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Abstract This paper proposes the robustification method

of primary generalized predictive control GPC for a

hydraulic actuator, which is previously modeled by an

uncertain plant. Three-step procedures should be followed

for robustification: First, the primary GPC controller based

on nominal plant is designed to ensure a better tracking

dynamic of the closed-loop system. Second, the Q-pa-

rameter transfer function is determined from solving the

weighted-mixed sensitivity problem using the two Riccati

equations where the uncertainty plant and neglected

dynamics are taken into account. Finally, the Youla

parameterization combines the primary GPC controller and

Q-parameter to design the robustified GPC controller

which enhances the trade-off robustness of primary GPC

controller without changing its better tracking dynamic. To

validate the effectiveness of the proposed robustification,

the hydraulic actuator, which presents a realistic process, is

controlled by both primary and robustified GPC controllers

where their simulation results are compared in time and

frequency domains by those given by the H? controller.

Keywords H? control � Hydraulic actuators � Predictive
control � Robust control � Two-term control

1 Introduction

The generalized predictive control (GPC) [1–3] is a very

powerful method. It has been the subject of many researches

during the last decade [4, 5]. For single input single output

(SISO) system case, the controlled auto regressive inte-

grated moving average (CARIMA) model is widely used in

the GPC method [6, 7], where the expected behavior of the

real process can be predicted in the extended time horizon.

The GPC law is given from the iterative resolution of two

Diophantine equations and the quadratic criterion mini-

mization at every step time [8, 9]. It has the ability to be

transformed into an equivalent polynomial RST form [9].

This transformation is much desired in control engineering

to reduce the recursive resolution of the diophantine equa-

tions and the possibility to examine the stability and the

performance robustness, where the maximum singular val-

ues of its sensitivity and complementary sensitivity func-

tions are used in frequency domain [9]. Several works have

been developed to control a nominal plant using GPC con-

trollers, where a good tracking dynamic of the set-point

reference is guaranteed. Unfortunately, its trade-off robust-

ness between nominal performances and the robust stability

is not ensured in a set of neighboring plant cases [10, 11].

Various design synthesis methods have been proposed

also since the late of the nineties to resolve this problem.

Yoon et al. used the C-polynomial approach in CARIMA

model to enhance the rejection dynamic of the load distur-

bances [12]. Unfortunately, this choice remains complicated

for a higher order transfer functions. Gossner et al., Ansay

et al., and Olaru et al. suggested an extra parameter calledQ-

parameter [10, 13, 14]. This parameter is introduced to

enhance the trade-off robustness between the nominal per-

formances and the stability robustness. It is obtained from

resolving a non-linear optimization problem. However, it is
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difficult to achieve this compromise in practice when the

order of the transfer function of the Q-parameter is very

high. Stoica et al. propose a robustification method based on

a constrained linear optimization where the designed con-

troller is based on two-step procedures [15]: a primary GPC

controller is first designed with a deterministic model, and

its robustness is then enhanced via the Youla parameteri-

zation. This parameterization allows formulating frequency-

and time-domain constraints as a convex optimization

problem. Afterwards, this problem is approximated by a

linear programming with inequality constraints, and the

optimal Q-parameter is derived. A disadvantage of this

method is expressed by a hard choice of an optimal order

transfer function of the Q-parameter, which was determined

after several trials. In addition, the optimal solution of the

optimization search problem is not guaranteed. The con-

vergence speed gets slowing down when approaching the

optimal solution due to the higher number of the Q-pa-

rameter variables. These variables are determined by opti-

mization and they depend on the plant dimension.

Consequently, the computational cost increases exponen-

tially as the optimization size increases and becomes rapidly

prohibitive as the order of the Q-parameter increases, which

leads to numerical ill-conditioning. This method requires

also a good choice of the Q-parameter order, which is very

difficult to find and would be given after several trails.

Knowing that, theH? control theory offers the possibility

of including robustness considerations explicitly in the

synthesis controller step [16]. The controller parameters are

given from minimizing of the weighted-mixed sensitivity

problem, which contains all robustness properties of the

closed-loop system. Several works have confirmed the effi-

ciency of the H? controller for controlling the uncertain

plant. Its stability and performance robustness are guaran-

teedwith bettermargins.Unfortunately, its tracking dynamic

is degraded when their robustness margins are increased.

In this paper, the robustified GPC controller is designed

to ensure the better trade-off robustness given by the H?

controller. As well as, it can conserve the same better

tracking dynamic that is provided by the primary GPC

controller. The fundamental difference between the

robustification method proposed in this paper and those

available in the literature is the way to design the Q-pa-

rameter, which is the main contribution of this work.

2 Brief review of the GPC law

In predictive control, the CARIMA model is usually used,

and it is given by Eq. (1) as follows [17]:

Aðq�1ÞyðtÞ ¼ Bðq�1Þuðt � 1Þ þ Cðq�1Þ
Dðq�1Þ fðtÞ ð1Þ

where y, u and f denote, respectively, the output, input and
Gaussian white-noise which is presented by zero mean and

constant variance, q�1 is the backward shift operator and

the polynomial function Dðq�1Þ ¼ 1� q�1 denotes the

integral action on CARIMA model, which cancels the

effect of the load disturbance signals.

Aðq�1Þ, Bðq�1Þ and Cðq�1Þ denote the polynomial

transfer function that is defined by:

Aðq�1Þ ¼ 1þ a1q
�1 þ a2q

�2 þ � � � þ anaq
�na

Bðq�1Þ ¼ b0 þ b1q
�1 þ b2q

�2 þ � � � þ bnbq
�nb

Cðq�1Þ ¼ c0 þ c1q
�1 þ c2q

�2 þ � � � þ cncq
�nc

8
<

:
ð2Þ

where Cðq�1Þ is assumed as Cðq�1Þ ¼ 1. In all receding

horizon predictive control strategies, the control law pro-

vides an optimal control-increment DuðtÞ ¼ uðtÞ � uðt �
1Þ that is given by solving the following quadratic opti-

mization problem [17]:

min Jf g
Du

¼ min
Du

PN2þN1�1

k¼N1

ŷðt þ kÞ � wðt þ kÞ½ �2
(

þ k
PNu

k¼1

Duðt þ k � 1Þ½ �2
� ð3Þ

Such that: Duðt þ k � 1Þ½ � ¼ 0 for k�Nu.

Where ŷðt þ kÞ is the optimum k-step ahead prediction

of the process output on the data up to time t,wðtÞ denotes
the future set-point reference for the process output yðtÞ, N1

is the minimum output prediction horizon, which is

assumed equal to 1, N2 and Nu(with respect to Nu �N2)

denote, respectively, the maximum output prediction

horizon and the maximum control prediction horizon, k is

the positive parameter that penalizes the control energies.

The optimal predictor of GPC law is defined by [14, 17]:

ŷðt þ kÞ ¼ GvkDuðt þ k � 1Þ þ HkDu t � 1ð Þ
þ FkyðtÞ ; k ¼ 1; . . .;N2

ð4Þ

where Gvk ;Hk;Fk;Ek are the polynomial transfer functions

in the backward shift operator q�1. These functions are

determined from solving iteratively two diophantine

equations that is defined by [15, 17]:

1 ¼ Ekðq�1ÞAðq�1ÞDðq�1Þ þ q�kFkðq�1Þ

Ekðq�1ÞBðq�1Þ ¼ Gvkðq�1Þ þ q�kHkðq�1Þ

(

k ¼ 1; . . .;N2

ð5Þ

The optimal increment-control vector D ~Uopt is deter-

mined from Eqs. (3–5), and also yields:

D ~UoptðtÞ ¼ �iMðq�1Þ iFðq�1Þ: ~YðtÞ
�

þ iHðq�1Þ:D ~Uðt � 1Þ � ~WðtÞ
�

ð6Þ

where iHðq�1Þ, iFðq�1Þ and iMðq�1Þ are the polynomial

transfer matrices that are defined by:
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iHðq�1Þ ¼
H1ðq�1Þ ¼ H1

0 :q
0 þ � � � þ H1

nb�2:q
�nbþ2

..

. ..
. ..

.

HN2
ðq�1Þ ¼ HN2

0 :q0 þ � � � þ HN2

nb�2:q
�nbþ2

0

B
@

1

C
A

iFðq�1Þ ¼
F1ðq�1Þ ¼ F1

0 :q
0 þ � � � þ F1

na:q
�na

..

. ..
. ..

.

FN2
ðq�1Þ ¼ FN2

0 :q0 þ � � � þ FN2
na :q

�na

0

B
@

1

C
A

Gvðq�1Þ ¼
G1

v1
0 � � � 0

..

. ..
.

� � � ..
.

GN2
vN2

GN2
vN2�1

� � � GN2
vN2�Nuþ1

2

6
6
4

3

7
7
5

iMðq�1Þ ¼ GT
v Gv þ k:INu�Nu

� ��1
GT

v

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð7Þ

and

~YðtÞ ¼ yðt þ 1Þ; . . .yðt þ N2Þð ÞT
~WðtÞ ¼ wðt þ 1Þ; . . .;wðt þ N2Þð ÞT

D ~UoptðtÞ ¼ DuoptðtÞ; . . .;Duoptðt þ Nu � 1Þ
� �T

8
<

:
ð8Þ

Furthermore, only the first component of the vector

D ~Uopt is effectively applied as the optimal control to the

system. We can obtain:

uoptðtÞ ¼ uoptðt � 1Þ þ iMðq�1Þ ~WðtÞ � Fcðq�1Þ
� �

ð9Þ

where Fcðq�1Þ ¼ iFðq�1Þ:YðtÞ � iHðq�1Þ:D ~Uðt � 1Þ, and

iM1ðq�1Þ is the first row of the polynomial transfer matrix

iMðq�1Þ.

3 Design of primary GPC controller

The control law given by (9) is usually converted to the

polynomial transfer functions R0S0T0, which are defined

the primary GPC controller. We get [14, 15]:

S0ðq�1ÞDðq�1ÞuoptðtÞ ¼ T0ðq�1ÞwðtÞ � R0ðq�1ÞyðtÞ ð10Þ

Comparing the two Eqs. (9) and (10) yields the fol-

lowing polynomial transfer functions:

S0ðq�1Þ ¼ 1þ q�1 � iM1ðq�1Þ � iHðq�1Þ
R0ðq�1Þ ¼ iM1ðq�1Þ � iFðq�1Þ
T0ðq�1Þ ¼ iM1ðq�1Þ � ½q � � � qN2 �T

8
<

:
ð11Þ

4 Youla parameterization

As given in [18], the robustified GPC controller can be

presented by the following polynomial transfer functions

R1S1T1. We get:

R1ðq�1Þ ¼ R0ðq�1Þ þ Dðq�1ÞQðq�1ÞAðq�1Þ
S1ðq�1Þ ¼ S0ðq�1Þ � q�1Qðq�1ÞBðq�1Þ
T1ðq�1Þ ¼ T0ðq�1Þ

8
<

:
ð12Þ

Qðq�1Þ denotes the stable transfer function (to be deter-

mined) that should improve the trade-off robustness of the

primary GPC controller. As well as, it should conserve its

better tracking dynamic. To achieve both previous goals,

let us consider the feedback-control system of the robus-

tified GPC controller, which is given by Fig. 1 [15, 18].

According to Fig. 1, we can obtain the generalized

feedback-control system, which is given by Fig. 2 [19],

where eðtÞ, dðtÞ, gðtÞ and wf ðtÞ are, respectively, the error

signal, load disturbance input, measurement noise input

and the filtered set-point reference. Gðq�1Þ denotes the

nominal plant, Hð0;1Þðq�1Þ and Kð0;1Þðq�1Þ are, respectively,
the pre-controller and post-controller where the polyno-

mials presented by the index (0) and the index (1) are,

respectively, referred to the primary and robustified GPC

controllers. We get:

Gðq�1Þ ¼ q�1 Bðq�1Þ
Aðq�1Þ

Kð0;1Þðq�1Þ ¼
Rð0;1Þðq�1Þ

Dðq�1ÞSð0;1Þðq�1Þ

Hð0;1Þðq�1Þ ¼
Tð0;1Þðq�1Þ
Rð0;1Þðq�1Þ

8
>>>>>>><

>>>>>>>:

ð13Þ

Fig. 1 Feedback–control system given by robustified GPC controller

Fig. 2 Generalized feedback–control system
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According to Fig. 2, for the primary GPC controller

case, the closed-loop system from the set-point reference to

the process output is given by [19]:

Gc0ðq�1Þ ¼ H0ðq�1Þ Gðq�1ÞK0ðq�1Þ
1þ Gðq�1ÞK0ðq�1Þ

� �

ð14Þ

where better dynamic tracking heavily depends by a good

choice of the tuning parameters N2;Nu; kð Þ, which are

specified by the user. According to Eqs. (12–14), it is easy

to see that the robustified GPC controller can conserve this

previous tracking dynamic, i.e.,

According to Fig. 2, two sensitivity functions can be

determined when the robustified GPC controller is used.

We get:(a) Sensitivity function [19, 20]:

Sd1ðq�1Þ ¼ 1

1þ Gðq�1ÞK1ðq�1Þ )

Sd1ðq�1Þ ¼ ADS1
ADS1 þ q�1BR1

ð16Þ

Knowing that, Eq. (16) gives information on the nomi-

nal performances in frequency domain. It presents also the

closed-loop system between the load disturbance (d) and

the process output (y). So that, an ideal form of the sen-

sitivity function is achieved when their maximal singular

values �r Sd1ðxÞð Þ are vanished as much as possible in low

frequencies and reached the unity 1 in high frequencies.

According to Eq. (16), it is easy to verify the following

relationship:

Sd1ðq�1Þ ¼ Sd0ðq�1Þ 1� q�1 DQB
DS0

	 


ð17Þ

where Sd0ðq�1Þ denotes the initial sensitivity function and

1� q�1 DQB
DS0

� �
is the polynomial responsible to achieve the

perfect form that is previously mentioned.

Proof Sd1ðq�1Þ ¼ 1

1þq�1B
A
:
R1
DS1

) Sd1ðq�1Þ

¼ ADS1
ADS1þq�1BR1

)Sd1ðq�1Þ ¼ AD S0�q�1QBð Þ
AD S0�q�1QBð Þþq�1B R0þDQAð Þ )

Sd1ðq�1Þ ¼ ADS0
ADS0 þ q�1BR0

1� q�1 DQB
DS0

	 


)

Sd1ðq�1Þ ¼ Sd0ðq�1Þ 1� q�1 DQB
DS0

	 


(b) Complementary sensitivity function:

Sc1ðq�1Þ ¼ Gðq�1ÞK1ðq�1Þ
1þ Gðq�1ÞK1ðq�1Þ )

Sc1ðq�1Þ ¼ q�1BR1

ADS1 þ q�1BR1

ð18Þ

Sc1ðq�1Þ is the complementary sensitivity function that

gives information on the stability robustness in frequency

domain. It presents also the closed-loop system between

the noise measurement (g) and the process output (y). So

that, a perfect form of Sc1ðq�1Þ is achieved when their

maximal singular values �r Sc1ðxÞð Þ are vanished as much as

possible in high frequencies and reached the unity 0 dB in

low frequencies. According to Eq. (18), it is easy to verify

the following relationship:

Sc1ðq�1Þ ¼ Sc0ðq�1Þ 1þ DQA
R0

	 


ð19Þ

where Sc0ðq�1Þ is the initial complementary sensitivity

function and 1þ DQA
R0

� �
is the term responsible to attain the

desired form that is previously cited.

Proof

Sc1ðq�1Þ ¼
q�1 B

A

� �
: R1

DS1

� �

1þ q�1 B
A

� �
: R1

DS1

� � ) Sc1ðq�1Þ ¼ q�1BR1

ADS1 þ q�1BR1

)

Sd1ðq�1Þ ¼ q�1QB R0 þ DQAð Þ
AD S0 � q�1QBð Þ þ q�1B R0 þ DQAð Þ )

Sd1ðq�1Þ ¼ q�1QBR0

ADS0 þ q�1BR0

1þ DQA
R0

	 


)

Sc1ðq�1Þ ¼ Sc0ðq�1Þ 1þ DQA
R0

	 


:

Gc0ðq�1Þ ¼ Gðq�1ÞK0ðq�1ÞH0ðq�1Þ
1þ Gðq�1ÞK0ðq�1Þ

Gc1ðq�1Þ ¼ Gðq�1ÞK1ðq�1ÞH1ðq�1Þ
1þ Gðq�1ÞK1ðq�1Þ

8
>>><

>>>:

) Gc0ðq�1Þ ¼ Gc1ðq�1Þ; 8Qðq�1Þ ð15Þ
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In robust control theory, the optimal trade-off robustness

can be formulated as the following weighted-mixed-sen-

sitivity problem [19, 20]:

min
K12<H1

J1f g ¼ min
K12<H1
q�1¼e�jxf g

sup
x2 0; p

Te
½ �

W1ðe�jxÞSd1ðe�jxÞ
W3ðe�jxÞSc1 ðe

�jxÞ

" #8
<

:

9
=

;

ð20Þ

This is equivalent to the numerical inequality:

W1ðe�jxÞSd1ðe�jxÞ
W3ðe�jxÞSc1ðe�jxÞ












1

� c ð21Þ

where Te and c denote, respectively, the sampling time and

the better H? performance level, W1 and W3 denote,

respectively, the weighting functions that penalize the

control error eðtÞ and the process output yðtÞ [19, 20].

Practical considerations such as rate saturation, pure time

delays and unmodeled dynamics can be included in those

above weighting functions. Nevertheless, the procedure of

choosing these weights is indeed empirical. The selection is

iterative and may go on until a satisfactory performance is

achieved with an acceptable trade-off. According to

Eqs. (17), (19) and (20), the optimal Q-parameter is

determined from resolving the following optimization

problem, we get:

min
Q2<H1

J1ðQÞf g ¼

min
Q2<H1

sup
x2 0; p

Te
½ �

W1ðe�jxÞSd0ðe�jxÞ 1� e�jx � DQB
DS0

	 


W3ðe�jxÞSc0ðe�jxÞ 1þ DQA
R0

	 


3

7
7
7
5

2

6
6
6
4

8
>>><

>>>:

9
>>>=

>>>;

ð22Þ

Where the optimal Q-parameter is given from solving the

optimization problem (22) using the hinfsyn function of the

Matlab software.

5 Results and discussion

In this section, the primary and robustified GPC controllers

are applied to the hydraulic actuator (benchmark problem,

see [21]) where its dynamic behavior is modeled by the

following nominal plant model [21]:

GN sð Þ ¼ 9000

s3 þ 30s2 þ 700sþ 1000
ð23Þ

Knowing that, all uncertainties that affect the above

process have been modeled as an unstructured-multiplica-

tive model called also DmðsÞ, which satisfies the following

condition [21]:

DmðsÞk k1¼ Gp sð Þ � GNðsÞ
GN sð Þ










1
\ 1 ð24Þ

where Gp sð Þ denotes the perturbed system. For perfor-

mance specifications, W1ðsÞ is selected as a second-order

system described by:

W1ðsÞ ¼
1þ s=30

� �2

0:01 1þ s=1
� �2 ð25Þ

where the line-of-sight error signal should be attenuated at

least 100:1 to 1 rad/s.

For robust stability, W3ðsÞ is selected as a first-order

system described by:

W3ðsÞ ¼
1þ s=10

� �

3:16 1þ s=300
� � ð26Þ

where the robust stability robustness specification has a

closed-loop bandwidth 30 rad/s. (more details are available

in actdemo/help of Matlab software)

According to Ref. [21], both proprieties, which are the

tracking dynamic and the trade-off robustness are guaran-

teed by solving the weighted-mixed sensitivity problem

using the H1 method based on two Riccati equations. Its

optimal solution given with the performance level c ¼ 0:8

yields also the robust H1 controller KH sð Þ, which is given

by the following continuous state-space system [21]:

KH sð Þ ¼ AH BH

CH DH

	 


where:

AH ¼

�332:6916 �0:1619 0:0230

�0:0104 �2:0064 0:1786

0:0001 �3:7988 �2:6026

�0:0002 �9:6135 9:3157

0:0027 �74:2941 114:4444

�0:0008 21:2806 �32:7812

0

B
B
B
B
B
B
B
B
@

�1:4401 0:5268 �7:9889

�0:0720 �0:0671 �0:2227

9:6866 5:4420 18:0290

�34:9763 �19:6783 �65:2037

�209:0938 �334:1902 468:6990

59:8923 �0:6739 �234:7583

1

C
C
C
C
C
C
C
C
A

BH ¼ �0:0023 3:9261 �1:1003 �3:2160ð �25:1013 7:1899 ÞT

CH¼ 30503 14 2 130 �52 800ð Þand DH

¼ 0:23425

For the GPC method, all previous continuous systems,

which are the nominal plant and robust H1 controller, are

discretized using the Tustin method and the sampling time

Te = 0.01 s. The CARIMA model is therefore given by:
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Aðq�1Þ ¼ 1� 2:68q�1 þ 2:422q�2 � 0:7408q�3

q�1Bðq�1Þ ¼ 0:001389þ 0:005164q�1 þ 0:001196q�2

�

The tuning parameters of the GPC law, which ensure a

better tracking dynamic are chosen as: N2;Nu; kð Þ ¼
6; 1; 0:04ð Þ. It is very important to say that these param-

eters have been chosen after several tuning trials. Conse-

quently, the primary GPC controller under the RST

structure is determined by:

R0ðq�1Þ ¼ 155:9� 365:5 q�1 þ 295:3q�2 � 81:73q�3

S0ðq�1Þ ¼ 1þ 0:5774 q�1 þ 0:6543q�2 þ 0:1319q�3

T0ðq�1Þ ¼ 2:022þ 1:131 q�1 þ 0:5199q�2 þ 0:1674q�3

þ0:02267q�4

8
>><

>>:

The robustified GPC controller is then determined from

solving the optimization problem given by Eq. (22) where

its optimal solution defines the polynomial transfer func-

tion of the Q-parameter. We get: Qðq�1Þ ¼ QN ðq�1Þ
QDðq�1Þ, where:

QNðq�1Þ ¼ �150:42 1� 1:98q�1 þ 0:98q�2
� �

1þ0:5134q�1þ0:06613q�2
� �

� 1� 1:487q�1 þ 5626q�2
� �

1þ0:0969q�1 þ 0:02566q�2
� �

1� 1:564q�1 þ 0:6947q�2
� �

� 1� 5:396� 10�5q�1
� �

and
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Fig. 4 Nominal Performances
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Fig. 5 Obtained process outputs
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Fig. 6 Obtained control energies
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QDðq�1Þ ¼ 1� q�1
� �

1� 0:9849q�1
� �

1� 0:7912q�1
� �

1þ 0:2894q�1
� �

1þ 0:2491q�1
� �

� 1� 0:0002096q�1
� �

1� 4:249� 10�5q�1 þ 2:387� 10�9q�2
� �

1� 1:76q�1 þ 0:7801q�2
� �

� 1� 1:695q�1 þ 0:7522q�2
� �

Figures 3 and 4 compare, respectively, the curve of the

maximal singular values of the complementary sensitivity

and the direct sensitivity functions, which are provided by

the primary GPC, robustified GPC and the H? controllers

in the frequency range x ¼ 10�3; 10þ5
� �

radians/seconds.

However, Figs. 5 and 6 compare, respectively, the

obtained process outputs and the control energies taking

into account the load disturbance d, which is assumed to be

a unit-step function with a gain of 0.35, and the measure-

ment noise vector (g), which is assumed to be a Gaussian

distributed random signal with mean and variance values

equal to 0 and 0.001, respectively. The load disturbance d

is carried on the output of the plant at t = 1.5 s, and the

measurement noise signal g is carried on the output of the

plant at time t = 2.5 s.

According to Fig. 3, for the primary GPC controller

case, it can be seen that the curve of the maximal singular

values of the complementary sensitivity function Sc0f g has

an undesired resonance peak where Sc0k k1¼ 5:894 at the

frequency x = 202.6 radian/s. It can be seen also that the

stability robustness condition is violated in high-frequency

range except in interval: 22.95 B x B 10?5 radians/s. This

can be explained by a higher sensitivity of the feedback-

control system to the noise measurement signals in time

domain. Figure 3 shows also the obtained complementary

sensitivity function by the H1 and the robustified GPC

controllers, which are identical at all frequency points.

These sensitivities are bounded by 1= W3j j, which confirm

the improvement of obtained stability robustness by the

primary GPC controller.

According to Fig. 4, all maximal singular values of three

controllers are bounded by 1= W1j j at all frequencies.

However, Sd0f g has an undesired resonance peak where

Sd0k k1¼ 6:851 at x ¼ 202:6 radian/second. This can be

explained by a poor rejection dynamic of load disturbance

signals in time domain. Also, we can see that the other two

controllers provide the same nominal performances. As a

conclusion, Figs. 3 and 4 confirm that the better trade-off

robustness is well guaranteed by the robustified GPC

controller compared with that given by the primary GPC

one.

Table 1 summarizes the time specifications given by

three previous controllers where the better results are

mentioned in bold.

6 Conclusion

This paper proposes a robustification method based on

Youla parameterization, while its polynomial transfer

function is determined by solving a weighted-mixed-sen-

sitivity problem using the H1 method based on two Riccati

equations. The obtained controller enhances the nominal

performances and the stability robustness of the primary

GPC controller for the hydraulic actuator taking into

account the load disturbance and the Gaussian noise mea-

surement signals. The obtained simulation results show the

notable improvement that the GPC acquires.
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