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damage tolerance in addition to low life cycle costs, see 
Lönnö [1]. In the development towards further weight sav-
ings modern sandwich structures are made with thin lami-
nated composite face sheets and light-weight compliant 
cores such as polymeric foams or aramid nomex honey-
comb. The use of a foam or low-strength honeycomb core 
rather than a metallic honeycomb is advantageous in terms 
of weight and manufacturing processes and resources. The 
major difference between a metallic honeycomb and a soft 
core is its flexibility in the vertical direction. This flexibil-
ity significantly affects behavior, especially under localized 
loads, and yields quite different behaviors as compared to 
other structures that have a stiff honeycomb core. The gen-
eral approach assumes that the global buckling of the beam 
and the local buckling of the skins are uncoupled. The 
global buckling is defined by the solution of an equivalent 
beam, which incorporates the shear stiffness of the core in 
the flexural rigidity of the beam. Local buckling is deter-
mined by considering the isolated skins as a beam resting 
on elastic foundation provided by the core in the vertical 
direction. When a structure is subjected to compressive in-
plane loads, the buckling phenomenon may occur and is 
distinguished via a rapid change in displacements due to 
an increment in loading process. Buckling resistance is an 
important factor which should be taken into consideration 
for design purposes. For the cases when loads are below 
the yield limit, buckling phenomenon is of high importance 
and have to be studied in elastic range.

Many researchers studied sandwich beams with honey-
combed antiplane cores. Their basic assumption was that 
the longitudinal displacement is linear, i.e., that the section 
plane remains linear after deformation and that the verti-
cal displacement is uniform through the depth of the core. 
Ogorkiewicz and Sayigh [2] described the behavior of the 
sandwich beam with a foam core as an ordinary beam with 
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1  Introduction

Light-weight sandwich structures are of great interest for 
the design and manufacture of spacecraft, aircraft and 
marine vehicles, because of their high specific strength and 
stiffness. Furthermore, sandwich structures offer excellent 
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equivalent properties. A similar approach, which assumes 
that no interaction between the skins exists in the local 
buckling mode, was used by Bulson [3] and by Brush and 
Almroth [4]. This approach is satisfactory as long as the 
core is incompressible in the vertical direction. However, 
when a compressible type of core is considered, an interac-
tion between the global and the local buckling mode exists, 
as well as collaboration between the two skins. Hence, 
the critical mode can be shifted from the global mode to 
the local one and vice versa. They replaced the sandwich 
structure with a high-order shear deformable beam but 
were unable to determine the local buckling modes as well 
as the imperfection effect on overall behavior. Hunt and 
Da Silva [5] used a different approach, based on energy 
methods and superposition of symmetrical and nonsym-
metrical buckling modes. This approach is limited to spe-
cific configurations and to specific boundary conditions. 
Frostig and Baruch [6] and Frostig et al. [7], analyzed the 
sandwich beams with soft core with the aid of a superposi-
tion approach. Frostig and Baruch [8] presented the high-
order buckling analysis of sandwich beams with trans-
versely flexible core. Closed-form solutions are presented 
for simply supported beams with identical skins and only 
numerical results for other cases. Smith [9] yielded a uni-
fied analysis method based on two-dimensional elasticity 
theory for evaluation of bending, buckling and vibration of 
multilayer orthotropic sandwich beams and panels. Cheng 
et  al. [10]. presented a method of continuous analysis for 
predicting the local delamination buckling load of the face 
sheet of sandwich beams. In a research by Bozhevolnaya 
and Kildegaard [11], a sandwich curved beam subjected to 
a uniform loading is experimentally investigated. Wang and 
Shenoi [12] performed an elasticity theory-based approach 
for delamination and flexural strength of curved layered 
composite laminates and sandwich beams. They also per-
formed the analysis of curved sandwich beams with a focus 
on debonding and buckling/wrinkling of the faces [13]. 
Lyckegaard and Thomsen [14] formulated the buckling 
behavior of straight sandwich beams joined with curved 
sandwich beams loaded in pure bending using two different 
models. A two-dimensional mechanical model is developed 
by Ji and Waas [15] to predict the global and local buck-
ling of a sandwich beam, using classical elasticity. Various 
methods of theoretical modeling of curved sandwich struc-
tures were recently reviewed [16, 17]. Thomsen and Vinson 
[18, 19], Lyckegaard and Thomsen [20, 21] and Skvortsov 
et al. [22] made analytical and numerical studies based on 
higher order sandwich beam theory of the junction between 
a curved and a straight sandwich beam incorporating other 
loading conditions.

In this paper, the governing equilibrium equations of 
a three layered sandwich curved beam in the von Kar-
man sense are obtained. Two skins are formulated in the 

Euler–Bernoulli sense whereas the host layer is formulated 
by the two-dimensional elasticity equations. The pre-buck-
ling deformations of the arch are obtained under the linear 
membrane pre-buckling deformations. Adjacent equilib-
rium criterion is used to establish the stability equations. 
A closed-form solution suitable for curved beams with 
both edges simply supported is developed which results in 
closed-form expression for the critical buckling pressures. 
Some numerical results are provided to study the effect of 
various involved parameters.

2 � Geometry of problem and kinematic relations

A cylindrically curved sandwich curved beam of the width 
b is considered. Geometry of the model with the system 
coordinates is shown in Fig. 1 [23].

In the following, indices t, b refer to the upper (top) and 
lower (bottom) faces of the beam, respectively. Each face 
has its own curvilinear coordinate system (zi, si), where

The local coordinate system (r,ϕ) for the core is polar 
and has its origin in the center of the beam curvature. The 
following assumptions form the basis of the presented 
model:

1.	 The length of the beam is of the order of its character-
istic radii of curvature L ≤ R.

2.	 The faces may have a different thickness dt and db that 
are small in comparison with the length of the beam 
and radii of curvature. The faces are treated as thin 
elastic panels that follow Bernoulli assumptions.

3.	 The core of thickness tc is fully bonded with the faces. 
The core is considered to be a 2-D elastic medium with 
resistance to shear and radial stresses. In-plane (cir-
cumferential) stress in the core is neglected.

(1)si = riω (i = t, b)

Fig. 1   Geometry of the mathematical model [23]
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4.	 The kinematic relations of the core are those of small 
deformations and, therefore, they are linear. Note, 
that no a priori assumptions on the deformation fields 
through the thickness of the core are made.

5.	 Different kinds of the boundary conditions may be 
implemented for the various faces at the same sec-
tion.

The radial wt, wb and circumferential u0t, u0b displace-
ments of the centroids of the face elements are shown in 
Fig. 2a. In the polar coordinated system the kinematic rela-
tions for the faces read:

In Eqs. (2) and (3) circumferential displacement ui and cir-
cumferential strain ɛi are, respectively, in the skins that can 
be measured upwardly from the center of each skin and βi 
is equal to:

In the Eq.  (3) ɛ0i and κi are the value of strain in the 
center of each skin and the curvature of each skins, respec-
tively, and are equal to:

(2)ui = u0i + ziβi

(3)εi = ε0i + ziκi +
1

2
β2
i (i = t, b)

(4)βi =
u0i − w

′

i

ri

(5)ε0i =
u′0i + wi

ri

In the mentioned relation, all derivations are considered 
based on ω angle. The appropriate kinematic relations for 
the core are

Compatibility conditions emerge from the conditions of 
the fully bonded faces and core.

Upper interface:

In the recent relation kt is defined as follows:

Lower interface:

In the recent relation kb is defined as follows:

Stress resultants of the face sheets and stress field of the 
core are shown in Fig. 2b. The constitutive relations for the 
faces and for the core are

We know

(6)
κi =

u′oi − w′′
i

r2i

(7)εrr =
∂wc

∂r

(8)γrω = γsr =
∂uc

∂r
−

uc

r
+

1

r

∂wc

∂ω

(9)wc|r = rtc = wt |z = −dt
2

⇒ wc|r = rtc = wt

uc|r = rtc = ut |z = −dt
2

⇒ uc|r = rtc = u0t −
dt

2
βt ⇒

(10)

uc|r = rtc
= u0t −

dt

2rt

(

u0t − w
′
t

)

⇒ uc|r = rtc
= u0t(1−kt)+ w

′
tkt

(11)kt =
dt

2rt

(12)wc|r=rbc
= wb|z =

db
2

⇒ wc|r = rbc
= wb

uc|r=rbc
= ub |z = db

2

⇒ uc|r = rbc
= u0b +

db

2
βb ⇒

(13)

uc|r = rbc
= u0b +

db

2rb

(

u0b − w
′
b

)

⇒ uc|r = rbc

= u0b(1+kb)− w
′
b
kb

(14)kb =
db

2rb

(15a–d)
σ
(k)
t = Q

(k)
11tεt , σ

(k)
b = Q

(k)
11bεb, σc = Ecεc, τc = Gcγrω

A11 = b

N
∑

k = 1

zk
∫

zk−1

Q
(k)
11 dz

Fig. 2   Displacement in the element of the sandwich beam (a); inter-
nal resultants in the differential elements of the faces, stresses at the 
interfaces and stresses in the differential element of the core (b) [23]
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In the relation (16a–b), A11 and D11 are laminate mem-
brane stiffness and flexural stiffness, respectively. Q(k)

11
 is 

the stiffness of each layer based on laminate angle such that

that in the above relation we have

Ni and Mi, respectively, are axial force and bending 
moment for each skins that are defined as follows:

Now if we use kinematic relations (2), (3), (7), (8) and 
(16a–b)–(18a–d) with the simultaneous aid of constitutive 
relations (15a–d), Eq. (19) reaches one to

2.1 � The governing equations

The mathematical formulation starts with the derivation of 
the field equations and the appropriate boundary and con-
tinuity conditions. After that, the solution of the stress and 
the core’s deformation fields are obtained. Finally, gov-
erning equations expressed in terms of the displacement 
components are presented and solved analytically. The 
governing equations, the continuity requirements and the 
boundary conditions are derived via the variational princi-
ples, which minimize the total potential energy, as follows:

where in the Eq. (21) U, V and δ, respectively, are internal 
and external energies and the variation operator. The inter-
nal energy reads

(16a–b)
D11 = b

N
∑

k = 1

zk
∫

zk−1

Q
(k)
11 z

2dz

(17)Q
(k)
11

= Q11cos
4θ+Q22sin

4θ+2
(

Q12 + 2Q66

)

sin
2θcos2θ

(18a–d)
Q11 =

E11

1−ν12ν21
, Q22 =

E22

1−ν12ν21

Q12 = ν21Q11, Q66 = G12

(19)Ni =

di
2

∫

−
di
2

bσidz , Mi =

di
2

∫

−di
2

bσizdz (i = t, b)

Ni = A11

[

u′0i + wi

ri
+

1

2

(

u0i − w′
i

ri

)2
]

(20a–b)Mi = D11

(

u′0i − w′′
i

r2i

)

(i = t, b)

(21)δ(U + V) = 0

(22)

δU =

∫

vtop

σtδεtdvt +

∫

vbot

σbδεbdvb +

∫

vcore

(τcδγr + σcδεc)dvc

where in the Eq. (22) σt and ɛt are the longitudinal normal 
stresses and strains in the upper skins and σb and ɛb are the 
longitudinal normal stresses and strains in the lower skins; 
τc and γr are the shear stresses and strains in the core; σc 
and ɛc are the vertical normal stresses and strains in the 
core; vtop, vbot, and vcore are the volume of the upper and 
lower skins and the core, respectively; dvt, dvb and dvc are 
the volume of differential of the upper and lower skins and 
the core, respectively.

To obtain δU, the value of strains should be set from 
Eqs. (3), (7), (8) in (22).

The value of differential of volume is equal to

where in the Eq. (24)

The external energy reads

where in the Eq. (26) qi, ni, mi (i = t, b) are the external distrib-
uted vertical, horizontal, and bending moments, at upper and 
lower skins, ui, wi, βi (i =  t, b) are the horizontal and verti-
cal displacements and the rotation at upper and lower skins, 
respectively. The case of buckling in the curved beam would 
be set for the various status of loading. It is widely known that 
buckling may happen for the case of a beam subjected to uni-
formly distributed lateral load. In this regard also in this paper 
the buckling of curved beam in the presence of uniformly dis-
tributed load is analyzed. To this end other external loads that 
are introduced in relation (26) are considered equal to zero and 
consequently the work relation derived from external forces 
will be simplified as follows:

(23)

δU=

∫

vtop

σtδ

(

ε0t + ztκt +
1

2
β2t

)

dvt

+

∫

vbot

σbδ

(

ε0b + zbκb +
1

2
β2
b

)

dvb

+

∫

vcore

[(

τcδ

(

∂uc

∂r
−

uc

r
+

1

r

∂wc

∂

))

+ σcδ

(

∂wc

∂r

)]

dvc

(24)dvi = dAidx = bdzidx

(25)dx = ridϕ

(26)

δV= −





l
�

s = 0

�

ntδu0t + qtδwt −mtδβt
�

dst

−

l
�

s = 0

�

nbδu0b + qbδwb −mbδβb
�

dsb





(27)
δV = −

∫

qtδwtdAt=−

α0
∫

0

qtδwtbrtdω
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In the relation (27), dA = brdϕ is the area of a beam ele-
ment. Substituting Eqs. (23) and (27) into (21) leads to

or

(28)

δ(U + V) = 0 ⇒

∫

vtop

σtδ

(

ε0t + ztκt +
1

2
χ2

t

)

dvt

+

∫

vbot

σbδ

(

ε0b + zbκb +
1

2
β2

b

)

dvb

+

∫

vcore

[(

τcδ

(

∂uc

∂r
−

uc

r
+

1

r

∂wc

∂

))

+σcδ

(

∂wc

∂r

)]

dvc −

α0
∫

0

qtδwtbrtdω = 0

α0
∫

0

− N
′
t
u0tdω + Ntu0t|

α0
0

+

α0
∫

0

Ntwtdω

+

α0
∫

0

Nt

rt
(u0t − wt)u0tdω +

α0
∫

0

(

Nt

rt
(u0t − wt)

′

)′

wtdω

−
Nt

rt
(u0t − wt)

′
wt

∣

∣

∣

∣

α0

0

−

α0
∫

0

M
′
t

rt
u0tdω +

Mt

rt
u0t

∣

∣

∣

∣

α0

0

−

α0
∫

0

M
′′
t

rt
wtdω +

M
′
t

rt
wt

∣

∣

∣

∣

α0

0

−
Mt

rt
w
′
t

∣

∣

∣

∣

α0

0

+

α0
∫

0

−N
′
b
u0bdω + Nbu0b|

α0
0

+

α0
∫

0

Nbδwbdω

+

α0
∫

0

Nb

rb
(u0b − wb)δu0bdω +

α0
∫

0

(

Nb

rb
(u0b − wb)

′

)′

δwbdω

+

α0
∫

0

(

Nb

rb
(u0b − wb)

′

)′

δwbdω −
Nb

rb
(u0b − wb)

′δwb

∣

∣

∣

∣

α0

0

−

α0
∫

0

M
′
b

rb
δu0bdω +

Mb

rb
u0b

∣

∣

∣

∣

α0

0

−

α0
∫

0

M
′′
b

rb
wbdω

+
M

′
b

rb
δwb

∣

∣

∣

∣

α0

0

−
Mb

rb
δw′

b

∣

∣

∣

∣

α0

0

+

α0
∫

0

brtc(1−kt)τc|rtcδu0tdω

−

α0
∫

0

brtckt τ
′
c

∣

∣

rtc
δwtdω + brtckt τc|rtcδwt |

α0
0

To obtain the equilibrium equations, the coefficients 
of the nonzero parameters δu0t, δu0b, δwt , δwb, δwc, δuc 
are set equal to zero. By equaling the coefficients of 
δu0t, δu0b, δwt , δwb, δwc, δuc to zero, the following equilib-
rium equations are extracted.

According to Eq. (29), the boundary conditions in each 
end are as follows:

−

α0
∫

0

brbc(1+kb)τc|rbcδu0bdω

−

α0
∫

0

brbckb τ
′
c

∣

∣

rbc
δwbdω + brbckb τc|rbcδwb|

α0
0

−
∂

∂r

∫

ω

∫

r

∂

∂r
(brτc)ucdrdω −

∫

ω

∫

r

bτcδucdrdω

+

∫

r

∫

ω

−b
∂δτc

∂
∂wcdrdω +

∫

r

bτc ∂δwc|
α0
0
dr

(29)

+

α0
∫

0

brtc σc|rtcδwtdω −

α0
∫

0

brbc σc|rbcδwbdω − b

×

∫ ∫

r

∂

∂r
(rσc)δwcdrdω −

α0
∫

0

qtδwtrtdω= 0

δu0t : −N ′
t −

M ′
t

rt
+

Nt

rt

(

u0t − w′
t

)

+brtc(1−kt)τc|rtc= 0

δu0b : −N ′
b −

M ′
b

rb
+

Nb

rb

(

u0b − w′
b

)

− brbc(1+kb)τc|rbc= 0

δwt : Nt −
M ′′

t

rt
+

1

rt

[

Nt

(

u0t − w′
t

)]′

+ brtc σc|rtc − brtc ktτ
′
c

∣

∣

rtc
− brtqt= 0

δwb : N
b
−

M
′′
b

rb

+
1

rb

[

N
b

(

u0b − w
′
b

)]′
− brbc σc|rbc

− brbckb τ
′
c

∣

∣

rbc
= 0

δuc : −
∂

∂r
(rτc)− τc = 0 ⇒ r

∂τc

∂r
+ 2τc = 0

(30a–f)

δwc : −
∂τc

∂ϕ
−

∂

∂r
(rσc) = 0 ⇒

∂σc

∂r
+ σc +

∂τc

∂ϕ
= 0

δu0b = 0 or Nb −
1

rb
Mb= 0

δu0t = 0 or Nt −
1

rt
Mt= 0
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We can compute the displacement field in the core pre-
cisely. The last two governing equations in the relation of 
(30a–f) is related to equilibrium equations of the core. Of 
the first equation we have

That in the recent relation τ is only function of ϕ. By  
substituting τc from the last equation into Eq.  (30a–f) we 
have

In Eq. (33), C1 is the constant value of integration. Using 
the core constitutive relations (15a–d) we can write

To obtain constant values C1 and C2 we use the boundary 
conditions in the upper and lower points of core. According 
to the compatibility condition in these two points we can 
write, at r = rtc:

at r = rbc:

By accomplishing the two equations simultaneously, the 
constants of C1 and C2 will be achieved as follows:

δwb = 0 or
M ′

b

rb
−

Nb

rb

(

u0b − w′
b

)

+brbckb τc|rbc= 0

δwt = 0 or
M ′

t

rt
−

Nt

rt

(

u0t − w′
t

)

+ brtckt τc|rtc= 0

δw′
b = 0 or Mb = 0

δw′
b = 0 or Mt = 0

(31a–g)δwc = 0 or τc= 0

r
∂τc

∂r
+ 2τc = 0 ⇒ 2τcr + r2

∂τc

∂r
= 0 ⇒

(32)
∂

∂r

(

r2τc

)

= 0 ⇒ r2τc=τ(ϕ) ⇒ τc =
τ

r2

(33)

∂

∂r
(rσc)+

∂τc

∂ϕ
= 0 ⇒

∂

∂r
(rσc)+

1

r2
τ ′= 0 ⇒ rσc −

τ ′

r
= C1

(34)

rEc

∂wc

∂r
−

τ ′

r
= C1 ⇒

∂wc

∂r
=

1

Ec

(

C1

r
+

τ ′

r2

)

⇒ wc =
1

Ec

(

C2 + C1lnr−
τ ′

r

)

(35)wc = wt ⇒ wt =
1

Ec

(

C2 + C1lnrtc −
τ ′

rtc

)

(36)wc = wb ⇒ wb =
1

Ec

(

C2 + C1lnrbc −
τ ′

rbc

)

Defining the auxiliary parameter k0 =
rtc−rbc
rbcrtc

 and insert-
ing the constants C1 and C2 into Eq. (36), the normal defor-
mation function of the core, wc, is obtained as

Recalling the definition of shear stress of the core from 
Eq.  (15a–d) the tangential displacement of the beam may 
be written as

Upon substitution of Eq.  (38) into Eq.  (39) one may 
reach to

Integrating Eq.  (40) with respect to r in the interval [r, 
rtc] we will have

C1 =
Ec(wb − wt)+ τ ′

(

1
rbc

− 1
rtc

)

ln rbc
rtc

(37a–b)

C2 = Ecwb +
τ ′

rbc
−

lnrbc

ln rbc
rtc

[

Ec(wb − wt)+ τ ′
(

1

rbc
−

1

rtc

)]

(38)

wc = wb +
τ ′

Ec

(

1

rbc
−

1

r
+

ln r
rbc

ln rbc
rtc

k0

)

+
ln r

rbc

ln rbc
rtc

(wb − wt)

τc = Gcγr ⇒ γr =
τc

Gc

=
1

r2

τ

Gc

⇒

(39)

∂uc

∂r
−

uc

r
+

1

r

∂wc

∂ϕ
=

1

r2

τ

Gc

⇒ r
∂

∂r

(

uc

r

)

+
1

r

∂wc

∂ϕ
=

1

r2

τ

Gc

(40)

∂

∂r

(

uc

r
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τ
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b
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lnr− lnrbc

r2ln
rbc

rtc

]

+
(

w
′
b
− w

′
t

)

(

lnr− lnrbc

r2ln
rbc
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−
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r
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r
2
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)
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b
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1
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r

)
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(

1
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−
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r

)
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(

1

r
2
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−
1
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)

+
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Ec

τ ′′ −
1

ln
rbc

rtc

(41)

(

lnrtc

rtc
−

lnr

r
+

1

rtc
−

1

r

)

−
τ
′′
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lnrbc
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(

1

r
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−
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r

)
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w
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b
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)
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(

lnrtc
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1
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)

ln
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r
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1
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By solving the Eq. (41) in relation to uc, its distribution 
in the core will be as follows:

It should be considered that by solving the related equa-
tions to the core all parameters have been related to vari-
able τ(ϕ). Therefore, a new equation should be replaced by 
two equations of core that have been written based on τ(ϕ). 
To obtain this equation we use the compatibility condition 
of (36) that in r = rbc we have

uc =
r

rtc

(1−kt)u0t +
r

rtc

w
′

t
+

(

1−
r

rtc

)

w
′

b

+

(

w
′

b
− w

′

t

)

(

rtc - r

rtcln
rbc

rtc

+
ln

r

rbc

ln
rbc

rtc

+
r

rtc

)

+
τ
′′

Ec

(42)

[(

rtc - r

rtcln
rbc

rtc

+
ln

r

rbc

ln
rbc

rtc

+
r

rtc

)

k0
rtc - r

rtcrbc
−

1

2

(

r
2
tc
− r

2

r r
2
tc

)

]

−
τ

2Gc

(

r
2
tc
− r

2

r r
2
tc

)

By equaling Eqs. (42) and (43) we have

And after ordering relation (44) we will have

Equation (45) along with the four first equilibrium equa-
tions, will be the governing equations.

3 � Pre‑buckling analysis

This study analyzes the buckling of sandwich curved beam 
with flexible core in which its upper skin is subjected to 
uniform load of intensity qt. In the pre-buckling analysis 
of curved beam von Karman nonlinear terms can be dis-
regarded. Because the raising of beam is not so great and 
consequently rotations of βt and βb are not so great and, 
therefore, the values of β2

t  and β2
b may be ignored. In other 

words in the case of pre-buckling only linear analysis is 
sufficient, also in this case it is supposed that the beam 
contracts uniformly and, therefore, the components of dis-
placement u0t, u0b and uc in the pre-buckling case can be 
disregarded (Figs. 3, 4).

According to the assumptions and using superscript of 
zero for pre-buckling case, the stability equations in this 
case would be as follows (it should be considered that 
because of uniform contract of beam all of derivations 
would be deleted) [24].

(43)uc|r = rbc
= u0b(1+kb)− kbw

′

b

(44)

u0b(1+kb)− kbw
′
b
=

r
bc

rtc
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′
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+
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′
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+
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)
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r
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)

+
τ ′′

Ec

[(
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+
r
bc
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)

k0 +
1

r
bc

−
1
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−
1

2r
bc

+
r
bc

2r
2
tc

−
τ

2Gc

(

r
2
tc
− r

2

bc

r
bc
r
2
tc

)

= 0

]

(45)

(1−kt)u0t −
r
tc

r
bc

(1+kb)u0b −

[

(1−kt)+
k0rtc

ln
r
bc

rtc

]

w
′
t
+

r
tc

r
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[

1+kb +
k0rbc

ln
r
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]

w
′
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−
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τ
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r
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r
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+
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2Ec

τ ′′

(

2k0
r
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ln
r
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rtc

+
r
tc
+ r

bc

r
bc

)

= 0

δu0t : −brtc(1+kt)τ
0
c

∣

∣

∣

rtc
= 0

δu0b : − brbc(1+kb)τ
0
c

∣

∣

∣

rbc
= 0

δwt : N
0
t + brtc σ

0
c

∣

∣

∣

rtc
− brtc ktτ

′0
c

∣

∣

∣

rtc
− brtqt= 0

Fig. 3   Curved sandwich beam with simply supported boundary con-
dition subjected to uniform load [24]

Fig. 4   Schematic of pre-buckling path and buckled form. A homoge-
neous curved beam with simply supported type of the boundary con-
dition subjected to uniform load [24]
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Based on the last relation (46), we conclude that distribu-
tion of shear in the pre-buckling case will be equal to zero, 
by the way the two first equations would be satisfied and 
third and fourth equation would be simplified as follows:

To estimate the value of stress of σ 0
c  we use the relation 

σ 0
c = Ecε

0
rr. According to the resulted distribution for wc 

we can write

And consequently pre-buckling equations will be as 
follows:

On the one hand, according to the stress results and 
regardless of βt and βb in the pre-buckling case we will 
have

By equaling relations of (49a–b) and (50a–b), the fol-
lowing equations for w0

t  and w0
b will be achieved.

δwb : N
0
b − brbc σ

0
c

∣

∣

∣

rbc
− brbc kbτ

′0
c

∣

∣

∣

rbc
= 0

(46)

δτ : τ 0 = 0

N0
t + brtc σ

0
c

∣

∣

∣

rtc
= brtqt

(47a–b)N0
b − brbc σ

0
c

∣

∣

∣

rbc
= 0

(48)

w
0

c
= wb +

ln
r

rbc

ln
rbc

rtc

(

w
0

b
− w

0

t

)

⇒ ε0
rr
=

1

rln
rbc

rtc

(

w
0

b
− w

0

t

)

⇒ σ 0

c
=

Ec

rln
rbc

rtc

(

w
0

b
− w

0

t

)

N0
b =

bEc

ln rbc
rtc

(

w0
b − w0

t

)

(49a–b)N0
t =

− bEc

ln rbc
rtc

(

w0
b − w0

t

)

+ brtqt

N0
b = A11b

w0
b

rb

(50a–b)N0
t = A11t

w0
t

rt

A11b

w0
b

rb
=

bEc

ln rbc
rtc

(

w0
b − w0

t

)

(51a–b)A11t
w0
t

rt
=

− bEc

ln rbc
rtc

(

w0
b − w0

t

)

+ brtqt

By solving two equations and two unknowns in the rela-
tion (51a–b) for w0

t  and w0
b we will have

and pre-buckling forces are equal to,

4 � Stability equations

For derivation of stability equations from the primary 
path the concept of adjacent equilibrium criterion is used. 
According to this criterion components of displacement 
field on primary equilibrium path are perturbed to establish 
a secondary equilibrium path. The amount of perturbations 
are nonzero zero. Otherwise, the structure will remain on 
its initial path. Denoting the amount of perturbations by 
superscript one, we will have a new stability path that its 
components will be as follows [24]:

Due to the increment in the displacement components, 
the stress resultants will perturb too. It should be consid-
ered that the values with superscripts one are very small 
and the second degrees will be disregarded. By the way 
stability equations for curved sandwich beam will be as 
follows:

w0
b =

brtqt

A11t
rt

(

1− A11b
Ecbrb

ln rbc
rtc

)

+
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(52a–b)
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(

1− A11b
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b
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t

(54a–e)τ = τ 0 + τ 1
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′
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∣
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The existent equations in the relation (55a–e) should be 
like an eigenvalue system with unknown coefficients N0

t  
and N0

b. It should be stated that N1
t , M

1
t , N

1
b and M1

b are the 
value of perturbations of stress results that are calculated as 
follows:

Boundary conditions in this analysis are considered to be 
simply supported on two ends. For two edges of ω = 0,α0 
these conditions are as

According to what was obtained for wc and according to 
the fact that wb and wt are equal to zero in two edges, the 
boundary conditions will be simplified as follows:

(55a–e)

(1−kt)u
1

0t
−

rtc

rbc

(1+kb)u
1

0b
−

[

(1−kt)+
k0rtc

ln
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]

w
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+
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]
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−
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+
k0

2Ec
τ1′′

(

2k0

rtc

ln
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+
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)
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N1
b = A11b

(
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′
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b
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)

N1
t = A11t

(

u1
′

0t + w1
t
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)

M1
b = D11b

(

u1′0b − w1′′
b

r2b

)

N1
t = D11t

(

u1
′

0t + w1
t

r2t

)

(56a–e)

σ 1
c =

1

r2
τ 1
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+
1

r

(

Ec

ln rbc
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(

w1
b − w1

t

)

+
τ 1

′
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r
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r
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b = 0

w1
t = 0

M1
b = 0
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t = 0

(57a–g)w1
c = 0

N1
b= 0

According to the definitions of N1
i  and M1

i  that are 
offered in the relation (56a–e), the above boundary condi-
tions can be offered as follows:

To satisfy the boundary conditions (59a–g), functions 
u10b, u

1
0t, w

1
b, w

1
t  and τ1 will be considered as follows:

Functions of relation (60a–e) are set in the stability 
equations. It is to mention that stability equations based on 
displacement components will be written as follows that 
for easy usage the superscript one is deleted.
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b = 0
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t = 0
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t = 0
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′
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′
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′
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t = 0
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b = Wb sin
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Therefore, if we set the solutions that have been used for 
functions of u0b, u0t , wb and wt in the relation (61a–e), the 
problem will be written as follows:

That in relation (62), [K]e and [K]g respectively, show 
elastic and geometry stiffnesses. By definitions of αn = nπ

α0
 

elements of each of these two matrices can be written as 
follows:
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(61a–e)
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that in derivation, the existent relations in the Eq. (63a–y), 
the last stability equation is multiplied in b

rbc
 to set the mem-

bers of the elastic matrix symmetric. Accordingly members 
of Kg are
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Fig. 5   Variation of critical buckling pressure versus curved beam 
angle

Fig. 6   Variation of critical buckling pressure versus curved beam 
angle
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K11
g = −

n0t

rt
α2
n , K12

g = 0

K13
g = −

n0t

rt
αn, K14

g = K15
g = 0

K21
g = 0, K22

g = −
n0b
rb
α2
n

By equaling determinant of the coefficient matrix of the 
problem there would be an eigen problem in which criti-
cal pressure by an eigenvalue and the buckle shape of beam 
will be like an eigenvector. As in the analysis of eigenvalue 
the eigenvector is not specified uniquely, the values of lat-
eral rising and longitudinal displacement in the moment 
of buckling is not determined uniquely. For this reason the 
buckling shapes only show the schematic in the moment 
of buckling and lateral rising is in the moment show a 
schematic.

5 � Results

In this section, using Matlab software and the theory 
offered in the previous sections, buckling of curved sand-
wich beam with simply supported boundary conditions is 
analyzed. The result of this method with accurate results 
from the theory of elasticity and Abaqus software are 
validated.

5.1 � Numerical example

In this example, critical load of curved composite beam 
with a transversely flexible core and composite skins is 
estimated. The core is flexible and skins follow the classic 
theory. The type of skins is of graphite-epoxy A54/3501 
that has the following mechanical and geometrical proper-
ties. The numerical results are shown in Figs. 5 and 6.

K23
g = 0, K24

g =
n0b
rb
αn, K25

g = 0

K31
g =

n0t

rt
αn, K32

g = 0

K33
g = −

n0t

rt
, K34

g = K35
g = 0

K41
g = 0, K42

g =
n0b
rb
αn

K43
g = 0, K44

g = −
n0b
rb
, K45

g = 0

(64a–y)K51
g = K52

g = K53
g = K54

g = K55
g = 0

E11= 144.8Gpa, E22 = E33 = 9.65Gpa, G12 = G13= 4.14Gpa,

G23= 3.45 Gpa

ρ = 1389.23kg/m3, ν12 = ν13= 0.3, ν23= 0.48, R = 0.8m

rbc = 0.7m, rtc = 0.9m, rt= 0.9+0.5h, rb = 0.7−0.5h,

b = 0.1m, Ec = 100Mpa

Table 1   The critical buckling load Pcr (MN/m) of curved symmetric 
sandwich beam subjected to uniform load

ϕ (°) Layup This study FEM

30 [45,−30]s
[45,−45]s
[45,−60]s

15.04
11.84
10.16

14.21
11.07
9.40

60 [45,−30]s
[45,−45]s
[45,−60]s

13.90
11.44
10.16

13.14
10.70
9.21

90 [45,−30]s
[45,−45]s
[45,−60]s

14.05
11.37
9.99

13.28
10.62
9.32

120 [45,−30]s
[45,−45]s
[45,−60]s

13.90
11.42
9.96

12.97
10.67
9.18

150 [45,−30]s
[45,−45]s
[45,−60]s

13.95
11.37
9.96

13.20
10.36
9.31

180 [45,−30]s
[45,−45]s
[45,−60]s

13.90
11.37
9.97

13.14
10.71
9.35

Table 2   The critical load buckling of curved sandwich beam sym-
metric subjected to uniform load Pcr (MN/m)

ϕ (°) Layup This study FEM

30 [45,−30]s
[45,−45]s
[45,−60]s

72.20
51.83
40.89

68.23
48.40
32.71

60 [45,−30]s
[45,−45]s
[45,−60]s

57.46
43.28
35.69

54.27
40.49
32.99

90 [45,−30]s
[45,−45]s
[45,−60]s

57.82
44.40
35.91

54.71
41.56
33.25

120 [45,−30]s
[45,−45]s
[45,−60]s

57.46
43.28
35.69

54.42
40.54
33.05

150 [45,−30]s
[45,−45]s
[45,−60]s

57.22
43.70
35.59

54.16
40.91
32.92

180 [45,−30]s
[45,−45]s
[45,−60]s

57.46
43.28
35.69

54.16
40.38
33.16
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where “h” is the thickness of the top and bottom skin. 
Numerical results for two values of thickness, i.e., one mil-
limeter and two millimeters are offered.

The critical load values for different angles and skins 
thickness are calculated. The numerical values are shown 
in Tables 1 and 2 and depict excellent accuracy with those 
obtained from Abaqus software. In Figs. 5 and 6, the critical 
pressure for different layups and two different skin thick-
nesses is offered against the curved beam angles. The type 
of skins is of graphite-epoxy type. In the Fig. 5, results are 
for the skin thickness 1 mm and Fig. 6 for thickness 2 mm 
are shown. In both cases the values of core elasticity module 
and the Poisson ratio are, respectively, 100 Mpa and 0.3.

The radius of upper curve of core is equal to rtc= 0.9m 
and the radius of lower curve of core is equal to rbc= 0.7m.

As can be seen, in each state of layup the load value in 
Fig.  6 is more than of Fig.  5. This is due to the increase 
in the thickness of skins which results in higher stiffness. 
As seen from the studied cases, layup of face sheets affects 
greatly on the critical buckling load and buckled shape.

Changes in the value of the critical load for angles 
higher than 90 degrees to the angles less than 90 degrees 
are not sensible.

6 � Conclusions

In this study, the stability behavior of a sandwich arch with 
flexible core and composite-laminated face sheets is stud-
ied analytically. Displacement field in the core is solved via 
the compatible elasticity equations, while for the two skins 
classical laminate theory is adopted. Various layups and 
types of laminations are used for the faces. The resulted 
governing equations are established in general form via the 
virtual displacements principle. The case of an arch under 
uniform lateral pressure is analyzed. The pre-buckling 
solution is accomplished with proper linearizations and 
the stability equations are obtained via the adjacent equi-
librium criterion. An exact solution is obtained for the case 
of a beam with both edges simply supported. Analytical 
closed-form phrase is presented to deduce the critical buck-
ling load of the arch. As concluded the stiffness of the core, 
thickness of the core, curved beam angle, and face sheets 
lamination have influential effects on critical buckling 
loads and buckled shapes of the arch.
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