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better performing products, especially where mechatronics, 
miniaturization and critical functionality are important. The 
emergence of new manufacturing technologies, spurred 
by intense competition, will lead to dramatically new 
products, processes and process pull. It is widely appreci-
ated that the development of micro-machining has greatly 
changed human lives in terms of increased standards, as an 
example of process pull. Uses of high-accuracy miniatur-
ized components have been increased, such as in aerospace, 
biomedical, electronics, environmental, communications, 
and automotive components [1].

In the present-day manufacturing industry, high-speed 
milling (HSM) plays an important role. The key benefit 
of HSM is that a large amount of material can be cut in a 
short time span with relatively small tools due to the high 
rotational speed of the tool. This results in relatively low 
forces, which allows one to mill large and complex thin-
walled structures from a single block of material, instead 
of assembling the same structure from several parts. In 
order to improve the production rates. The selection of 
optimal cutting parameters is a very important issue for 
every machining process in order to enhance the quality 
of machining products, to reduce the machining costs and 
to increase the production rate. Due to machining costs of 
numerical control a machine (NC), there is an economic 
need to operate NC machines as efficiently as possible 
in order to obtain the required pay back. In workshop 
practice, cutting parameters are selected from machin-
ing databases or specialized handbooks, but they do not 
consider economic aspects of machining. The cutting 
conditions set by such practices are too far from optimal. 
Therefore, a mathematical approach has received much 
attention as a method for obtaining optimized machining 
parameters [1, 2].

Abstract  The miniaturization of machine component 
is perceived by many as requirement for the future tech-
nological development of a broad spectrum of products. 
Micro-component fabrication requires reliable and repeat-
able methods, with accurate analysis tools. Surface rough-
ness is one of the most important parameter in machining 
process. This study presents the results of test done with 
high-speed face milling tool. Also this research discusses 
an experimental approach to the development of mathemat-
ical model for surface roughness prediction before milling 
process by using ant colony optimization algorithm. This 
mathematical model is validated by optimization of cutting 
parameters for minimum surface roughness.

Keywords  High-speed machining · Micro-milling · Chip 
load · ACO · Surface roughness

1  Introduction

Micro-machining, or miniature machining, refers to the 
machining of very small parts and consisting micro-fea-
tures. Micro-machining not only offers quality and reli-
ability for conventional products, but also makes possible 
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2 � Literature review

Micro-milling is one of the technologies widely used for 
manufacture of microstructures and tooling inserts for 
microinjection molding and hot embossing. For example, 
important application areas are the manufacture of micro-
parts for watches, keyhole surgery, and housings for micro-
engines and also tooling inserts for fabrication of micro-
filters, housings and packaging solutions for micro-optical 
and microfluidic devices [2, 3].

The conduction of experiments for the characterization 
of surface quality for the micro-end milling shows that the 
chip load is by far the most dominant factor of that surface 
quality. Cutting speed and its interaction with chip load 
were also having significant effect. Run-out appears to play 
a significant role in the surface quality of micro-milled 
parts. The dominant cutting marks have a period of twice 
the chip load, meaning that one cutting edge is making 
deeper cut that the other cutting edge. The cutting marks 
of the non-dominant edge are also visible as small steps 
on the surface roughness profiles. This effect is most likely 
due to run out [4]. A small run-out that affects cutting pro-
files of conventional end milling very little creates drastic 
force variation in micro-end milling. In micro-end milling, 
the tool run-out to tool diameter ratio becomes relatively 
big compared to conventional end milling [5].

Significant difference in the chip loads varies from loca-
tion to location; the surface generation mechanism and sur-
face roughness are also expected to exhibit significant dif-
ferences. Periodic variations in the chip load and force, as 
well as increased machined surface roughness causes pre-
mature cutting edge failure. When chip load increases then 
the total cutting force also increases. The radial force has 
more effect with change in chip load as compared to the 
tangential force. The minimum chip thickness and micro-
burr formation along with the process parameters and 
machining conditions have major influence on surface gen-
eration. The chip load is one of the important factors which 
play the role in surface generation [6–8].

Many researchers focused their research on optimiza-
tion of cutting parameters in machining. Yang and Tarng 
[9] used three cutting parameters; speed, feed and depth 
of cut for achieving quality surface finish and improve tool 
life and using Taguchi technique for optimization of cutting 
parameters obtained the optimum result. Aslan et  al. [10] 
use the optimization for to getting the minimum tool flank 
wear using Taguchi technique. K. Vijayumar work to find 
the optimum cutting parameters for multipass turning to 
produce component at minimum production cost by using 
ant colony algorithm (ACO) tool. Researchers compared 
their result with the result obtained by other technique 
such as GA, PSO, etc., and found that the result obtained 
by ACO is good as compared to others. Research has 

experimentally proved that the setting of optimum param-
eter during the machining will increases the tool life [11].

Homell Tester made in Germany was used for surface 
roughness measurement in experimental work at NABL 
certified Dimensional Metrology Lab of Indo-German Tool 
Room, Aurangabad. The device has cut-off length 0.8 mm 
so that the sample length is “0.8 × 5 = 4 mm”. Five small 
regions on the machined surface were determined for 
measurement and average value of these measurements was 
recorded as the Ra value [12].

For the optimization the experimental data and the math-
ematical model given in [12] are used as it is. The obtained 
mathematical models for all three materials are as below [12]: 

for ETP copper:

for Al V-95:

for HcHcr steel:

where Ra, surface roughness (µm); d, depth of cut (µ); Vc, 
cutting velocity (m/s); Ft, chip load (µm).

2.1 � Validation of empirical mathematical model 
by optimization using Ant Colony Optimization

Optimal cutting parameters are obtained by application of 
ACO algorithm for which the above mathematical models are 
used to determine surface roughness for intermediate values of 
the cutting parameters. Formulation of problem is as discussed 
below.

2.2 � Objective variable

For this analysis we considered main three machining 
parameters as objective variables, i.e., cutting speed (V), 
chip load (f) and depth of cut (d).

2.3 � Objective function

The aim is to obtain the cutting parameters for minimum sur-
face roughness value. So, the required objective function is

2.4 � Constraints

Optimum results are obtained under the constraints of:

(1)Ra = 1.0631+ 0.0227× Vc − 0.2458× Ft + 0.4258× d

(2)Ra = 1.5643+ 0.0285× Vc− 1.1887× Ft+ 0.22505× d

(3)Ra = 0.0359+ 0.0592× Vc− 2.1515× Ft − 0.0025× d,

Min. Ra = f (V , f , d).

Vmax > V > Vmin

fmax > f > fmin

dmax > d > dmin.
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2.5 � Ant colony optimization methodology

Ant colony optimization is a new approach to solve com-
plex optimization problem. It is a population-based tech-
nique. This technique is based on behavior of real ants. 
Researchers are surprised by seeing that the ability of the 
almost blind ants in establishing the shortest route from 
their nest to food source and back. These ants secrete a 
chemical on their path which is called as ‘Pheromone’. 
This pheromone is a communication media between the 
ants. Real ants follow the route which has more pheromone 
deposition [13].

Many researchers tried this algorithm to solve engi-
neering problem. Basically it is suitably used for traveling 
salesman routine problem. Its use is not limited to that only, 
but can be used for solving other engineering problem also. 
ACO was presented as an effective optimization procedure 
by introducing bi-level search procedure called local and 
global search.

2.6 � Steps followed in ACO

The proposed ACO algorithm for optimization of cutting 
conditions in micro-milling is shown as scheme in Fig. 2. 
The distribution of ants is shown in Fig. 1.

The proposed ACO algorithm for optimization of cutting 
parameters with objective of minimizing surface roughness 
value will go through the following steps [14].

2.7 � Step 1: initial solution

In first step 20 solutions are generated randomly, with the 
values that lie within the given constraints. After this these 
20 solutions are arranged in ascending order. The region 
which has lower roughness value is referred as superior 
solution, while region having larger roughness value is 
called inferior solution.

2.8 � Step 2: global search

Global search is applied on only inferior solutions. Follow-
ing three operators are to be performed on the randomly 
generated solutions.

(a)	 Cross over
(b)	 Mutation
(c)	 Trail diffusion

2.9 � Cross over

Cross over is divided in three sections. Firstly generate 
two random numbers and select the initial solution form 

superior region corresponding to these random numbers. 
These solutions are noted as parent1 and parent2. Secondly 
generate another integer random number and according to 
it the position of digit in solutions of parent1 and parent2 
are interchanged to get child1 and child2. In last section 
of cross over the solution of child1 and child2 are decoded 
and its fitness value is assessed. The solution which has 
closer fitness value will replace the inferior solution.

2.10 � Mutation

In this step also the inferior solution obtained after cross 
over is repaired. Randomly adding or subtracting a value to 
each variable newly creates solution in the inferior region 
with a suitably defined mutation probability.

2.11 � Trail diffusion

It is another element in global search. This is applied on 
inferior solutions which were yet not considered for cross 
over or mutation. Here two parents are selected at random 
from superior solutions obtained child can have either:

Fig. 1   Artificial ant distribution
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1.	 The value of corresponding variable from the first par-
ent

2.	 The corresponding value of the variable from second 
parent

3.	 Or a combination arrived from a weighted average of 
the above.

where α is uniform random number between 0 and −1.

Xchild = α · Xi(parent1)+ (1− α) · Xi (parent2),

2.12 � Step 3: local search

In ACO local ants select a region with a probability:

where ‘I’ is the region index and τi(k) is the pheromone 
trail on region ‘i’ at time ‘t’. After selecting the region ant 
moves through a short distance (finite random increment). 
If the fitness is improved, the new solutions are updated to 
the current region. Correspondingly, the regions position 
vector is updated.

In continuous algorithm, the pheromone values are 
decreased after each iteration by:

Pi(t) =
τi(t)

∑
τk(t)

,

τi(t + 1) = ρτi(t),

Table 1   Optimum cutting parameters and surface roughness value

Material Optimum parameter Validation by experimental results

Spindle speed (rpm) Depth of cut (µ) Chip load (µm) Ra value using ACO (µm) Average of surface roughness after 
machining (µm)

Al V-95 8000 1 1.01 0.67 0.728

ETP copper 8000 1 1.5 1.26 1.246

HcHcr 8000 2.74 0.02 0.134 0.13

Fig. 2   Flow chart for the ACO algorithm [11]
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Fig. 3   Cumulative % decrease in chip load vs surface generation for 
ETP copper
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Fig. 4   Cumulative % decrease in chip load vs surface generation for 
Al V-95
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where ‘ρ’ is the evaporation rate which is assumed to be 0.2 
on trial basis and τi(t) is the trail associated with solution at 
time ‘t’ [11].

The final optimum result is obtained after 500 iterations. 
The final number of iterations is decided by trial and error 
method and the program will give constant result for 500 iter-
ations. Confirmation experiment is conducted for validation 
of optimum surface finish using optimum parameters. The 
five samples of each studied materials are machined. Surface 
finish is measured at five regions of machined surface and 

average of these values recorded as Ra value. The result of 
optimum parameters and surface finish by ACO and valida-
tion result of experimentation are summarized in Table 1.

3 � Results and discussion

The F-test results for validation of the models For ETP 
copper, Al V-95 and HcHcr steel the standard error of the 
estimate is 0.0014, 0.056 and 0.074 as well as the coeffi-
cient of determination, i.e., R2 values are 0.9808, 0.9018 
and 0.9152, respectively. This shows that regression mod-
els for these materials as a whole are suitable estimating 
models which have less standard error of the estimate. At 
5 % level of significance the critical value for F distribu-
tion is 3.34, as calculated value for the same is significantly 
greater than critical F value so that regression models for 
these materials as a whole are significant.

To solve the ACO algorithm a program is prepared in 
Mat-LAB by attempting the steps in flowchart as shown in 
Fig. 2.

The final optimum result is obtained after 500 iterations. 
The final number of iterations is decided by trial and error 
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Fig. 5   Cumulative % decrease in chip load vs surface generation for 
HcHcr

Fig. 6   SEM test results of: a ETP copper, b Al V-95 and c HcHcr
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method and the program will give constant result for 500 
iterations.

Confirmation experiment is conducted for validation of 
optimum surface finish using optimum parameters. The five 
samples of each studied materials are machined. Surface 
finish is measured at five regions of machined surface and 
average of these values recorded as Ra value. The result of 
optimum parameters and surface finish by ACO and valida-
tion result of experimentation are summarized in Table 1.

The cumulative % of chip load reduces, the surface 
finish degraded from the Figs.  3, 4 and 5. To verify the 
above-mentioned results about degradation of surface fin-
ish for the studied material SEM test is carried out for dif-
ferent samples. The result of the same is shown in Fig. 6. 
The inclusions can be clearly seen in these images varying 
in different sizes. This test confirms that, for ETP copper 
the deterioration of surface finish in the rage of 2–3 % is 
due to the impurities present in the material. Porosity is 
the major drawback for aluminum alloys so that 4–10 % of 
surface deterioration is observed. The presence of carbides 
in HcHcr (D2) which are plugged during machining and 
hence surface deterioration is in the range of 25–45 %.

4 � Conclusion

•	 The experimental observations shows the interaction 
between chip load, cutting speed and surface roughness 
and the chip load (feed/tooth) is dominant factor decid-
ing the surface roughness.

•	 The chip load value is independent of the depth of 
cut in high-speed milling. When the spindle speed is 
increased, the chip load decreases maximally at 25  % 
for ETP copper and Al V-95 and for HcHcr decrease in 
chip load is 50 % when spindle speed increases, which 
is due to high hardness.

•	 At high chip loads, the contribution of cutting speed 
was 30–40 % in surface generation which is a consider-
ably more prominent factor.

•	 ACO algorithm is used to validate the experimental 
result and the developed mathematical model. Also to 
determine the exact parameter in the given rate of con-
straint this gives best surface finish.
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