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1 Introduction

Reliability-based design optimization (RBDO) imple-
ments structural optimization considering simultaneously 
the uncertainties in the structural materials properties and/
or applied loading. The general structural RBDO problem 
with both deterministic and probabilistic design constraints 
can be expressed as:

where d = [d1, d2, . . . , dn]
T is a column vector of n 

deterministic design variables, X = [x1, x2, . . . , xm]
T is 

the m-dimensional vector of random variables, f (d) is 
the objective function, P(Gi(d,X) ≤ 0) denotes the fail-
ure probability for the i-th limit state function Gi(d,X).  
Pi
f is the target failure probability of i-th constraint 

and NPC is the number of probabilistic constraints. 
In Eq. (1), σ and u are the stress of jth member and 
the nodal displacement of k-th degree of freedom, 
respectively. σall., uall., dL, dU, Nm and NDOF are respec-
tively allowable member stress, allowable nodal dis-
placement, lower and upper bounds of d, total num-
ber of members of the structure and total number of 
degrees-of-freedom. The target failure probability can 
be expressed in terms of the target reliability index, 
Pi
f = Φ(−βti), as Φ(.) is the standard normal cumulative 

distribution function.

(1)

Min/Max f (d)

Subject to:

P(Gi(d,X) ≤ 0) ≤ Pi
f , i = 1, . . . ,NPC

and/or σj(d) ≤ σall., j = 1, . . . ,Nm

and/or uk(d) ≤ uall., k = 1, . . . ,NDOF

and/or dL ≤ d ≤ dU
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The most common routines to solve Eq. 1 include: (1) A 
two-level or loop-nested approach that introduces a reliabil-
ity analysis as a probabilistic constraint within a determin-
istic optimization loop. This approach is namely referred 
to as the reliability index approach (RIA) based on FORM, 
or as the performance measure approach (PMA) based 
on an inverse FORM [1]. (2) A mono-level approach that 
attempts to solve RBDO problems by avoiding the reliabil-
ity analysis [2–6]. This method reformulates the reliability 
constraints and replaces them by utilizing the optimality 
conditions resulting in a mono DDO loop. This technique 
expresses inconstancy in some cases since it requires cal-
culation of second-order derivatives [7]. (3) Decoupled 
approaches where the concept of reliability analysis is 
carried out whether before or after the DDO procedure 
[8–10]. Recently many studies have been conducted in this 
field to decouple the reliability and DDO loops. However, 
a recent benchmark study [7] shows that such approaches 
may suffer from non-unicity of the most probable failure 
point (MPFP) in cases where they rely on the assumption 
of MPFP.

One of the most popular approaches to reduce compu-
tational cost of reliability analysis is the response surface 
method (RSM) and its adaptive versions (see for example 
[11–17]). Numerous studies have also been done on the 
application of RSM to solve structural reliability analy-
sis and structural RBDO problems (see [17–20]). RSM 
employs polynomial function to approximate the unknown 
implicit performance function. However, RSM becomes 
computationally impractical for problems involving a large 
number of nonlinear random variables, particularly when 
mixed or statistically dependent random variables are 
involved [21].

One could refer to the study by Qu and Haftka [22] who 
proposed the concept similar to safety factors to relate 
DDO and reliability analysis, namely referred to as the 
probabilistic sufficiency factor (PSF). In that research PSF 
is computed by Monte Carlo simulation (MCS) combined 
with response surface method (RSM) approximations.

In addition, Wu et al. [23] presented a method in 2001 
based on safety factors by which the optimization proce-
dure and reliability analysis are employed using a decou-
pling approach. In fact they substituted random variables 
with deterministic ones based on safety factors.

The current study attempts to implement a fast method 
to find reliable optimum solutions, based on the concept of 
safety factors embedded into the essential formulation of 
RBDO. The deterministic optimum points are computed 
in an inverse manner iteratively until the global optimum 
point is determined whose failure probability, estimated 
using MCS method, meets that of the target value. The 
safety factor corresponding to the global optimum point is 
called the reliable demand factor (RDF). It is worthwhile 

noting that the dynamic modification of the SFs through-
out the proposed approach is performed using the cubic 
B-spline interpolation concept. It modifies the fitting curve 
accuracy and reduces the relative error distance with the 
aim of finding a RDF encountered with the targeted failure 
probability. The reasons for applying MCS is its versatil-
ity for all problems, easy to implement and its capability of 
computing the probability of failure with the desired preci-
sion [24, 25].

The proposed decoupled RBDO approach possesses the 
following unique advantages: (1) it incorporates safety fac-
tors in structural design, a methodology that engineers are 
familiar with, (2) it identifies solutions which are near the 
reliable optimum design with a few number of failure prob-
ability computations, (3) it avoids computation of optimiza-
tion and reliability analyses simultaneously, (4) utilization 
of cubic B-spline interpolation concept is due to its advan-
tageous characteristic to fit modified curves in a piecewise 
manner without increasing the degree of the polynomial. It 
finally determines an optimum response corresponding to 
the target failure probability. This leads to a fast conver-
gence of an optimum SF via a few Pf calculations, and (5) 
the efficient decoupling approach employed here allows for 
any type of reliability method to be exploited along with 
the optimization procedure.

Finally, some structural problems will be attempted con-
taining two and three-dimensional truss structures and the 
results will be performed.

2  The proposed methodology

2.1  Constraints handling

Considering the deterministic design constraints of Eq. (1), 
the squared normalized degree of constraints violation V 
for each design, related to the member stresses and nodal 
displacements, may be defined as:

By incorporating a set of safety factors into Eq. (2), it 
can be modified as a squared normalized safety factor-
based degree of constraints violation V’ given by:

where, γs and γd are defined here as safety factors corre-
sponding to stress and displacement, respectively and ⌢

X 
denotes the vector of mean values of random variables. 
Based on the definition of safety factors, γs and γd are 
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allowed to vary between 1 and 0. The safety factor that sat-
isfies the target level of reliability is called RDF.

2.2  RBDO formulation based on safety factors

In structural design, due to the stochastic nature of material 
properties and applied loads and thus design uncertainties, 
use of stochastic analysis is inevitable. As an alternative, 
use of safety factors in the process of structural design is a 
simple way familiar to all engineers. These coefficients are 
referred to as load or resistance factors. Conventionally in 
the processes of optimization based on reliability, the deter-
ministic objective function, constrained with the structural 
failure probability is a repetitive procedure that requires 
thousands of analyses to be carried out for each design. In 
fact, the conventional RBDO method utilized in structural 
optimization, is a nested or a double-loop method which 
contains two loops; the outer loop that contains optimiza-
tion procedure and the inner loop, which is related to the 
reliability analysis. The design vectors of deterministic var-
iables are transferred to the inner loop from the outer one 
in order to compute the failure probability for each design. 
Therefore, a gigantic number of analyses should be carried 
out for the RBDO.

The purpose of the present work is to search for the opti-
mum point on the different safety levels of V′ as in Fig. 1 to 
satisfy the targeted level of reliability. These surfaces are 
generated by utilizing a series of safety factors. In the pro-
posed approach, use of SF in the objective function sim-
ply allows a combined reliability based objective function 
for optimization. The proposed formulation of decoupled 
RBDO using SFs is introduced as the following equation:

The objective of Eq. (4) is to find an optimum safety 
factor γ ∗ utilized by the cubic B-splines. This will lead 
to the optimum solution vector d* under the deterministic 
safety factor-based constraint V′. After that, the instituted 
optimum solutions d* are controlled for the probabilistic 
constraint as to check the corresponding failure probability 
over the targeted probability of failure.

2.3  Proposed RBDO procedure using B‑spline 
interpolation concept

The procedure for RBDO of structures using proposed 
inverse method may be performed according to the flow-
chart shown in Fig. 2.

Figure 3 indicates the procedure by which the range of 
response for γ ∗ is decided upon. The following steps details 
the whole procedure. In all steps the optimum points are 
computed for the mean values of the random variables 
⌢

X = [µx1 ,µx2 , . . . ,µxm ]
T. Pa

f  means the probability of fail-
ure corresponding to γ = a.

Step 1—Primary check of the design space First for the 
mean value of safety factor, γ = 0.5, according to Eq. (3), 
the corresponding optimum design d* will be determined. 
With respect to the type of constraints, γ could represent 
either γs and/or γd in most structural problems. The P0.5

f  is 

(4)

Findγ ∗

subject to :






V ′ = 0

Pf

�

d∗,
⌢

X

�

= P
Target
f

Fig. 1  Series of deterministic 
design optimizations based on 
a sequence variation of safety 
factors
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then computed using MCS as described in Sect. 2.4. The 
reason for this selection is based on the fact that within the 
range 0 < γ < 1, a mid-point (γ = 0.5) may be a suitable 
starting point. As an example, if one uses the medians of ⌢X,  
the median-design will have a reliability of approximately 
0.5 because the MPP will have a minimum distance of zero 
resulting in Φ(0) = 0.5 [23].

Step 2—Movement decision for γ towards γ ∗ Compare 
P
Target
f , and determine the range of γ ∗ according to Eq. (5):

(5)

{

(I) if P0.5
f > P

Target
f search for γ ∗ 0 < γ < 0.5

(II) if P0.5
f < P

Target
f search for γ ∗ 0.5 < γ < 1

In most structural problems, computing P0.4
f  for region I 

and P0.6
f  for region II could be very efficient.

Therefore, in case of (I), compute the values of Pf for the 
two auxiliary points γ = 0 and 0.4. In case of (II), compute 
the values of Pf for the two auxiliary points of two safety 
factors γ = 0.6 and 1.

Step 3—Curve fitting In this stage, cubic B-spline inter-
polation concept is used in order to more accurately fit 
(Pfvs.γ ) by having the coordinates of the points found. The 
authors recommend de Boor, [26] in case further studies 
about the advancements of B-splines are required.

Step 4—Extracting data from fitted curve Extract the 
approximate safety factor (γ̄) corresponding to the value of 
P
Target
f  given, from the fitted curve of step 3.

Start

Initialization: initialize algorithm parameters;
Prepare a structural analyzer; define geometry 
of structure, loading conditions and material 

seitreporp

Set = 1

Fit ( − ) curve (B-splines)

Extract ̅ corresponding to 
from fitted curve

−
<

Determine 0.5

Add new point ( ̅ , )
to previous sample points

N

0.5 <

Compute 0.4

and 0

Compute 0.6

and 1
Y

N

∗ = ̅

Set ∗ =
∗

Determine 
( ∗)

Find optimum design 
∗
at ̅

Find at 
∗

Fit new ( − ) curve (B-
splines)

Set = + 1

END

DDO

Y

Fig. 2  Flowchart of the proposed method for RBDO of structures

Fig. 3  Structural failure prob-
ability against the different 
values of safety factor
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Step 5—deterministic design optimization (DDO) Use 
DDO approach to find the optimum design point d∗ subject 
to V′ based on the extracted γ̄ using the mean values of ran-
dom variables ⌢X.

Step 6—Reliability analysis Determine the PMCS
f  for the 

deterministic optimum design d∗ of step 5 using MCS.
Step 7—Error estimation Compute the relative distance 

errorPf between PMCS
f  and PTarget

f  using Eq. (6)

Step 8—Check convergence If relative distance errorPf 
is less than or equal to a tolerance ε, the PMCS

f  will be 
assigned as the PTarget

f  and the reliability based optimum 
design and the RDF γ ∗ is said to being found.

Step 9—Repeating the procedure until convergence If 
according to Eq. (6) the convergence has not occurred, the 
PMCS
f  will be considered as another auxiliary point to more 

accurately fit the curve. Steps 3–9 will be repeated until 
convergence and the reliable optimum design point d∗ will 
be recorded.

2.4  Monte Carlo simulation

Monte Carlo simulation, named after the casino games of 
Monte Carlo, Monaco, originates from the research work 
of Metropolis and Ulam in 1949 [27]. Monte Carlo simu-
lation is known as a simple random sampling method or 
statistical trial method that makes realizations based on 
randomly generated sampling sets for uncertain variables. 
A basic advantage of sampling methods is their direct 
utilization of experiments to obtain mathematical solu-
tions or probabilistic information concerning problems 
whose system equations cannot be solved easily by known 
procedures.

In general, a reliability problem is formulated using a 
limit state function, G(X), where X = [X1,X2, . . . ,Xm]

T 
is a vector with m random variables. Violation of the 
limit state function or failure is defined by the condition 
G(X) ≤ 0 and the probability of failure, Pf, is expressed by 
the following expression (Eq. 7):

where JX1X2...Xm(X) is the joint probability density function. 
The Monte Carlo method allows the determination of an 
estimate of the probability of failure, given by equation:

(6)errorPf =
PMCS
f − P

Target
f

P
Target
f

(7)

Pf = P[G(X) ≤ 0] =

∫∫

G(X)≤0

. . . ∫ JX1X2...Xm (X)dx1dx2 . . . dxm

(8)
Pf

∼=
1

N

N
∑

i=1

I(Xi)

where N is the total number of samples and I(X) is a func-
tion defined by Eq. (9):

Equation 9 states that the violation of the ultimate limit 
state function (G(X) ≤ 0) occurs when either the strength 
or serviceability capacity of structure is less than the load-
ing effects. The basic computation procedure of MCS is as 
follows: 

Step 1 Generate N samples for each random variable 
based on its probability distribution type and construct N 
sampling set vectors X.
Step 2 Compute the value of limit state function for each 
sample to obtain G(X).
Step 3 Check Eq. (9) for the computed G(X)).
Step 4 Use Eq. (8) to estimate the Pf.

To generate a sample value xi for each random variable, 
the following general procedure for any type of distribution 
can be formulated [24, 25]: 

Step 1 Generate the random value ui from a uniformly 
distributed random variable between 0 and 1.
Step 2 Calculate a sample value xi from the following 
equation:

where F−1
X  is the inverse of FX and FX is a cumulative dis-

tribution function of random variable x.

3  Examples

In this section three benchmark RBDO structural prob-
lems were studied: a 10-bar truss with 10 design variables, 
a 13-bar truss with 7 design variable and a 72-bar spatial 
truss problem with 16 design variables. The structural Pf 
computation was performed using MCS. As Nowak [24] 
suggested, the number of samples produced by MCS, with 
regard to the coefficient of variation for Pf as to be less than 
or equal to ν, is determined by the following equation:

For each problem, ν was set as 0.1 and Pf should be 
equal to the targeted value for that problem.

In all examples, the sequential quadratic program-
ming (SQP) algorithm was used to carry out the optimi-
zation procedure. For this purpose, “fmincon” function 

(9)I(X) =

{

1 if G(X) ≤ 0

0 if G(X) > 0

}

(10)xi = F−1
X (ui)

(11)NMCS =
1− Pf

ν2Pf
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of MATLAB was utilized. Also, the starting point d0 of 
DDO was considered as the middle of the allowable design 
bounds, shown as follows:

where j denotes the design variable number and dUj  and dLj  are 
the upper and lower bounds of j-th variable, respectively. For 
all three examples, computational expenses will be compared 
with those from the literature by means of the number of 
estimations of the failure probability. Also, a package which 
contains finite element method codes written by the authors 
in MATLAB software was prepared as an analyser where the 
linear elastic behaviour of elements was considered.

3.1  A 10‑bar truss problem

This benchmark problem is selected to verify the proposed 
methodology. It was addressed, for example, by Zhao and 
Qiu [20] as a RBDO problem. The geometry of this 10-bar 

(12)d0j =
dUj + dLj

2

truss is shown in Fig. 4. The deterministic design variables 
of the structure are the members cross-sectional areas and 
the stochastic variables include external loads P1, P2 and 
P3, module of elasticity E and the length of the horizon-
tal and vertical members L. Their statistical properties are 
given in Table 1.

The cross-section areas of all bars are design vari-
ables and their lower and upper bounds are 0.0001 and 
0.002 m2, respectively. The target reliability index is 2.5, 
i.e., the target failure probability is 6.21 × 10−3. The total 
area of bars is to be minimized. The limit state is defined 
as nodal maximum vertical displacement of node 3, 
which should be less than 0.004 m. The modified implicit 
limit state function G* is expressed as in Eq. (13) for Pf 
calculation:

Considering Eq. (13), the following formulation is intro-
duced as utilizing the displacement safety factor (γd) to 
obtain optimum deterministic points:

In Eq. (14), the aim is to find the optimum γ ∗
d  that gives 

an optimum solution d*, such that Pf(d,* X) is less than the 
P
Target
f  considering the given tolerance ε.

Having found P0.5
f  and compared the value with PTarget

f ,  
the range 0.5 < γ* < 1 was nominated. To first fit the curve, 
the two initial points corresponding to γ = 0.6 and 1 were 
computed for Pf. The procedure then was repeated for  
three iterations until the B-spline interpolation curves 
were fitted for three auxiliary points (see Fig. 6a, b), as a 
result of which errorPf was found less than 1 %. Figure 5a,  

(13)G∗ = 0.004− u3,y(d
∗,X)

(14)V ′

�

d,
⌢

X

�

=









max









0,

u3,y

�

d,
⌢

X

�

γd0.004
− 1

















2

Fig. 4  A 10-bar planar truss

Fig. 5  Convergence histories of objective function, 10-bar truss. a For total sample points; and b magnified view around the reliable optimum 
solution with f = 62.068 cm2
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b illustrates the convergence leading to the optimum design 
corresponding to the PTarget

f . The results are as listed in 
Table 2. It is worthwhile noting that through the whole 
process of reliability-based optimization with the proposed 
technique, the Pf was only computed six times, wherein 
the method proposed by Zhao and Qiu [20] requires a total 
of 1904 Pf calculations to find an optimum solution with 
the objective value of 63.649 m2 with the corresponding Pf 
equal to 2.742 × 10−3. One could claim that the proposed 

Table 1  Statistical properties of random variables, 10-bar truss

Variable Distribution Unit Mean value Coefficient of variation 
(CV)

P1 Normal kN 60 0.2

P2 Normal kN 40 0.2

P3 Normal kN 10 0.2

E Normal Gpa 200 0.1

L Normal m 1 0.05

Fig. 6  Fitted cubic B-spline curves for 3, 4 and 5 sample points, 10-bar truss. a For 0.5 < FS < 1; and b magnified view around the reliable opti-
mum solution with Pf = 6.15 × 10−3

Table 2  RBDO results of 10-Bar truss

a (“fmincon” function of Matlab software for optimization) − (an efficient response surface method for reliability analysis)

Variable group Bar areas Zhao and Qiua [20] Optimal cross-sectional area (m2) × 10−4

Current work

Initial sample points Auxiliary sample points (iterations)

γd = 0.5 γd = 0.6 γd = 1 γ̄d,1 = 0.6253 γ̄d,2 = 0.6302 γ ∗
d = 0.6316

1 A1 10.705 12.500 13.999 6.250 10.000 10.000 10.000

2 A2 5.914 6.250 10.000 3.125 5.000 5.040 5.042

3 A3 14.424 17.562 10.000 8.693 14.0465 14.0834 14.0280

4 A4 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 A5 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6 A6 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 A7 5.531 12.500 10.000 6.250 10.000 9.000 9.000

8 A8 11.853 12.500 10.000 6.250 10.000 10.000 10.000

9 A9 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 A10 11.223 12.500 10.000 6.250 10.000 10.000 10.000

Total area (×10−4) 63.649 77.812 67.999 40.818 63.0465 62.123 62.068

Exact Pf (MCS) 2.742 × 10−3 0.11 × 10−3 2.97 × 10−3 0.4586 5.433 × 10−3 5.979 × 10−3 6.15 × 10−3

No. of Pf calc. 1904 4 5 6

(errorPf × 100) % 21.51 3.71 0.966
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RBDO approach requires less Pf calculations. This opti-
mum solution also possesses a Pf less than the target one 
with an error less than 1 %.

3.2  A 13‑bar bridge truss problem

A 13-bar bridge truss shown in Fig. 7 is considered which 
has been studied by some authors as a RBDO problem such 
as Nakib and Frangopol [28] and Ghorbani and Ghasemi 
[29], previously. Table 3 lists the seven design variables’ 
groups as the cross-sectional areas of members. Their 
lower and upper bounds are between 6.4516 × 10−5 and 
6.4516 × 10−3 m2, respectively. The material density and 
modulus of elasticity were considered as 7850 kg/m3 and 
206 GPa, respectively. A load P and material yield stress, 
Fy are considered as random variables associated with nor-
mal distribution with the corresponding parameters defined 
in Table 4. System failure is assumed to occur when the 
stress in each member σi reaches the yield stress. The mod-
ified limit state function G* of this truss for Pf calculation is 
therefore defined as:

In this example, by embedding the stress safety fac-
tor, (γs) to Eq. (15), we can reformulate it as the following 
equation to define V′

(15)G∗
i = Fy − |σi(d

∗,X)|

(16)V ′

�

d,
⌢

X

�

=
�13

i=1









max









0,

σi

�

d,
⌢

X

�

γsFy

− 1

















2

Fig. 7  A 13-bar bridge truss

Table 3  Member grouping details of a 13-bar bridge truss

Group number Variables

1 A1, A12

2 A2, A13

3 A3, A11

4 A4, A8

5 A5, A9

6 A6, A10

7 A7

Table 4  Statistical properties of random variables, 13-bar bridge 
truss

Variable Distribution Mean value Coefficient of varia-
tion (CV)

Load, P (kN) Normal 66.726 0.16

Yield stress, Fy 
(Mpa)

Normal 248.22 0.12

Fig. 8  Fitted cubic B-spline curves for 3, 4 and 5 sample points, 13-bar truss. a For 0 < FS < 0.5; and b magnified view around the reliable opti-
mum solution with Pf = 0.99 × 10−5
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Having found P0.5
f  and compared the value with PTarget

f , 
the range 0 < γ* < 0.5 was selected. Figure 8a, b shows the 
converged cubic B-spline-fitted curves of (Pf vs γ) accord-
ing to the six sample points. At the third iteration where γ̄ 
was found equal to 0.42 with the corresponding truss mass 
of 353.0202 kg, the computed Pf reached the PTarget

f  with 
a discrepancy of 1 % in the safe region. Therefore, the 
authors may claim that the optimum solution is the most 
reliable since 99 % of the PTarget

f  was met in the safe region. 
The results of the proposed RBDO of this problem are 
listed in Table 5, where the reliable optimum design was 
slightly lighter than that in the literature.

Figure 9a, b also illustrates the convergence of total truss 
mass leading to the optimum design corresponding to the 
P
Target
f .

As seen from the results listed in Table 5, the efficiency 
of the proposed RBDO is the best in terms of the number 
of Pf evaluations. The proposed RBDO approach requires 
a total of 5 Pf calculations to find the global optimum solu-
tion with the objective value of 353.0202 kg, being 1.7 % 
less than the best value recorded in the literature.

3.3  A 72‑bar spatial truss problem

The 72-bar space truss shown in Fig. 10 was first investi-
gated by Shayanfar et al. [30] in 2014 as a reliability-based 
design optimization problem. The geometry of the truss with 
its nodes numbering and grouping of the members are indi-
cated in Fig. 10. In the current study, the design variables 
were selected as discrete for the cross-sectional areas where 

Table 5  RBDO results of 13-bar bridge truss cross-sectional area (m2) × 10−3

a (Interior penalty function method for optimization) − (Approximate Bounding Techniques for reliability analysis)
b Adaptive Neuro Fuzzy Systems and Particle Swarm Optimization for optimization)-(Monte Carlo Simulation for reliability analysis

Variable group Nakib and Frangopol 
[28]a

Ghorbani and Ghasemi 
[29]b

Current work

Initial sample points Auxiliary sample points (Iterations)

γs = 0.4 γs = 0.5 γ̄s,2 = 0.4108 γ̄s,2 = 0.4136 γ ∗
s = 0.42

1 0.746 0. 751 0.800 0.640 0.9545 0.8000 0.7299

2 1.219 1.191 1.2375 0.990 1.2500 1.2125 1.2041

3 0.753 0.726 0.6875 0.550 0.6590 0.6875 0.6723

4 0.745 0.741 0.800 0.640 0.9545 0.8000 0.7299

5 0.227 0.223 0.1125 0.090 0.2650 0.1125 0.1300

6 0.840 0.810 0.900 0.720 0.9545 0.8000 1.0023

7 0.522 0.516 0.5625 0.450 0.6590 0.5625 0.4774

Truss mass (kg) 367.11 359.7 361.8825 289.506 356.6050 353.4226 353.0202

Exact Pf (MCS) 0.64 × 10−5 0.97 × 10−5 0.44 × 10−5 2.548 × 10−4 0.82 × 10−5 0.84 × 10−5 0.99 × 10−5

No. of Pf calc. 636 230 3 4 5

(errorPf × 100) % 36 3 18 16 1

Fig. 9  Convergence histories of objective function, 13-bar truss. a For total sample points; and b magnified view around the reliable optimum 
solution with f = 353.0202 kg
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the objective function was kept as to minimize the total truss 
weight. The density of material is 2767.99 kg/m3. To enforce 
symmetry, members of the truss were set into sixteen groups 
as in Table 7. Loading condition, consists of 22.2411 kN in 
x, y and −22.2411 kN in z directions at node 1. The lower 
and upper bounds of members C.S.A. were confined to 
6.4516 × 10−5 m2 and 2.903 × 10−3 m2, respectively. Prop-
erties of the random variables are shown in Table 6. This 
problem has two reliability constraints to control the lateral 

displacement of node 1 in x and y directions. The allowable 
lateral displacement �all. is considered as 7.62 × 10−3 m in 
both x and y directions. The modified limit state functions of 
this space truss for Pf calculation is therefore defined as:

where i is equal to x or y direction of node 1. By embedding 
the displacement safety factor (γd) to Eq. (17), we can refor-
mulate it as the following equation to define the hypothetical 
constraint surfaces V′ as:

As depicted in the results of Table 7, Shayanfar et al. 
[30] could produce an optimum weight of 243.030 kg for a 
reliability index of β = 3 corresponding to a Pf of 0.00135, 
slightly in the unsafe region. According to the proposed 
method here, a minimum weight of 243.2706 kg was deter-
mined for a targeted Pf of 0.00135.

As listed in Table 7, three iterations as γ̄d = 0.58, 0.59 
and 0.5913 were done, while the third iteration where γ̄d 
was found equal to 0.42, the computed Pf reached the PTarget

f  
with a relative distance of less than 1 % in the safe region. 
Figure 11a, b illustrates the convergence of optimum truss 
weight leading to the optimum design corresponding to the 
P
Target
f . Figure 12a, b also shows the converged B-spline 

interpolation curves of (Pf vs γ) according to the 3, 4 and 5 
sample points. As seen from the results in Table 7, the pro-
posed method yields high efficiency in terms of the number 
of Pf evaluations. This is where the proposed method found 
an optimum weight of 243.2706 kg after a total of 6 Pf eval-
uations that is less than the total 200 number of Pf evalua-
tions reported by Shayanfar et al. [30].

4  Conclusions

In this article an efficient method based on safety factors 
and cubic B-spline interpolation concept was introduced to 
solve RBDO of structures. This technique may be regarded 
as one in the category of decoupling methods. The pro-
posed method may be distinctive for its ability to highly 
reduce the number of reliability analyses required for struc-
tural reliability-based optimization compared to conven-
tional methods. MCS was utilized for reliability analysis 
to show the efficiency of the proposed approach. The per-
formance of the proposed technique was verified on three 
structural problems. The results obtained well state that 
this method possesses a sufficient speed and accuracy. The 
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Fig. 10  The 72-bar space truss structure

Table 6  Statistical properties of random variables, 72-bar space truss 
example

Variable Distribution Mean value Coefficient of variation 
(CV)

Ai Normal To be determined 0.05

E Lognormal 68.9476 GPa 0.05

Px Lognormal 22.2411 kN 0.1

Py Lognormal 22.2411 kN 0.1

Pz Lognormal −22.2411 kN 0.1
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features of the proposed technique may be summarized as 
follows:

•	 The proposed RBDO framework contains an efficient 
decoupling approach that allows for a reasonably high 
speed of convergence.

•	 The proposed method may solely require a relatively 
simple understanding of RBDO together with a low 
effort of programming.

•	 This technique could be distinctive with a minimum 
number of Pf computations required since the Pf deter-
mination is carried out only after a global deterministic 

Table 7  RBDO results of 72-bar space truss cross-sectional area (m2) × 10−5

a (Genetic algorithm for optimization) − (first-order reliability method for reliability analysis)

Variable group Shayanfar et al.a Current work

Initial sample points Auxiliary sample points (iterations)

γd = 0.5 γd = 0.6 γd = 1 γ̄d,1 = 0.58 γ̄d,2 = 0.59 γ ∗
d = 0.5913

1 (A1–4) 6.4516 6.4516 6.4516 6.4516 6.4516 6.4516 6.4516

2 (A5–12) 58.0644 81.8062 56.6708 41.9547 61.9166 61.20974 69.2966

3 (A13–16) 19.3548 22.3096 20.2386 11.3225 20.8696 21.49931 20.4257

4 (A17,18) 32.258 34.7934 26.1676 15.1031 29.0463 31.28750 29.3483

5 (A19–22) 70.9676 25.0773 20.7806 12.5806 22.1664 20.3135 23.1935

6 (A23–30) 58.0644 65.8708 54.1740 41.6192 65.0218 55.52440 52.3160

7 (A31–34) 6.4516 6.4516 6.4516 6.4516 6.4516 6.4516 6.4516

8 (A35,36) 6.4516 6.4516 6.4516 6.4516 6.4516 6.4516 6.4516

9 (A37–40) 96.774 93.9288 88.7288 41.6192 83.7675 82.0025 94.2449

10 (A41–48) 32.258 53.6902 49.9999 37.4579 55.6192 60.9861 50.8773

11 (A49–52) 19.3548 6.4516 6.4516 6.4516 6.4516 6.4516 6.4516

12 (A53,54) 19.3548 6.4516 6.4516 6.4516 6.4516 6.4516 6.4516

13 (A55–58) 148.3868 193.5092 185.0125 83.2449 163.9028 153.6009 152.0835

14 (A59–66) 58.0644 74.4385 58.1482 41.6192 53.2321 52.4543 54.9676

15 (A67–70) 6.4516 6.4516 6.4516 6.4516 6.4516 6.4516 6.4516

16 (A71,72) 6.4516 6.4516 6.4516 6.4516 6.4516 6.4516 6.4516

Truss weight (kg) 243.030 288.938 240.281 165.606 249.679 243.837 243.2706

PG1
f

 (MCS) 0.00163 7 × 10−5 0.00193 0.472 0.00092 0.001275 0.001345

PG2
f

 (MCS) 0.00148 6 × 10−5 0.00174 0.48 0.00098 0.00177 0.0013

No. of Pf calc. 200 4 5 6

(errorPf × 100) % 27 5 0.3

Fig. 11  Convergence histories of objective function, 72-bar truss. a For total sample points; and b magnified view around the reliable optimum 
solution with f = 536.32 lb
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optimum design is found with respect to the mean values 
of random variables and the intended safety factors.

•	 B-spline interpolation curves were utilized as a tool to 
find an optimum safety factor that yields an optimum 
solution with the corresponding failure probability equal 
to the targeted Pf. These interpolation curves were modi-
fied each time with the newly founded optimum solu-
tion.

•	 One may realizes that the method contains a firm and 
straightforward framework since in all examples it leads 
to the global and reliable optimum design that satisfies 
the targeted Pf with a maximum dispute of 1 % in the 
safe region.

•	 In all examples studied, the reliable optimum design 
point was found only with less than a total of 10 Pf cal-
culations.
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