:

f1 ¼
a

2x1

þ bx1

2

f2 ¼
a

2x2

þ bx2

2

8>><
>>:

ð8Þ

Which can solved for a and b:

a ¼ 2 f2 �
f1x2

x1

� ��
1

x2

� x2

x2
1

� �

b ¼ 2f1=x1 � 2 f2 �
f1x2

x1

� ��
x2

1

x2

� x2

� �

8>>><
>>>:

ð9Þ

2.2 Actuator models

An electromagnetic actuator can only exert an attractive

force at a ferromagnetic material. According to [26, 28],

the magnitude of this force can be modeled as:

faðtÞ ¼
1

4
l0N

2a
iðtÞ2

sðtÞ2
; ð10Þ

where l0 is the magnetic field constant of the vacuum.

Considering that the two actuators, a1 and a2, are

identical, with a1 pulling m1 to the left and a2 pulling it to

the right, the forces exerted by the actuator a1 and a2 are,

respectively, given by:

fa1ðtÞ ¼ �1

4
l0N

2a
ia1ðtÞ

2

sa1ðtÞ
2
¼�1

4
l0N

2a
ia1ðtÞ

2

½s0 þ u5GðtÞ�
2

ð11Þ

fa2ðtÞ ¼
1

4
l0N

2a
ia2ðtÞ

2

sa2ðtÞ
2
¼ 1

4
l0N

2a
ia2ðtÞ

2

½s0 � u5GðtÞ�
2
; ð12Þ

where s0 is the air gap between each actuator surface and

the ferromagnetic surfaces of the rigid mass m1 when the

structure is in equilibrium position, as shown in Fig. 4.

If voltage control is used, the currents at each actuator

can be calculated with the following differential equations

below [26]:

ria1ðtÞ þ L _ia1ðtÞ � ku _u5GðtÞ ¼ Ua1ðtÞ ð13Þ

ria2ðtÞ þ L _ia2ðtÞ þ ku _u5GðtÞ ¼ Ua2ðtÞ ð14Þ

To have a more realistic model, variable inductance (L)

and variable voltage–velocity coefficient (ku) will be con-

sidered. The inductance depends on the gap between the

actuator surface and the ferromagnetic material surface.

The voltage–velocity coefficient depends on this gap and

the actuator current. Therefore, Eqs. 13 and 14 can be re-

written as:

ria1ðtÞ þ Lðsa1Þ _ia1ðtÞ � kuðsa1 ; ia1Þ _u5GðtÞ ¼ Ua1ðtÞ ð15Þ

ria2ðtÞ þ Lðsa2Þ � _ia2ðtÞ þ kuðsa2 ; ia2Þ _u5GðtÞ ¼ Ua2ðtÞ ð16Þ

An empirical formula for the inductance in function of

the air gap s is given in [4]:

LðsÞ ¼ L0 þ ðLmax � L0Þ=ð1þ c � sÞ; ð17Þ

where L0 is the inductance when the ferromagnetic element

is not present, Lmax is the inductance when the ferromag-

netic material is touching the actuator and c is a parameter.

If the inductance when the ferromagnetic material is

at some distance d from the actuator’s surface is known

(i.e., Ld), the parameter c can be calculated:

Fig. 4 Displacement of m1 with respect to equilibrium position
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Ld ¼ LðdÞ ¼ L0 þ ðLmax � L0Þ=ð1þ c � dÞ ð18Þ

c ¼ 1

d
� Lmax � L0

Ld � L0
� 1

� �
ð19Þ

Therefore, Eq. (17), applied to actuator a1 and actuator

a2, becomes:

Lðsa1Þ ¼ L0 þ
ðLmax � L0Þ

1þ sa1
d
� Lmax�L0

Ld�L0
� 1

� �

¼ L0 þ
ðLmax � L0Þ

1þ ½s0þu5G ðtÞ�
d

� Lmax�L0
Ld�L0

� 1
� � ð20Þ

Lðsa2Þ ¼ L0 þ
ðLmax � L0Þ

1þ sa2
d
� Lmax�L0

Ld�L0
� 1

� �

¼ L0 þ
ðLmax � L0Þ

1þ ½s0�u5G ðtÞ�
d

� Lmax�L0
Ld�L0

� 1
� � ð21Þ

In [26], it is mentioned that when the electromagnetic

force is linearized around an equilibrium gap, s0, and a bias

current, i0, the voltage–velocity coefficient, ku, is equal to

the force–current factor, ki, given by Eq. 22.

ku ¼ ki ¼ l0N
2a

i0

s20
ð22Þ

For different gaps, s, and currents, i, the coefficient ku
can be approximated by:

kuði; sÞ ¼ l0N
2a

i

s2
ð23Þ

Therefore, for the actuator a1 current equation the

coefficient ku will be approximated by Eq. (24) and for the

actuator a2 it will be approximated by Eq. (25).

kuðia1 ; sa1Þ ¼ l0N
2a

ia1
s2a1

¼ l0N
2a

ia1

½s0 þ u5GðtÞ�
2

ð24Þ

kuðia2 ; sa2Þ ¼ l0N
2a

ia2
s2a2

¼ l0N
2a

ia2

½s0 � u5GðtÞ�
2

ð25Þ

The total voltage provided for each actuator will be

composed of the bias voltage, U0, and the control voltage,

U, according to the equations below:

Ua1ðtÞ ¼ U0 � UðtÞ ð26Þ
Ua2ðtÞ ¼ U0 þ UðtÞ ð27Þ

The use of a bias voltage is necessary to induce a bias

current at the actuators, i0, which is necessary to allow the

linearization of the resultant actuator force, as discussed in

[26, 28]. With a linearized expression for the actuation

force, it is possible to design a linear controller. The control

voltage will be obtained by the controller, discussed in

detail further.

Substituting Eqs. (20), (24) and (26) in Eq. (15) and

substituting Eqs. (21), (25) and (27) in Eq. (16), a more

accurate representation of the differential equations for the

current at the actuators is obtained:

ria1ðtÞ þ L0 þ
ðLmax � L0Þ

1þ ½s0þu5G ðtÞ�
d

Lmax�L0
Ld�L0

� 1
� �

2
4

3
5 _ia1ðtÞ

� ia1ðtÞl0N2a _u5GðtÞ
½s0 þ u5GðtÞ�

2
¼ U0 � UðtÞ

ð28Þ

ria2ðtÞ þ L0 þ
ðLmax � L0Þ

1þ ½s0�u5G ðtÞ�
d

Lmax�L0
Ld�L0

� 1
� �

2
4

3
5 _ia2ðtÞ

þ ia2ðtÞl0N2a _u5GðtÞ
½s0 � u5GðtÞ�

2
¼ U0 þ UðtÞ

ð29Þ

Power amplifiers used in real systems provide voltages

until a superior limit, Usup. This nonlinear feature is rep-

resented in Fig. 5 and will be considered in the simulation

program.

In the model used in this work, hysteresis and magnetic

saturation at the actuators will be disregarded. In a real sys-

tem, these phenomena can only be avoided if the flux density,

B, at the actuators is kept below a limiting value, Blim, of the

metal used in its core. Equation (30) relates the flux density

with the actuator current, i, and the air gap s [26]:

B ¼ l0N
i

2s
ð30Þ

If B is smaller than Blim, the actuator will be working

within the hysteresis and saturation limits. Therefore,

Fig. 5 Voltage saturation
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during the simulation it is important to verify this condition

to guarantee the suitability of the model used. This can be

done if the condition below is checked at every simulation

time step:

l0N
iðtÞ
2sðtÞ\Blim ! iðtÞ

sðtÞ\
2Blim

l0N
ð31Þ

As there are two actuators, the conditions should be

checked for each of them:

ia1ðtÞ
sa1ðtÞ

¼ ia1ðtÞ
s0 þ u5GðtÞ

\
2Blim

l0N
ð32Þ

ia2ðtÞ
sa2ðtÞ

¼ ia2ðtÞ
s0 � u5GðtÞ

\
2Blim

l0N
ð33Þ

2.3 Sensor model

There is only one sensor in the system that measures m1

position. To assure that a realistic sensor model is used,

noise will be included in the simulation program. The

output of the sensor, y(t), with noise, g(t), is given by:

yðtÞ ¼ u5GðtÞ þ gðtÞ ð34Þ

The noise will be modeled as random function that can

assume any value between a lower limit, ginf, and an upper

limit, gsup.

3 Controller

A system where the control is done with a digital

computer is modeled in this work. The use of digital

computers for controlling purposes allows the application

of more sophisticated control techniques, but introduces

time delays in the system. Therefore, in the model used

at the simulations, it is necessary to consider those time

delays. Time delays due to digital controllers mean that

the control signal applied at some instant tk is calculated

with the information provided by the sensor at a previous

time tk-1. Assuming constant time delays, T, the rela-

tionship between two consecutive sampled times is given

by:

tk ¼ tk�1 þ T ð35Þ

Alternatively, the expression above can be written as:

tkþ1 ¼ tk þ T ð36Þ

Besides, zero-order hold [20] will be considered, which

means that the control signal will remain constant at the

calculated value until a new value is provided by the digital

computer, after T seconds.

The purpose of the controller is to bring the structure

back to equilibrium position (i.e., uG = 0) after some

disturbance force is applied. A linear quadratic regulator

(LQR), described in [20, 21], will be used for that. As this

is a state-space regulator, it is necessary to provide the

system states for the calculations of the control signal.

Assuming that only one sensor is available, an observer

will be used to estimate the states. In this work, a full-order

observer will be employed [20, 21]. Besides, the LQR is a

linear regulator, which means that it is designed based at a

linear model of the system. Therefore, it is necessary to

develop a linear model of the system.

Due to the time delays, it is recommended to use a

discrete LQR with a predictive observer. For that, a linear

discrete model of the system is necessary. To avoid the

estimation of too many states, the controller and the

observer will be designed based in a simplified three

degrees of freedom flexible structure, discussed next.

Therefore, a continuous linear model of the system will

be first developed. From this model, a discrete linear

model of the system will be obtained, which allows the

design of a discrete LQR and predictive discrete linear

observer.

3.1 Continuous simplified model

For the controller and observer design a simplified three

degrees of freedom model of the structure will be used.

Within the simplified model, ideal springs linking the

bodies are considered instead of the flexible beams,

according to the scheme shown in Fig. 6.

The stiffness constant for a spring that represents two

parallel flexible beams of length lm connecting elements

that move parallel to the ground is given by [24]:

k ¼ 24EI=l3m ð37Þ

Fig. 6 Simplified model
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Therefore, each of the equivalent springs will have the

following stiffness:

ka ¼ 24EI=l3a ð38Þ

kb ¼ 24EI=l3b ð39Þ

kc ¼ 24EI=l3c ð40Þ

Each actuator exerts an attractive nonlinear force at m1.

But if small displacements of m1 occur around the equi-

librium position (where the air gap is equal to s0 for both

actuators, as shown in Fig. 4) and if the actuator currents

oscillate around a bias current, i0, an actuation resultant

linear force, fr(t), can be approximated by [15, 24]:

frðtÞ ¼ kiixðtÞ þ ksu5GðtÞ; ð41Þ

where ix is the differential current. The force–current fac-

tor, ki, is given by Eq. (22) and the force–displacement

factor, ks, is given by Eq. (42), as shown in [26, 28]:

ks ¼ l0N
2a

i20
s30

ð42Þ

It is important to stress that, as the actuators are con-

trolled by voltage, the bias current, i0, has to be induced by

providing a bias voltage, U0.

i0 ¼ U0=r ð43Þ

Therefore, the constants ki and ks can be written as:

ki ¼ l0N
2a

ðU0=rÞ
s20

ð44Þ

ks ¼ l0N
2a

ðU0=rÞ2

s30
ð45Þ

According to [26, 28], the differential current, ix, can be

calculated with Eq. (46):

rixðtÞ þ Lavg _ixðtÞ � ku _u5GðtÞ ¼ UðtÞ; ð46Þ

where Lavg is an average inductance value, ku is equal to ki,

now given by Eq. (44), and U is the control voltage. Since

the mass m1 will oscillate around s0, the average value for

the inductance can be obtained by considering s = s0 in

Eq. (17).

If the proportional damping coefficients a and b of the

structure are known, proportional damping can be included

in this simplified model. The set of equations below,

together with Eq. (46), can be used to represent the sim-

plified structure with proportional damping.

m1€u5GðtÞ þ ½am1 þ bðka þ kbÞ� _u5GðtÞ � bkb _u10GðtÞ
þ ðka þ kbÞu5GðtÞ � kbu10GðtÞ

¼ frðtÞ ¼ kiixðtÞ þ ksu5GðtÞ ð47Þ

m2€u10GðtÞ � bkb _u5GðtÞ þ ½am2 þ bðkb þ kcÞ� _u10GðtÞ
� bkc _u15GðtÞ � kbu5GðtÞ þ ðkb þ kcÞu10GðtÞ � kcu15GðtÞ ¼ 0

ð48Þ

m3u15GðtÞ � bkc _u10GðtÞ þ ½am3 þ bkc� _u15GðtÞ � kcu10GðtÞ
þ kcu15GðtÞ ¼ 0 ð49Þ

Making the following variable substitution:

q1 ¼ u5G ; q2 ¼ u10G ; q3 ¼ u15G ; q4 ¼ _u5G ; q5 ¼ _u10G ;

q6 ¼ _u15G and q7 ¼ ix:

The system can, finally, be written in the continuous

state-space form, [34]:

_qðtÞ ¼ AqðtÞ þ BcðtÞ ð50Þ

where:

_qðtÞ ¼ _q1ðtÞ _q2ðtÞ _q3ðtÞ _q4ðtÞ _q5ðtÞ _q6ðtÞ _q7ðtÞ½ �T

ð51Þ

qðtÞ ¼ q1ðtÞ q2ðtÞ q3ðtÞ q4ðtÞ q5ðtÞ q6ðtÞ q7ðtÞ½ �T

ð52Þ

B ¼ 0 0 0 0 0 0 1=Lavg½ �T ð53Þ
cðtÞ ¼ UðtÞ ð54Þ

A ¼

A1;1 A1;2 � � � A1;7

A2;1 A2;2 � � � A2;7

..

. ..
. . .

. ..
.

A7;1 A7;2 � � � A7;7

2
6664

3
7775 ð55Þ

The elements of the matrix A are shown in the

‘‘Appendix’’.

3.2 Discrete simplified model

The discrete state-space equations of a linear time invariant

system are given by Eq. (56). It is considered that any two

consecutive discrete time instants are separated by T

seconds.

qðtkþ1Þ ¼ GqðtkÞ þHcðtkÞ; ð56Þ

where

cðtkÞ ¼ UðtkÞ ð57Þ

The discrete model can be obtained from the continuous

model. After substituting the numerical value of the

parameters in matrices A and B, the numerical value of

matrices G and H can be calculated according to the

equations below [20]:

G ¼ eAT ð58Þ
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H ¼
Z T

0

eAkdk

� �
B ð59Þ

3.3 Discrete LQR design

The LQR is a state-space regulator whose control signal is

given by:

cðtkÞ ¼ �KCqðtkÞ; ð60Þ

where KC is the controller gain matrix (here a single line

matrix with seven columns). This gain should minimize the

quadratic performance index, J, below:

J ¼ 1

2

X
k

qTðtkÞQqðtkÞ þ cTðtkÞRcðtkÞ
� �

ð61Þ

The control vector is the control tension U(tk), a scalar.

Therefore, Eq. (61) can be written as:

J ¼ 1

2

X
k

qTðtkÞQqðtkÞ þ RU2ðtkÞ
� �

ð62Þ

The weight matrices Q and R (this last one a scalar)

should be chosen in a way where the idea of keeping m1

displacement small (to avoid crashes between the actuator

surface and m1) is considered most crucial. Therefore, the

following matrices are going to be used:

Q ¼

100 0 0 0 0 0 0

0 20 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

2
666666664

3
777777775

and R ¼ 1

The controller gain matrix KC that minimizes J is given

by [20]:

KC ¼ RþHTPH
	 
�1

HTPG; ð63Þ

where P can be calculated from the Riccati equation [20]:

P ¼ QþGTPG�GTPG RþHTPH
	 
�1

HTPG ð64Þ

3.4 Predictive discrete linear observer design

In space-state controllers or regulators, as the LQR, all

states are required for the calculation of the control signal,

as shown in Eq. (60). However, as there is only one sensor

in the system that measures the displacement of m1

(namely u5G ), an observer has to be used to estimate the

states. The control signal obtained with the estimated states

is given by:

UðtkÞ ¼ �KCq̂ðtkÞ ð65Þ

Besides, due to the time delay T, the observer will

provide the states estimative in some instant tk with the

information available at the instant tk-1, namely the pre-

vious state estimative, q̂ðtk�1Þ, and the data obtained by the

position sensor, yðtk�1Þ. In this work, a predictive full-order
observer [20] will be employed. This observer estimates

the states for an instant tk with the following equation:

q̂ðtkÞ ¼ G�KeC�HKCð Þq̂ðtk�1Þ þKeyðtk�1Þ ð66Þ

The matrix C relates the information provided by the

sensor, y, with the state variables. As the sensor measures

the displacement of m1 (namely u5G ), then:

C ¼ 1 0 0 0 0 0 0½ � ð67Þ

The matrix Ke is the observer gain matrix and should be

chosen in such a way to guarantee that the error dynamics

is faster than the system dynamics.

The system dynamics, represented by the linear

Eq. (56), can be also written as:

qðtkþ1Þ ¼ GqðtkÞ þHcðtkÞ ¼ GqðtkÞ þH½�½KC�qðtkÞ�
¼ ½G�HKC�qðtkÞ

ð68Þ

The error dynamics is given by [20]:

eðtkþ1Þ ¼ ½G�KeC�eðtkÞ; ð69Þ

where the error vector, e, is the difference between the state

vector and the estimated state vector:

eðtkÞ ¼ qðtkÞ � q̂ðtkÞ ð70Þ

After KC is obtained, the seven poles

ðksys1 ; ksys2 ; . . .; ksys7Þ of the matrix ½G�HKC�, can be

calculated with Eq. (71) and plotted at the z-plane.

ksysI� ½G�HKC�
�� �� ¼ 0 ð71Þ

As a LQR was used, the system dynamics should be

stable. This means that all poles will be located inside the

circle of radius equal to one. With the location of the poles

in the z-plane, a circle touching the pole that is closer to the

origin of the z-plane can be drawn. This circle has the

radius rmax (Fig. 7).

Fig. 7 Circle touching the closest linear discrete system pole to the

origin of the z-plane
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The values of the seven observer poles

ðkobs1 ; kobs2 ; . . .; kobs7Þ should be chosen inside the circle of

radius rmax. This guarantees that the discrete observer

dynamics will be faster than the linear discrete system

dynamics. After choosing the observer poles, the observer

gain, Ke, can be calculated using, for example, the Ack-

ermann formula [20] in the matrix shown in Eq. (69),

namely [G - KeC].

4 Simulation

4.1 Simulation program overview

A computer program was developed for the simulation of

the structure with the actuators, a position sensor and a

digital controller. In the first simulation, an impulsive force

is applied at m3 in a direction parallel to X axis, as shown in

Fig. 1. The impulsive force will be modeled as a half

sinusoid, with amplitude F0, starting at t1 s and ending at

t2 s. In the following simulations, a harmonic force with

amplitude FH and angular frequency x, with values until

120 rad/s, will be applied.

Even though the controller and observer have been

designed considering the simplified linear discrete model

of the structure and actuator, the continuous nonlinear

model for the fifteen degrees of freedom structure with the

two actuators, represented with Eq. (72), is used in the

program. There is a set of seventeen differential equations

for the nonlinear model of the entire system, fifteen sec-

ond-order differential equations for the structure, repre-

sented with Eq. (72), one first-order differential equation

for the electric current at actuator a1, represented with

Eq. (28), and one first-order differential equation for the

electric current at actuator a2, represented with Eq. (29).

MG €uGðtÞ þ DG _uGðtÞ þKGuGðtÞ ¼ fðtÞ; ð72Þ

where:

fðtÞ
¼ ½ 0 0 0 0 fa1ðtÞ þ fa2ðtÞ 0 0 0 0 0 0 0 0 0 f ðtÞ �T

ð73Þ

uGðtÞ ¼ ½u1GðtÞ u2GðtÞ . . . u15GðtÞ �
T ð74Þ

The components of the vector uG are the displacements

of the structures knots, as shown in Fig. 1.

A fourth-order Runge–Kutta method [6], with constant

time step of 0.0001 s, will be employed in the simulation

program. For that, it is necessary to reduce the order of

Eq. (72). This can be done with the following variable

substitution:

_uGðtÞ ¼ vGðtÞ ð75Þ

Therefore, Eq. (72) can be written as:

MG _vGðtÞ þ CGvGðtÞ þKGuGðtÞ ¼ fðtÞ ð76Þ

The complete set of differential equations for the non-

linear model can be written with Eqs. (77)–(79), obtained

from Eqs. (28), (29) and (76).

_vGðtÞ ¼ M�1
G fðtÞ � ½C�GvGðtÞ � ½K�GuGðtÞ
	 


ð77Þ

_ia1ðtÞ ¼
U0 � UðtÞ½ � � ria1ðtÞ þ

ia1 ðtÞl0N
2a _u5G ðtÞ

½s0þu5G ðtÞ�
2

L0 þ ðLmax�L0Þ

1þ
½s0þu5G

ðtÞ�
d

Lmax�L0
Ld�L0

�1

� � ð78Þ

_ia2ðtÞ ¼
U0 þ UðtÞ½ � � ria2ðtÞ

ia2 ðtÞl0N
2a _u5G ðtÞ

½s0�u5G ðtÞ�
2

L0 þ ðLmax�L0Þ

1þ
½s0�u5G

ðtÞ�2

d

Lmax�L0
Ld�L0

�1

� � ; ð79Þ

where the force vector, f(t), is given by Eq. (73) and the

actuator force are given by Eqs. (11) and (12). The control

signal, U(t), is updated at every T seconds and remains

constant until the next update (zero-order hold). At some

instant kT the control signal, given by Eq. (65), is updated

with a value calculated with the states estimative at ðk �
1Þ � T seconds and the information provided by the position

sensor at ðk � 1Þ � T seconds, according to Eq. (66). The

sensor output is given by Eq. (80).

yðtk�1Þ ¼ u5Gðtk�1Þ þ gðtk�1Þ ð80Þ

To avoid voltages below zero and above the saturation

limit during the simulation, the following routines are used

in the program:

If Ua1 [Usup thenUa1 ¼ Usup

If Ua1\0 thenUa1 ¼ 0

If Ua2 [Usup thenUa2 ¼ Usup

If Ua2\0 thenUa2 ¼ 0

4.2 Parameters used in simulation

• Rigid masses: m1 = 0.712 kg and m2 = m3 =

0.428 kg.

• Flexible beams: E = 77 Gpa, q = 7860 kg/m3, w =

0.025 m, h = 0.001 m, la = 0.145 m, lb = 0.134 m

and lc = 0.229 m.

• Actuators: a = 0.00076 m2, Blim = 1.2 T, r = 59.2 X,
N = 1362, l0 ¼ 4p � 10�7, s0 = 0.003 m, L0 =

0.717 H, Lmax = 1 H, Ld = 0.88 H and d = 0.001 m.

• Power amplifiers: Usup = 24 V.

• Structure: f1 = f2 = 0.007, x1 = 19.61 rad/s and

x2 = 81.81 rad/s.

• Controller: T = 0.002 s and U0 = 12 V.
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• Position sensor noise: ginf = -0.00001 m and

gsup = 0.00001 m.

• Observer poles: kobs1 ¼ kobs2 ¼ kobs3 ¼ kobs4 ¼ kobs5 ¼
kobs6 ¼ kobs7 ¼ 0:9 rmax:

• Impulsive disturbance force amplitude: F0 = 5 N.

• Impulsive disturbance force starting and ending

instants: t1 = 1 s and t2 = 1.01 s.

• Harmonic force amplitude: FH = 0.1 N.

• Harmonic force frequencies used for the simulation of

the structure with the actuators: x = 3, 5, 7, 10, 12.5,

15, 17.5, 20, 22.5, 25, 25.5, 26, 26.5, 27.5, 28, 30, 32.5,

35, 40, 45, 50, 60, 70, 80, 90, 100, 110 and 120 rad/s.

4.3 Simulation results

In Fig. 8, simulation results of the dynamic response when

the impulsive force is applied during 0.01 s, beginning at

t = 1 s, in the system without the electromagnetic actua-

tors (thin line) and with the actuators (thick line) are pre-

sented. The graphs of m1, m2 and m3 displacements (in

meters) with respect to time (in seconds) are shown.

It can be seen that, even with a noisy position sensor, the

displacements of all the three masses are taken back to the

equilibrium position much faster when the actuators are

used.

Next, results of the dynamic response when the harmonic

force (with an amplitude of 0.1 N) is applied are presented.

In Fig. 9,m1,m2 andm3 displacement amplitudes (meters in

a logarithmic scale) in the steady state are shown for dif-

ferent harmonic disturbance force angular frequencies (rad/

s in a logarithmic scale). The dots correspond to the system

with the electromagnetic actuators and the continuous line

corresponds to the system without the actuators.

It can be seen that, even with a noisy position sensor, the

oscillation amplitudes are reduced when x is near the first

natural angular frequencies of the structure.

During all the simulations, the maximum flux density

was 0.073 T, far below the saturation limit of the actuator

core material, Blim. This means that the model for the

actuators without hysteresis and saturation can be used

without further concern.

5 Conclusions

This work presented the modeling of a flexible structure,

with three rigid masses and two voltage-controlled elec-

tromagnetic actuators fixed at the ground. The actuators,

whose objective is to reduce the oscillations caused by

external disturbances, were assembled to actuate at the

lower mass in two collinear directions. To bring the struc-

ture back to its equilibrium position, voltages where pro-

vided to the actuators by a digital LQR. Since only one

position sensor was assumed to be available, a full-order

observer was employed. For the simulation, nonlinear

actuator models were considered, although a linear discrete

controller with a linear full-order predictive discrete

observer was used. Noise at the position sensor was inclu-

ded as well. When an impulsive force was applied at the top

of the structure, the discrete controller provided adequate

Fig. 8 Simulation results for an impulsive disturbance force
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voltages to the electromagnetic actuators to bring the sys-

tem back to the equilibrium position. When a harmonic

force was applied, the controller was able to reduce the

amplitudes of oscillation when the force angular frequency

was near the natural angular frequencies of the structure.

The effectiveness of the strategy for reducing vibration with

electromagnetic actuators and a space-state regulator were

confirmed by the simulation results, where a comparison of

the system with control and without control was shown. The

results presented are encouraging, indicating that the tech-

nique employed can be effective for vibration control of

structures if the electromagnetic actuators are assembled in

a region where the structure oscillations are small or can be

kept small by the actuator action.

Appendix: matrices elements

Below, all the terms that are different to zero from the

global stiffness matrix KG, the global mass matrix MG

(including m1, m2 and m3) and the state matrix A are given.

k1;1 ¼ k3;3 ¼ 192EI=l3a; k1;5 ¼ k5;1 ¼ k3;5

¼ k5;3 ¼ �96EI=l3a; k2;2 ¼ k4;4 ¼ 16EI=la

k2;5 ¼ k5;2 ¼ k4;5 ¼ k5;4 ¼ 24EI=l2a; k5;5

¼ ð192EI=l3aÞ þ ð192EI=l3bÞ;
k5;6 ¼ k5;8 ¼ k6;5 ¼ k6;10 ¼ k8;5 ¼ k8;10 ¼ k10;6

¼ k10;8 ¼ �96EI=l3b;

k5;7 ¼ k5;9 ¼ k7;5 ¼ k9;5 ¼ �24EI=l2b; k6;6 ¼ k8;8

¼ 192EI=l3b; k7;7 ¼ k9;9 ¼ 16EI=lb;

k7;10 ¼ k10;7 ¼ k9;10 ¼ k10;9 ¼ 24EI=l2b; k10;10

¼ ð192EI=l3bÞ þ ð192EI=l3cÞ;
k10;11 ¼ k10;13 ¼ k11;10 ¼ k11;15 ¼ k13;10 ¼ k13;15

¼ k15;11 ¼ k15;13 ¼ �96EI=l3c ;

k10;12 ¼ k10;14 ¼ k12;10 ¼ k14;10 ¼ �24EI=l2c ; k11;11

¼ k13;13 ¼ k15;15 ¼ 192EI=l3c ;

k12;12 ¼ k14;14 ¼ 16EI=lc; k12;15 ¼ k14;15

¼ k15;12 ¼ k15;14 ¼ 24EI=l2c :

m1;1 ¼ m3;3 ¼ 156qAla=420; m1;5 ¼ m3;5 ¼ m5;1

¼ m5;3 ¼ 27qAla=420

m2;2 ¼ m4;4 ¼ qAl3a=420; m2;5 ¼ m4;5 ¼ m5;2

¼ m5;4 ¼ �3:25qAl3a=420;

m5;5 ¼ ð156qAla=420Þ þ ð156qAlb=420Þ þ m1;

m5;6 ¼ m5;8 ¼ m6;5 ¼ m6;10 ¼ m8;5 ¼ m8;10

¼ m10;6 ¼ m10;8 ¼ 27qAlb=420;

m5;7 ¼ m5;9 ¼ m7;5 ¼ m9;5 ¼ 3:25qAl2b=420; m6;6

¼ m8;8 ¼ 156qAlb=420;

m7;7 ¼ m9;9 ¼ qAl3b=420; m7;10 ¼ m9;10 ¼ m10;7

¼ m10;9 ¼ �3:25qAl2b=420;

m10;10 ¼ ð156qAlb=420Þ þ ð156qAlc=420Þ þ m2;

m10;11 ¼ m10;13 ¼ m11;10 ¼ m11;15 ¼ m13;10 ¼ m13;15

¼ m15;11 ¼ m15;13 ¼ 27qAlc=420;

m10;12 ¼ m10;14 ¼ m12;10 ¼ m14;10 ¼ 3:25qAl2c=420;

m11;11 ¼ m13;13 ¼ 156qAlc=420;

m12;12 ¼ m14;14 ¼ qAl3c=420; m12;15 ¼ m14;15 ¼ m15;12

¼ m15;14 ¼ �3:25qAl3c=420;

m15;15 ¼ ð156qAlc=420Þ þ m3:

Fig. 9 Simulation results for a harmonic disturbance force
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A1;4 ¼ A2;5 ¼ A3;6 ¼ 1; A4;1 ¼ ðks � ka � kbÞ=m1;

A4;2 ¼ kb=m1;

A4;4 ¼�½am1 þ bðka þ kbÞ�=m1; A4;5 ¼ bkb=m1;

A4;7 ¼ ki=m1; A5;1 ¼ kb=m2;

A5;2 ¼ ð�kb � kcÞ=m2; A5;3 ¼ kc=m2; A5;4 ¼ bkb=m2;

A5;5 ¼�½am2 þ bðkb þ kcÞ�=m2;

A5;6 ¼ bkc=m2; A6;2 ¼ kc=m3; A6;3 ¼�kc=m3;

A6;5 ¼ bkc=m3;

A6;6 ¼�½am3 þ bkc�=m3; A7;4 ¼�ku=Lavg; A7;7 ¼�r=Lavg:
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