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which cannot be described by a single model. The capability 
of each model for depicting the fluid properties is restricted to 
a certain range. Among these models, a model describing one 
of the most commonly existing nature of fluid namely, shear 
thinning and shear thickening, is known as Sisko fluid model 
[1]. The flow of greases can be most appropriately described 
by aforementioned model [2]. Some of its industrial applica-
tions include cement slurries, drilling fluids, waterborne coat-
ings, and most pseudoplastic fluids [3, 4].

In processes where high temperature is evoked, the con-
vective heat transfer is of incredible importance, for instance, 
nuclear plants, gas turbines, and storage of thermal energy and 
so forth. To define the linear convective heat exchange condi-
tion for algebraic entities, the convective boundary conditions 
are considered. It is agreed that the convective boundary con-
ditions are more practical in various industrial and engineering 
processes, for instance, transpiration cooling process, material 
drying, etc. The practical importance of the convective bound-
ary conditions has compelled many researchers to investigate 
and report their findings on this topic. Hayat et al. [5] exam-
ined the heat transfer in an upper-convected Maxwell fluid 
over a moving surface along with the convective boundary 
conditions. Similarly, Makinde et al. [6] studied the unsteady 
flow of a pressure driven third-grade fluid through a porous 
saturated medium considering thermal effects, variable viscos-
ity, and convective boundary conditions. Hayat et al. [7] stud-
ied flow and heat transfer of Eyring Powell fluid over a mov-
ing surface in the presence of convective boundary conditions. 
Likewise, Rundora and Makinde [8] discussed the influence 
of suction/injection on unsteady reactive temperature-depend-
ent viscosity of third-grade fluid flow in a channel filled with 
porous medium taking into account the convective bound-
ary conditions. They obtained the results using semi-implicit 
finite difference scheme. Ramesh and Gireesha [9] studied 
the effects of heat source/sink on the Maxwell fluid over a 
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1 Introduction

Rapid progress in various fields of science and technology 
has urged from researchers to extend their studies toward 
the regime of non-Newtonian fluids and their heat transfer 
characteristics. It is due to the fact that most non-Newtonian 
fluids have more profuse industrial and technological applica-
tions rather than Newtonian fluids. It is a wider class of fluids 

Technical Editor: Roney Leon Thompson.

 * Rabia Malik 
 rabiamalik.qau@gmail.com

1 Department of Mathematics, Quaid-i-Azam University, 
Islamabad, Pakistan

2 Department of Basic Science, University of Engineering & 
Technology, Taxila, Pakistan

http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-015-0437-y&domain=pdf


1280 J Braz. Soc. Mech. Sci. Eng. (2016) 38:1279–1289

1 3

stretching sheet with convective boundary condition, while 
nanoparticles are also taken into account. Shahzad et al. [10] 
obtained the series solution for the three-dimensional flow of 
Jeffrey fluid over a stretched surface with convective boundary 
condition. Nadeem et al. [11] examined the stagnation point 
flow of a Casson nanofluid with convective boundary condi-
tions and the optimal homotopy analysis method is employed 
to solve analytically the resulting problem equations.

Recently the researchers and scientists are intrigued to 
reduce the skin-friction coefficient and enhance the rate of 
heating or cooling in the advanced technological processes. 
Therefore, various attempts have been made about the reduc-
tion of skin friction or drag forces for flows over the surface 
of a tail plane, wing, wind turbine rotor, and so forth. How-
ever, these forces can be reduced by keeping the bound-
ary layer away from separation and delaying the transition 
of laminar to turbulent flow. This task can be performed 
through different physical aspects such as moving the sur-
face, through fluid suction and injection and the presence 
of body forces. Similarly most of the researchers have been 
tried to enhance the rate of cooling/heating by using different 
types of boundary conditions over a flat plate. To overcome 
such difficulties, this paper aims at providing the analytical 
solutions for forced convective heat transfer of an electrically 
conducting Sisko fluid over a nonlinear radially stretching 
sheet, while taking the effects of convective boundary condi-
tions into consideration. The solution of the governing prob-
lem is obtained analytically by using the homotopy analysis 
method and numerically by shooting technique.

2  Formulation of the problem

Consider the steady, two-dimensional (r, z) convective 
boundary layer flow of an electrically conducting Sisko 
fluid over a nonlinear radially stretching sheet placed at 
z = 0. The flow is induced by stretching of the sheet with 
velocity U = crs, where c and s are non-negative real num-
bers. A uniform magnetic field B = [0, B0, 0] perpendic-
ular to the plane of sheet is applied under the assumption 
of very small magnetic Reynolds number. It is assumed 
that the bottom surface of the sheet is heated by convec-
tion from a hot fluid at temperature Tf which provides a 
heat transfer coefficient hf. Further, the ambient fluid tem-
perature is T∞. The boundary layer governing equations for 
the steady conservation of mass, momentum, and thermal 
energy can be written as follows (see Ref. [4] for details):

(1)
∂u
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where u and w are the components of velocity in the radial 
and axial directions, respectively, T the temperature field, a, 
b, and n (≥0) are the material constants, ρ the fluid density, 
σ the electrical conductivity of the fluid, B0 the magnitude 
of applied magnetic field, α = k

ρcp
 the thermal diffusivity 

with cp as the specific heat of fluid at constant pressure, and 
k the thermal conductivity.

Equations (1)–(3) are subjected to the following bound-
ary conditions:

The governing Eqs. (1)–(3) subject to the boundary con-
ditions (4) and (5) can be expressed in simpler form by 
introducing the following suitable transforms:

where η is the independent variable and ψ the Stokes 
stream function.

By employing the transformations (6), the above govern-
ing problem reduces to the following:

In the above equations, primes denote differentiation with 
respect to η. Further, A is the material parameter of the Sisko 
fluid, M the magnetic parameter, Rea and Reb the local Reyn-
olds numbers, Pr the generalized Prandtl number, and γ the 
generalized Biot number, which are defined as follows:

The physical quantities of interest are the local skin-fric-
tion coefficient Cf and the local Nusselt number Nu which 
are defined by the following:
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3  The exact solution

The set of Eqs. (7) and (8) subject to the boundary con-
ditions (9) and (10) is highly nonlinear. In addition, the 
power-law index n is a non-negative real number and hence 
finding the exact solution of the system in general is a far 
from any routine exercise. However, exact solutions of the 
system are calculated for some special cases given below.

Case (i) For n = 0 and s = 1, Eqs. (7) and (8) reduce to

The exact solutions of Eqs. (14) and (15) satisfying the 
boundary conditions (9) and (10) are as follows:

where β =

√

1+M2

A
 and Γ(·) the incomplete Gamma 

function.
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Case (ii) Next for n = 1 and s = 3, Eqs. (7) and (8) take 
the form

The exact analytical solutions to Eqs. (18)–(19) together 
with the boundary conditions (9) and (10) are in the follow-
ing form:

with β =
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.
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Table 1  The convergence of the series solution when 
s = M = A = γ = Pr = 1 and n = 2 are fixed

Order of approximation
− 1

2
Re

1
n+1
b Cf −Re

−
1

n+1
b Nu

1 2.079804 0.480960

5 2.117063 0.489321

11 2.117186 0.489558

13 2.117188 0.489572

16 2.117189 0.489573

18 2.117189 0.489573

20 2.117189 0.489573

25 2.117189 0.489573

Fig. 1  The velocity profiles f ′(η) for different values of the power-law index n when A = M = 1 and s = 1/2 are fixed
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4  Solution methodologies

4.1  The HAM analytic solution

The analytic series solutions for the velocity and tempera-
ture fields are obtained for the nonlinear Eqs. (7) and (8) 

together with the boundary conditions (9) and (10) by uti-
lizing the homotopy analysis method [12–14]. The conver-
gence of these series solutions is highly dependent upon the 
selection of the auxiliary parameter �, which we have cal-
culated by using the squared residual error which is defined 
by the following: [15] 

Fig. 2  The temperature profiles θ(η) for different values of the power-law index n when M = Pr = A = γ = 1 and s = 1/2 are fixed

Fig. 3  The velocity profiles f ′(η) for different values of the magnetic parameter M when A = 1 and s = 1/2 are fixed
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Table 1 depicts the convergence of the series solution 
for a specific case. Considering the most suitable value 
of �, the convergence is achieved at sixteenth order of 
approximation.

4.2  The numerical solution

The nonlinear Eqs. (7) and (8) governing the problem 
along with the boundary conditions (9) and (10) form a set 
of boundary value problems (BVPs). These BVPs are first 
converted into a set of initial value problems (IVPs) and 
then solved numerically by utilizing the shooting method. 
We have converted Eqs. (7) and (8) into system of first 
order equations as follows:

(22)Ef ,m =
1

N + 1

N
∑

j=0

[

Nf

(

m
∑

i=0

fj(i∆η)

)]2

.

(23)

f ′ = p, p′ = q, q′ = −
1

A+ n(−q)n−1

[

s(2n− 1)+ n+ 2

n+ 1
fq − sp2 −M2p

]

,

with boundary conditions

Now to solve Eqs. (23) and (24) as initial value prob-
lems, we need values for f′′(0) and θ′(0) which are not 
defined. So we choose values for f ′′(0) and θ ′(0) and 
obtain the solution by using fourth-order Runge–Kutta 
method. The obtained values of f′(η) and θ(η) as η → ∞ 
say η∞ are compared with the given boundary conditions 
f′(η∞) = 0 and θ(η∞) = 0. Then to get better approximation 
for our solution, f ′′(0) and θ ′(0) are adjusted using secant 
method. Here we have considered step size h = 0.01. Until 
we approach the desired accuracy of our results, the pro-
cess is repeated.

5  Results and discussion

The non-dimensional equations of convective MHD 
boundary layer flow of Sisko fluid over a radially stretch-
ing sheet are studied. The system of coupled ordinary 

(24)θ ′ = g, g′ = −
s(2n− 1)+ n+ 2

n+ 1
Pr fg,

(25)f (0) = 0, p(0) = 1, g(0) = −γ [1− θ(0)].

Fig. 4  The temperature profiles θ(η) for different values of the magnetic parameter M when A = Pr = γ = 1 and s = 1/2 are fixed
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differential Eqs. (7) and (8) subject to convective bound-
ary conditions (9) and (10) is solved analytically using 
the HAM and numerically using the shooting method. In 
addition, exact solutions for particular cases, where pos-
sible, are constructed. Further, the numerical values of the 
local skin-friction coefficient and local Nusselt number 
with varying physical parameters are recorded through 
tables. It is worth pointing out that the parameter which 
controls the power-law behavior of the fluid, called the 
power-law index n, appears in the equations and is a non-
negative real number. The HAM results are only for inte-
ger values of the power-law index n, whereas the results 
for non-integer values of the power-law index n are 
obtained numerically.

Figures 1 and 2 show the influence of the power-law 
index n on the velocity and temperature profiles, respec-
tively. It can be seen in these figures that inside the bound-
ary layer the value of n effects significantly the velocity 
field but marginally the temperature field. It is observed 
from velocity profiles presented that for n < 1 (pseudo-
plastic or shear thinning fluids), as n increases, the veloc-
ity profile increases near the surface but it decreases far 
away from the surface. For n > 1 (dilatant or shear thick-
ening fluids), as n increases, the velocity profile decreases 

throughout the domain. This results in a decrease in the 
boundary layer thickness for both shear thinning and shear 
thickening fluids. However, the apparent viscosity increases 
for n < 1 and decreases for n > 1 and as a consequence the 
viscous effects are transmitted up to a greater distance from 
the plate and the boundary layer thickness is thicker for 
n < 1 as compared to n > 1. From the temperature profile 
presented, it is noticed that for both n < 1 and n > 1, the 
temperature as well as thermal boundary layer thickness 
reduces with an increase in n. In addition, a more notewor-
thy influence might be seen for n < 1 when compared with 
n > 1.

In order to visualize the development of the momen-
tum and thermal boundary layers for Sisko fluid, the 
velocity and temperature profiles for different values of 
the magnetic parameter M are plotted in Figs. 3 and 4, 
respectively. Figure 3 tracks the evolution of the veloc-
ity profile for varying values of the power-law index n. 
It can be observed from this figure that an increment in 
value of the magnetic parameter M resulted in reduction 
of the velocity as well as the boundary layer thickness. 
This is because of the resistance of the drag force pro-
duced by the magnetic field. Besides, these figures reveal 
a correlation that the magnitude of the velocity is larger 

Fig. 5  The temperature profiles θ(η) for different values of the generalized Prandtl number Pr when A = M = γ = 1 and s = 1/2 are fixed
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for hydrodynamic case (M = 0) when contrasted with 
hydromagnetic case (M ≠ 0). Figure 4 tracks the evolu-
tion of the temperature profile for different values of the 
magnetic parameter M. It is quite clear from these fig-
ures that the effects of the magnetic parameter M on the 
temperature field and thermal boundary layer are quite 
opposite to those for velocity. These figures, apart from 
demonstrating the effects of the magnetic parameter, also 
show that the influence of the magnetic parameter M gets 
less overwhelming as we go on increasing the value of the 
power-law index n.

The effects of the generalized Prandtl number Pr on the 
temperature profile are shown in Fig. 5. It can be seen that 
as the generalized Prandtl number increases the tempera-
ture profile decreases. This is because of the fact that the 
fluids with higher Prandtl number possess low thermal con-
ductivity which reduces the conduction and hence the ther-
mal boundary layer thickness.

Figure 6 shows the influence of the generalized Biot 
number γ on the temperature profile. For γ = 0, the bot-
tom side of the sheet with the hot fluid is totally insu-
lated and as a result no convective heat transfer to the 
cold fluid above the sheet takes place. It is observed 
from the profiles presented in these figures that as the 

generalized Biot number γ increases, the temperature 
profile increases significantly. This further results in an 
increase in the thermal boundary layer thickness. This is 
because of the fact that the increase in the Biot number 
resulting in an increase in convection which reduces the 
sheet thermal resistance.

The effect of the material parameter A on the temper-
ature field is shown in Fig. 7. This figure also provides a 
comparison of the temperature profiles of the Sisko fluid 
(A ≠ 0) with those of the power-law fluid (A = 0, n ≠ 1) 
and the Newtonian fluid (A = 0, n = 1). It is seen that as 
A increases, the temperature profile and corresponding 
thermal boundary layer thickness decrease for n = 0, 1, 2 
and 3. Hence, we conclude from these figures that the tem-
perature of Newtonian fluid is higher than that of the Sisko 
fluid. Further, the temperature for the power-law fluid is 
also higher than that of the Sisko fluid.

Figures 8 and 9 as well as Tables 2 and 3 show the 
comparison of temperature field, the local skin-fric-

tion coefficient 1
2
Re

1
n+1
b Cf and the local Nusselt num-

ber Re
−

1
n+1

b Nu among the exact, HAM and numerical 

results. Here it is seen that the comparison is in very 

Fig. 6  The temperature profiles θ(η) for different values of the generalized Biot number γ when A = Pr = M = 1 and s = 1/2 are fixed
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good agreement and thus gives us confidence to the accu-
racy of the HAM results. Further, the variation of the 
local skin-friction coefficient and the local Nusselt num-
ber is shown in Tables 4 and 5, respectively. These tables 
show that the magnitude of the local skin-friction coef-
ficient and local Nusselt number is larger for Sisko fluid 

when compared to the power-law fluid as well as Newto-
nian fluid. Additionally, by comparing the hydrodynamic 
case with hydromagnetic case we can see that the magni-
tude of the local skin-friction coefficient is larger in the 
later case whereas for the local Nusselt number results 
are opposite qualitatively. Also, it is seen that the local 

Fig. 7  The temperature profiles θ(η) for different values of the material parameter A when γ = Pr = M = 1 and s = 1/2 are fixed

Fig. 8  A comparison of the HAM and exact solutions for the temperature profile θ(η) when M = A = 1 and γ = 1 are fixed
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skin-friction coefficient is an increasing function of A, 
M and s while it decreases with the increasing values of 
the power-law index n. Additionally, the local Nusselt 

number shows an increasing behavior for A, Pr, γ and s 
while decreasing behavior for M.

6  Conclusions

This study has dealt with the analysis of an MHD flow and 
convective heat transfer of the Sisko fluid considering the 
convective boundary conditions at the wall over a nonline-
arly radially stretching sheet. The analytical and numerical 
solutions for the velocity and temperature fields were con-
structed by using the HAM and shooting method, respec-
tively. The obtained analyzed solutions were compared in a 
very good agreement with the exact solutions.

The main contributions of our work were the analytical 
results for the velocity and temperature fields for an elec-
trically conducting Sisko fluid. From the analysis of our 
results, one may conclude that inside the boundary layer 
the value of n affected significantly the velocity field but 
marginally the temperature field. Our illustrative results 
have showed that the effects of the magnetic parameter on 

Fig. 9  A comparison of the HAM and numerical solutions for the temperature profile θ(η) when M = A = 1 and γ = 1 are fixed

Table 2  A comparison between the HAM and exact solutions for the 
skin-friction coefficient

M A
− 1

2
Re

1
n+1
b Cf

n = 0, s = 1 n = 1, s = 3

Exact solution HAM solution Exact solution HAM solution

1.0 0.0 1.000000 1.000000 2.000000 2.000000

1.0 0.5 2.000000 2.000000 2.449489 2.449489

1.0 1.0 2.414213 2.414213 2.828427 2.828427

1.0 1.5 2.732050 2.732050 3.162277 3.162277

1.0 2.0 3.000000 3.000000 3.464101 3.464101

2.0 0.0 1.000000 1.000000 2.645751 2.645751

2.0 0.5 2.581138 2.581138 3.240370 3.240370

2.0 1.0 3.236067 3.236067 3.741657 3.741657

2.0 1.5 3.738612 3.738612 4.183300 4.183300

2.0 2.0 4.162277 4.162277 4.582575 4.582575

Table 3  A comparison between 
the HAM and exact solutions 
for the local Nusselt number

A M Pr γ
−Re

−
1

n+1
b Nu

n = 0, s = 1 n = 1, s = 3

Exact solution HAM solution Exact solution HAM solution

1.0 1.0 1.0 0.1 0.083367 0.083367 0.091490 0.091490

1.0 1.0 1.0 0.2 0.142959 0.142959 0.168632 0.168632

1.0 1.0 1.0 0.5 0.250312 0.250312 0.341291 0.341291

1.0 1.0 1.0 1.0 0.333888 0.333888 0.518121 0.518121

1.0 1.0 2.0 0.1 0.089166 0.089166 0.094278 0.094278

1.0 1.0 2.0 0.2 0.160900 0.160900 0.178353 0.178353

1.0 1.0 2.0 0.5 0.311041 0.311041 0.383607 0.383607

1.0 1.0 2.0 1.0 0.451465 0.451465 0.622343 0.622343
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the velocity and temperature fields were quite opposite. Our 
results further revealed that the temperature was increased 
significantly with an increase in the convective heat transfer 
parameter. Additionally, it was noted that the temperature 
of the Sisko fluid was smaller than those of the power-law 
and Newtonian fluids.
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1.0 2.414214 2.171823 2.117189 2.092716

2.0 2.527525 2.521496 2.590447 2.645556

Table 5  Numerical values 
of the local Nusselt number 

Re
−

1
n+1

b Nu for different values 
of physical parameters

A M Pr γ s
−Re

−
1

n+1
b Nu

n = 0 n = 1 n = 2 n = 3

0.0 1.0 1.0 1.0 0.5 0.252262 0.422551 0.428277 0.429523

1.0 0.399606 0.452675 0.456642 0.457250

2.0 0.430592 0.465420 0.469661 0.470823

1.0 0.0 1.0 1.0 0.5 0.427702 0.470063 0.471092 0.470521

0.5 0.419895 0.465321 0.467117 0.466791

1.0 0.399606 0.452675 0.456642 0.457250

1.0 1.0 0.7 1.0 0.5 0.338044 0.395301 0.397475 0.397133

1.0 0.399606 0.452675 0.456642 0.457250

2.0 0.516778 0.559069 0.564852 0.566769

1.0 1.0 1.0 0.1 0.5 0.086938 0.089213 0.089366 0.089390

0.5 0.285513 0.311615 0.313489 0.313776

1.0 0.399606 0.452675 0.456642 0.457250

1.0 1.0 1.0 1.0 0.5 0.399606 0.452675 0.456642 0.457250

1.0 0.333889 0.468686 0.489573 0.498138

2.0 0.028896 0.495793 0.537845 0.554844
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