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is here presented to illustrate the comparative performance 
of two proposals. The results indicate close responses for 
both methods. In spite of this, DEA was considered better 
because its results are larger in parameters that we wanted 
maximize and are smaller in parameters we wanted mini-
mize. All established constraints were not violated in both 
cases of DEA.

Keywords  Data envelopment analysis (DEA) · 
Multivariate response surface methodology (MRSM) · 
Principal component analysis (PCA) · Generalized reduced 
gradient (GRG) · Pulsed gas metal arc welding (P-GMAW)

1  Introduction

Many manufacturing processes are naturally multivariate 
and although they are common in a manufacturing envi-
ronment there is a lack of efficiency in the quality char-
acteristics model building when traditional OLS (ordinary 
least squares) is employed. These kinds of processes are 
also specifics, which imply that a unique model cannot 
be employed in every application, raw material or opera-
tional setup. Looking for the best process operation con-
ditions the behavior of some desired features must be 
evaluated as a function of the factor increments that are, 
at first, considered significant. This is typically the experi-
mental strategy.

Sometimes, the existence of a multiple quality character-
istics sets involves the growing of a highly correlated struc-
ture among the dependent variables. There are a number of 
studies that evaluate processes with this particular feature, 
[1–4]. However, even though the responses present a highly 
correlated structure, there are no majors concerns by the 
authors regarding to the influence of such structures on the 

Abstract  The optimization of a multiresponse manu-
facturing process is not a trivial task. Many authors have 
tried to overcome the particular difficulties observed in 
this knowledge area exploring the powerful mechanisms 
present in a great deal of techniques like design of experi-
ments, response surface methodology (RSM), principal 
component analysis (PCA) and mathematical program-
ming. In this sense, this paper presents an alternative 
hybrid approach, combining RSM and data envelopment 
analysis (DEA), a popular linear programming technique 
useful to compare efficiency of decision making units. 
The basic idea is to optimize a set of multiple correlated 
responses of a well-defined manufacturing process using 
DEA as an algorithm for generated the singular objective 
function. This alternative proposal is compared to multivar-
iate response surface methodology, a stochastic approach 
based on the PCA, a multivariate statistical technique usu-
ally employed with Taguchi multiresponse designs. Since 
a great number of manufacturing processes present sets of 
multiple correlated responses, a case study based in a five 
quality characteristics of a pulsed GMAW welding process 
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models coefficient estimation [5–7] or to the residual inde-
pendence, [8].

The most known optimization method for multiple 
responses is the function so called Harrington’s desirabil-
ity [9]. However, according to Khuri and Conlon [10], this 
method is not able to incorporate the correlation structure 
existent in the original data set. This means that the inter-
relationship among the many responses can lead the experi-
menter to non-conclusive results when the analysis is uni-
variate [6]. This kind of solution can be far away from the 
simultaneous optimum solution.

Many authors try to surpass this problem using principal 
component analysis (PCA), [5–7]. However, two important 
shortcomings should be considered using PCA for multiple 
responses optimization: (a) the existent conflict between 
maximum and minimum values in a group of variables that 
need to be simultaneously optimized and (b) the lower sig-
nificance of principal components for data with lower inter-
correlation. In any of these cases PCA is not adequate to 
optimize the responses. Otherwise, if these shortcomings 
can be contoured, the PCA approach must be equivalent to 
other multiresponse optimization methods.

In this study, a proposal developed by Liao and Chen 
[11] to treat a multiresponse Taguchi design through data 
envelopment analysis (DEA) will be extend to the case 
of multiple response set obtained with a response surface 
design like rotatable central composite design (CCD). 
After, this approach will be compared with multivari-
ate response surface approach enhanced as in [12], in the 
attempt to optimize the output variables affecting a spe-
cific manufacturing process. To comply with the objective 
proposed, experimentation is conducted in the region of 
interest according to the chosen design and the responses 
of interest will be recorded and calculated. Using each run 
in the CCD as an alternative DMU (decision making unit), 
the efficiency of the all experiment runs will be calculated 
using a typical linear programming written in term of DEA 
format. Then, the regression analysis will be done using 
DMU’s efficiency. Last, the GRG optimization algorithm 
is used to determine the optimal parameters of the process 
based in the full quadratic model obtained with DEA effi-
ciency as singular response. To compare the results, a mul-
tivariate alternative procedure based on an index formed 
by the weighted largest principal component scores of cor-
relation matrix from the original set of responses will be 
suggested as an objective function. Using the same non-
linear optimization algorithm, a feasible optimum will be 
investigated.

As a manufacturing process example, it is employed a 
pulsed gas metal arc welding (P-GMAW), which is widely 
used in industries for welding a great deal of ferrous and 
non-ferrous materials. The P-GMAW achieves coalescence 
of metals by melting continuously fed current-carrying 

wire. However, it is necessary a high-quality welding pro-
cedures to achieve a high bead quality The process is char-
acterized by pulsing of current between low-level back-
ground current and high-level peak current in such a way 
that mean current is always below the threshold level of 
spray transfer. The background current is used to maintain 
arc whereas peak currents are long enough to make sure 
detachment of the molten droplets [13]. Five profile bead 
properties are recorded and used as correlated response var-
iables to test the above approaches.

This paper is organized as follows: Sect. 2 presents the 
overview of the response surface methodology. Section  3 
presents the data envelopment analysis. Section 4 presents 
the multivariate response surface approach. Section 5 pre-
sents the experimental procedure and data analysis. Finally, 
we offer our conclusions in Sect. 6.

2 � Overview of the response surface methodology

According to [14], RSM is a collection of mathematical 
and statistical tools used to model and to analyze prob-
lems whose responses of interest are influenced for many 
variables. In general, the relationship among dependent and 
independent variables is known. Due to that one must find a 
reasonable approximation for the real relationship between 
y and the set of independent variables. Usually, a low-order 
polynomial in some regional of interest is employed. How-
ever, if there is curvature in the system, then the approxi-
mating function must be a polynomial of higher degree, 
such as the second-order model describe by Eq. (1).

Montgomery [14] also considers unlikely that a specific 
polynomial model approximates a real model for the whole 
experimental space covered for the independent variables. 
For a specific region, the approximation usually is efficient. 
The OLS method is used to estimate the parameters (β) that 
in matrix form could be written as:

where X is the matrix of factor levels and y is the response. 
The evaluation of the presence of curvature in the model is 
based on the analysis of center points for the factors levels.

Derringer and Suich [15], dealing with multiple response 
problems, improved the algorithm of desirability func-
tion in [9]. In this method, the statistical model is firstly 
obtained using OLS. Secondly, using a set of transforma-
tions based on the limits imposed to the responses, a con-
version is conducted for each one of the responses result-
ing in a individual desirability function di, with 0 ≤ di ≤ 1.  

(1)y = β0 +
k

∑

i=1

βixi +
k

∑

i=1

βiix
2
i +

∑

i<j

∑

βijxixj + ε

(2)β̂ = (XTX)−1XTy
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These individual values are then combined using a geomet-
rical average, such as:

This value of D gives a solution of commitment and is 
restricted to the interval [0, 1]. D is close to 1 when the 
responses are close to its specification. The type of trans-
formation depends on the desired optimization direction.

The desirability function approach to problem optimiza-
tion is simple, easy to apply, and permits the use to make 
subjective judgment on the importance of each response. 
However, according to [10], this methodology does not 
take into consideration the variances and correlations of 
the responses. Ignoring these correlations can alter the 
structure of the overall desirability function, which in turn 
may jeopardize the determination of optimum operating 
condition.

3 � Data envelopment analysis

Data envelopment analysis (DEA) is a linear programming-
based technique for measuring the relative efficiency of a 
set of competing DMU’s (decision making units) where 
the presence of multiple inputs and outputs makes the com-
parisons difficult [16]. According to [17], the relative effi-
ciency of the multiples inputs and outputs in DMU is typi-
cally defined as a ratio (weighted sum of the DMU’s outputs 
divided by weighted sum of the DMU’s inputs). Then, if a 
relative efficiency wants to have a higher performance, the 
input data of ratio must have lower values and the output data 
of ratio must have higher values [18]. In this paper, DEA is 
combined with traditional response surface methodology to 
solve a multiresponse welding process. Each combination of 
factors/levels is treated as a DMU. Following the approach 
proposed by [11], the larger-is-better welding quality charac-
teristics are considered as outputs, and the smaller-is-better 
responses are treated as inputs. The maximization of the ratio 
between the sum of weighted DMU’s outputs and inputs 
leads to the higher efficiency. The larger relative efficiency 
values imply that the welding bead quality’s characteristics 
targets are completely achieved. Once is calculated the effi-
ciency for each experiment in a CCD design, this multire-
sponse index is used as dependent variable. Proceeding as 
the traditional RSM, the model’s coefficients are obtained 
employing OLS method. After inspection of the individual 
significance, the practitioner can to decide if the reduced or 
full quadratic model must be adopted. After, using the GRG 
algorithm, the DEA index quadratic function is maximized 
subject to the experimental region constraint. To compare 
the results obtained, a hybrid multivariate approach proposed 

(3)D =
[

p
∏

i=1

dp(Yp)

]
1
p

in [12] is used. According to [11], the main shortcomings in 
the PCA-based methods are: (a) how to trade-off to select a 
feasible solution when more than one principal component 
is selected, and (b) the low correlation structure among the 
original responses. The method proposed by [12] showed 
itself capable to surpass these drawbacks. Thus, if the cor-
relation structure among the multiples responses is large 
enough, then, the PCA and DEA methods must to converge.

In this work, the mathematical notation of [19] will be 
adopted to represent the DEA CCR model [20]. According 
to this formulation, the general efficiency measure used by 
DEA can be summarized as:

where Eks is the efficiency measure for each experiment 
s, using the weights of the assessed experiment k; Osy the 
values of output y for the experiment s; Isx the values of 
the input x for the experiment s; vky the weights assigned to 
trial experiment k for output y; ukx the weights assigned to 
trial experiment k for input x.

To decide the optimal set of weights for the experiment 
k being evaluated (DMU), many mathematical models have 
been developed. Within them the CCR model, developed 
by [20], is the most popular. The objective in CCR model 
is to maximize the relative efficiency value of the experi-
ment k under analysis from among a reference set of exper-
iments s, by selecting the optimal weights associated with 
the input and output measures. The maximum relative effi-
ciencies are constrained to 1. The nonlinear programming 
formulation expressed in Eq. (4) can be written as:

The Eq. (5) can be written in a linear programming for-
mulation, as described in Eq. (6), by setting its denomina-
tor equal to 1 and by maximizing its numerator.

The result of formulation (5) is an optimal efficiency 
value 

(

E∗
kk

)

 that is at most equal to the unit. According to 

(4)Eks =
∑

y Osyvky
∑

y Isxukx

(5)

max Ekk =
∑

y Okyvky
∑

y Ikyuky

s.t.:
∑

y

Okyvky −
∑

y

Ikyuky ≤ 0, ∀ designs s

uky, vky ≥ 0

(6)

maxEkk=
∑

y

Okyvky

s.t. :
∑

y

Ikyuky = 1

∑

y

Okyvky −
∑

y

Ikyuky ≤ 0 ∀ designs s

uky, vky ≥ 0
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[11], when E∗
kk = 1, no other experiments are more efficient 

than experiment k under its selected weights. To experiment 
efficiencies values less than one imply that the factor/level 
combination does not lie on the optimal frontier, and there 
is at least another experiment that is more efficient under the 
optimal set of weights determined by the formulation (6). 
Otherwise, it is also possible that any experiment achieves 
the unitary efficiency, once the experiment represents only 
a portion of a full experimental design, producing what is 
called as “censored data” in [21]. Another feasible situation 
occurs when individual efficiencies of each experiment lie 
in the vicinity of 100 % efficiency. These situations reflect 
that any experimental design is optimum and indicate that 
the optimal combination does not belong to an explicit set 
of chosen experimental design. To overcome this short-
coming, [17, 21] proposed the Taguchi neural network 
approach. Through this strategy, a Taguchi design is used to 
generate the initial training set of a back propagation neu-
ral network algorithm. This training set is formed by the 
calculated efficiencies obtained with the design. Another 
way to surpass this shortcoming is employ the conceptual 
knowledge of design of experiments methodology (DOE). 
According to the DOE framework, the experimental results 
should be used to predict response values only inside the 
region formed by the factor’s levels. Thus, supposing that 
any value of each factor is equally probable between its lev-
els, one could adopt a Monte Carlo or a Latin Hypercube 
sampling, generating data through a uniform probability 
distribution. Another optimum search procedure could be 
simpler whether the practitioner adopts a gradient-based 
method, like generalized reduced gradient (GRG). The gra-
dient methods demand a differentiable function which must 
be obtained using a fitted response surface.

To employ the DEA approach in a multiresponse optimi-
zation problem, [11] warn that the response must be stand-
ardized. Although there exists a wide set of standardization 
procedures, in this work it will be adopted the normaliza-
tion expression describe by Eq. (7).

Assuming that Xij is an observation for the ith 
(i = 1, 2, . . . ,m) response in the jth (j = 1, 2, . . . , n) factor/
level combination, its standardized value Zij

(

0 ≤ Zij ≤ 1
)

 
can be more appropriate to avoid the shortcomings raised 
with use of responses in different units. In the experi-
ments with replicates, Xij should be treated as the mean 
of each specific treatment. This kind of formulation for 
Zij

(

0 ≤ Zij ≤ 1
)

 can be used for responses that must be 
minimized or maximized. For this specific case, the stand-
ardization of responses can be done using Eq. (7) as follow:

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

(7)Zij =
Xij −min

{

Xij , j = 1, 2, . . . , n
}

max
{

Xij , j = 1, 2, . . . , n
}

−min
{

Xij , j = 1, 2, . . . , n
}

4 � Multivariate response surface approach

The principal component analysis (PCA) is one of the most 
widely applied tools in order to summarize common pat-
terns of variation among variables. Moreover, PCA is also 
able to retain meaningful information in the early axes 
whereas variation associated to experimental error, meas-
urement inaccuracy, and rounding is summarized in later 
axes. According to [22], the PCA method is algebraically 
a linear combination of p random variables X1,X2, . . . ,Xp.  
Geometrically these combinations represent a selection 
of a new system of coordinates obtained from an original 
system rotation. The coordinate axes has now the variables 
X1,X2, . . . ,Xp. The new axes represent the direction of max-
ima. The principal components are uncorrelated and depend 
only on the covariance matrix Σ (or on the matrix of corre-
lation ρ) of the variables X1,X2, . . . ,Xp and its development 
does not require the multivariate normality assumption.

Assuming that Σ is the covariance matrix associ-
ated to the random vector XT =

[

X1,X2, . . . ,Xp

]

 and 
that this matrix has pairs of eigenvalues–eigenvectors 
(�1, e1), (�2, e2), · · · ≥

(

�p, ep
)

, where �1 ≥ �2 ≥ . . . ≥
�p ≥ 0, then the ith principal component is given by:

If the eigenvectors are perpendicular, the ith component 
will be the result of:

Sometimes it is useful to write the linear combination in 
a form of principal component score. In this way xpn is the 
random observation, x̄p is the p-th response average, 

√
spp 

is the response standard deviation, p is the response, [Z] 
is the matrix of standardized original data and [E] is the 
eigenvectors matrix of the multivariate set. Then:

According to [23], many tests are needed to evaluate the 
data adequacy to the PCA application. In this work the test 
of isotropy, the Bartlett sphericity test, the Kulbach index 
(KI), the divergence index (DI) and the generalized cor-
relation index (GCI) [24] will be addressed, as shown in 
Table  1. The number of variables of response is denomi-
nated p and the number of axes that are supposed to be 
invariant isotropically is m.

The number of axes that are supposed to have isotropy 
variation is simply r = p − m and can be discarded. The 
number of experiments is n and R is the correlation matrix 

(8)

Yi = eTi X = e1iX1 + e2iX2 + · · · + epiXp i = 1, 2, . . . , p

(9)

Maximize Var
(

ℓTi X
)

Subject to: ℓTi ℓi = 1

Cov(ℓTi X, ℓ
T
k X) = 0, k < i

(10)PCscore = [Z] . [E].
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for the p variables. For the test of isotropy the degree of 
freedom is ν = 0.5r(r + 1)− 1 while for the test of Bart-
lett the value is p(p− 1)/2. The null hypothesis is rejected 
when the test statistic is greater than a critical value, which 
is also represented by P value (P value < α). In this work it 
was assumed that α = 0.05.

There are a variety of stopping rules to estimate the 
adequate number of non-trivial axes, or in other words, the 
number of significant principal components. According 
to [22], the most popular methods are those based on the 
Kaiser’s criteria. According to this rule, only the principal 
components whose eigenvalues are greater than one should 
be kept to represent the original set. Moreover, the accumu-
lated variance explained should be greater than 80 %. These 
criteria are adequate when it is used the correlation matrix. 
Otherwise, the covariance matrix only should be used for a 
set of original responses written in the same scale.

When dealing with multivariate responses there are 
several difficulties. Modeling each response variable inde-
pendently takes no account of relationships or correlations 
among the variables. According to [25], it is necessary a 
special care in analyzing multiresponse data to avoid mis-
leading interpretation. The basic problem is associated 
with fitting multiresponse models ignoring the three kinds 
of dependencies that can occur: dependence among the 
errors, linear dependencies among the expected value of 
the responses, and linear dependencies in the original data. 
To overcome these difficulties, a hybrid strategy based in 
multivariate statistics for summarizing and reducing the 
dimensionality of the data can be employed. The princi-
pal components analysis (PCA) factorizes the multivariate 
data into a number of independent factors, which take into 
account the variances and correlations among the original 
variables. For this reason, a natural formulation for the 

multiresponse problem changes the original response vari-
ables by a principal component score. This new equation 
is modeled through OLS algorithm. To force the solution 
to fall inside the experimental region, a constrained non-
linear programming problem written in terms of principal 
components could be expressed as shown in the following 
equation:

Treating the principal components rather than the origi-
nal response variables has several advantages. If the first 
principal component represents a high proportion of the 
total variance in the data, it provides a univariate summary 
of the multivariate responses. Inspection of the loadings 
(eigenvectors) will reveal the kind of relationship among 
the ith principal component score equation and the origi-
nal responses. According to [26], a response surface model 
for principal component provides a model of the overall 
response which takes account of the correlations among 
the response variables and their relative importance. Lin-
ear relationships among the response variables can be 
immediately identified by zero eigenvalues and omit-
ted from further consideration, which avoids unnecessary 
work when the number of responses exceeds the number of 
observations.

Even though a set of variables is well represented by the 
principal components, only one principal component is not 
always enough for this representation. Moreover, this does 
not occur in the majority of the complex manufacturing 
processes. To integrate more than one principal component 
into a comprehensive index, a simple approach based only 

(11)

Minimize PC1 = β0 +
k

∑

i=1

βixi +
k

∑

i=1

βiix
2
i +

∑

i<j

∑

βijxixj

Subject to: xT x ≤ ρ2

Table 1   Tests and statistics index for PCA application

Tests Statistics of test Diagnostic

Isotropy

χ2 = −(n− 1)
p
�

k=m+1

ln

�

�̂k

�

+ (n− 1)







p
�

k=m+1

�

�̂k

�

r







Rejecting the null hypothesis, it means that the n greatest principal com-
ponents are different and can represent the global variance

Bartlett χ2 = −
[

n− 1
6
(2p+ 11)

]

ln |R| Rejecting the null hypothesis, it means that the variables are correlated, 
that is a requirement for PCA

KI
IK = − 1

2
ln |R| = − 1

2

p
∑

m=1

ln (�m)
If IK is close to zero it means that all variables are not correlated

DI
ID = 1

2
trace

(

R−1
)

=
p
∑

m=1

[

(1−�m)
2�m

] If ID is close to zero it means that all variables are not correlated

GCI

ICG =
√

�R�2−p
p(p−1)

=

√

(

∑

m
�m

)

−p

p(p−1)

The closer ICG is to zero, the greater is the correlation between variables
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on the significant principal components is considered more 
appropriate. A test of hypothesis can reveal which compo-
nents must be chosen to create the multivariate index.

Considering the eigenvalues of the correlation matrix 
as a set of weights of the most representative PC scores, 
Paiva [12] established a multivariate global index (MGI), 
obtained with the sum of the products of significant com-
ponents weighted by their respective eigenvalues. When 
creating and modeling the MGI response surface, it can be 
applied a constrained nonlinear programming strategy, as 
described in Eq. (12):

 where m is the number of significant principal components 
according to the Bartlett sphericity test; �i is the ith largest 
eigenvalue and PCsi is the ith largest PC-score.

Optimum values can be obtained by locating the station-
ary point of a fitted surface. The objective is to find the set-
tings of x’s that can optimize the objective function subject 
only to the constraint that defines the region of interest Ω. 
In other words, the appropriate optimum value of the fit-
ted objective function is located using a GRG algorithm 
through a constrained procedure to force the optimum to lie 
within the experimental region. In this work, three objec-
tive functions are considered to study: a DMU’s-based effi-
ciency (DEA), a First Principal Component Score (PC1) 
and a multivariate global index (MGI). As constraints, there 
are two different regions of interest in optimization: spheri-
cal and cuboidal. For cuboidal designs, the constraint is 
written as −1 ≤ xi ≤ 1, i = 1, 2,…, k (k is the number of 
control variables), and for spherical designs the constraint 
is defined by 

(

xTx
)

≤ ρ2, where ρ is the design radius. 
The value of ρ should be chosen in order to avoid solu-
tions that are too far outside the experimental region that 
led to response surfaces established in Eq.  (1). For a cen-
tral composite design, a logical choice is ρ = α, where α is 
the axial distance. In the case of cuboidal designs (such as 
Box–Behnken and factorial or fractional factorial designs), 
natural choices for the lower and upper bounds on the x’s 
are the experimental low and high coded levels, respec-
tively. In this work it will be adopted a spherical constraint, 

(12)
Maximize MGI =

m
∑

i=1

[

�i(PCsi)
]

Subject to: xTx ≤ ρ2

represented by the axial point length. According to [14], 
for non-blocked response surface designs the axial point is 
determined by 

4
√
2k , where k is number of controllable fac-

tor present in the design.
According to [27], the GRG method is one of the most 

robust and most efficient methods of constrained nonlin-
ear optimization. The expression reduced gradient comes 
from the substitution of the constraints on the objective 
function, decreasing then the number of variables and con-
sequently reducing the number of present gradients. When 
making the partition of the original variables into basics 
(Z) (or dependents) and non-basics (Y) (or independent) 
one can write F(X) = F(Z , Y) and h(X) = h(Z , Y). Seek-
ing to attend the condition of optimality it is needed that 
dhj(X) = 0. Making A = ∇zhj(X)

T and B = ∇Yhj(X)
T,  

then dY = −B−1AdZ. Consequently the GRG can be 
defined as:

The searching direction is SX =
[

−GR dY
]T. For the 

iterations one can use Xk+1 = Xk + αSk+1, verifying at 
each step if Xk+1 is adequate and h

(

Xk+1
)

= 0. The final 
step consists on solving F(X) as a function of α, using a 
one-dimensional algorithm of search like the Newton 
method.

5 � Experimental procedure and data analysis

In order to comply with the objective of this work, a power 
source working with current pulsed mode was used. This 
was choosen to get more flexibility in adjusting the param-
eters. Associated with the equipment a mechanical trac-
tor was used to move the attached torch at the adjustable 
welding speed. All welding tests were performed using a 
weld bead on plate (BOP) technique using a wire AWS ER 
70S-6, diameter of 1.2  mm, and base material of ABNT 
1045 with 120 × 40 × 6 mm. The shielding gas used was 
a mixture of Argon +  25 % CO2 with a constant flow of 
15  l/min. The welding speed was kept constant and fixed 
in 40 cm/min for all tests performed and the standoff used 
was 22.5 mm. The parameters used in the experiments and 
their levels are shown in Table  2. These parameters were 

(13)GR = d

dZ
F(X) = ∇zF(X)−

[

B−1A
] T

∇YF(X)
T

Table 2   Process parameters Parameters Units Levels

−2 −1 0 +1 +2

Peak current (Ip) Amps 245 280 315 350 385

Background current (Ib) Amps 55 70 85 100 115

Duty cycle (Ca) % 35 40 45 50 55

Wire feed rate (Va) m/min 4.5 5.0 5.5 6.0 6.5
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designed according to a RSM methodology and used in a 
central composite design.

In order to get a duty cycle (Ca), the peak time (tp) was 
kept fixed in 4  ms and the background time (tb) varied 
according to the desired level according to the Eq. (14):

After the welding, all test specimens were cross-sec-
tioned, polished and chemical attacked. Then the geo-
metric characteristics for the penetration (p), reinforce-
ment (r), width (w), and overall area (A) of the weld bead 
were determined for each test specimen. Also the convex-
ity of the weld bead (CI) was determined by the relation 
between the reinforcement and the width (w). Using an 
adequate central composite design (CCD) to collect the 

(14)Ca = tp

tp + tb

data of the five responses it was obtained the necessary 
information to build the second-order model, as can be 
seen in Table 3.

Experimentally, two least squares-based models can be 
obtained: coded and uncoded based parameters. According 
to [14, 25], the coded units approach is better than uncoded 
because it provide resources to eliminate any spurious sta-
tistical results due to different measurement scales for the 
factors. In addition, uncoded units often lead to collinear-
ity among the terms in the model. This inflates the variabil-
ity in the coefficients estimates and makes them difficult 
to interpret. For these reasons, it was employed the model 
based on the coded units.

To apply the DEA method in the optimization of 
multiresponse set, it is necessary to standardize the 
data set. On this case, there exist just maximization and 

Table 3   Experimental 
results obtained using central 
composite design

Factors Responses

N Ip Ib Ca Va P R W CI A

1 280 70 40 5 1.60 2.87 7.70 37.20 20.70

2 350 70 40 5 1.60 2.90 6.60 44.40 19.00

3 280 100 40 5 1.70 2.80 7.00 39.60 20.70

4 350 100 40 5 1.87 3.10 6.30 43.00 18.70

5 280 70 50 5 1.90 3.00 7.30 41.60 23.20

6 350 70 50 5 1.66 3.70 6.00 52.50 20.90

7 280 100 50 5 1.96 2.90 8.10 35.50 21.50

8 350 100 50 5 1.90 3.30 7.90 38.00 22.80

9 280 70 40 6 1.20 3.48 7.30 46.00 20.70

10 350 70 40 6 1.90 3.10 8.10 38.90 24.90

11 280 100 40 6 1.22 3.50 7.20 48.30 23.00

12 350 100 40 6 1.95 3.10 8.60 35.90 27.00

13 280 70 50 6 2.10 3.20 8.10 39.20 25.70

14 350 70 50 6 2.08 3.20 8.70 36.40 25.10

15 280 100 50 6 1.96 3.00 8.40 36.40 25.50

16 350 100 50 6 2.30 3.20 9.20 28.50 28.40

17 245 85 45 5.5 1.85 3.00 8.80 40.00 29.00

18 385 85 45 5.5 2.29 3.12 8.10 38.10 27.00

19 315 55 45 5.5 1.79 2.91 8.50 34.50 21.70

20 315 115 45 5.5 2.20 3.00 9.30 29.10 26.00

21 315 85 35 5.5 1.42 3.00 7.60 39.50 22.30

22 315 85 55 5.5 2.10 3.40 9.20 32.70 28.30

23 315 85 45 4.5 1.80 2.80 6.00 46.40 17.40

24 315 85 45 6.5 2.02 3.20 8.10 39.50 26.80

25 315 85 45 5.5 2.60 3.25 8.80 36.20 30.70

26 315 85 45 5.5 2.10 3.30 8.10 40.70 27.60

27 315 85 45 5.5 2.20 3.30 8.70 38.10 28.90

28 315 85 45 5.5 2.50 3.10 8.00 38.80 26.90

29 315 85 45 5.5 2.32 3.35 7.80 42.00 28.00

30 315 85 45 5.5 2.40 3.30 8.30 39.80 30.10

31 315 85 45 5.5 2.40 3.10 8.40 36.90 25.90
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minimization responses, and then standardization task 
can be done using Eq.  (7). The results are shown in the 
Table 4.

Moreover, the practitioner must to indicate the respec-
tive inputs and outputs response variables. As mentioned by 
[21], the response variables which must be maximized will 
be considered the outputs, while the variable which must 
be minimized, can be treated as inputs. In the specific case 
of the P-GMAW process, penetration (P), total penetrated 
area (A) e bead width (W) are larger-the-better responses, 
while reinforcement (R) and convexity index (CI) assume 
the smaller-the-better form. To determine the efficiencies of 
the individual DMU’s, Eq. (6) must be used. The efficiency 
data and the respective coefficients of input and output 
responses are described by Table 5.

Applying the Eq. (10) to the original data set, it is possi-
ble to calculate the first two principal components. As only 
the principal components PC1 and PC2 held eigenvalues 
larger than 1 (Fig. 1), these were chosen.

Table  6 shows that the two principal components 
together represent 85.5  % of variation on the responses. 
It also be noted that although there is a strong correlation 
structure among the quality characteristics studied, the first 
principal component is not enough to represent the origi-
nal set. Then, it is necessary to select the second principal 
component. This fact was pointed out by [11] as the main 
shortcoming observed with the PCA-based optimization 
methods. To overcome this difficulty, it is adequate to use 
the Eq.  (12), developed in [12]. Applying this equation, 
PC1 and PC2 can be combined in a singular data set called 
MGI. The results for MGI are shown in Table 8.

The results shown in Table 7 were calculated using the 
formulation presented in Table 1 and it is based on experi-
ments. This result reveals a perfect adequacy of the prob-
lem for the use of PCA, rejecting the null hypotheses that 
the principal components PC1 and PC2 are not representa-
tive of the original responses set. The index also reveals a 
high correlation between variables.

The results of Table  5, the two first principal compo-
nent scores and the results for MGI are condensed in the 
Table 8.

Hence, once the efficiency of each DMU (Ekk), the prin-
cipal components scores PC1 and PC2 of original responses 
and MGI were determined, the OLS method can be applied 
to create the models for each representative objective func-
tion as shown in Table 9.

It is usually used the analysis of variance (ANOVA) to 
formally test for significance of the main effects and inter-
actions. To refine the model, a common approach consists 
of removing any non-significant term from the full model. 
As a decision rule, if P value is lower than 0.05 the corre-
spondent term will be considered significant to the model. 
Otherwise, if P value is greater than 0.05 the term will be 
excluded. According to [14] this procedure is convenient to 
obtain a simplified model but that could decrease the coef-
ficient of determination R2 and increase the error term S. 
Moreover, the exclusion of any term should follow the hier-
archy principle. This is a model-building principle that sug-
gests that when a particular polynomial term is included in 
a model, all lower-order polynomial terms should also be 
include, even those terms that do not exhibit significance 
individually. The hierarchy principle promotes an inter-
nal consistency in the model. Table 9 shows the complete 
model for each response. In spite of some non-significant 
terms were found, its exclusion from the complete model 
increased the error S and reduced R2 (adj). A complete 
second-order model was then considered to surpass this 
problem.

Table 4   Standardized responses

i inputs, o outputs

N Zp (o) Zr (i) Zw (o) Zci (i) Za (o)

1 0.28571 0.07778 0.51515 0.36250 0.24812

2 0.28571 0.11111 0.18182 0.66250 0.12030

3 0.35714 0.00000 0.30303 0.46250 0.24812

4 0.47857 0.33333 0.09091 0.60417 0.09774

5 0.50000 0.22222 0.39394 0.54583 0.43609

6 0.32857 1.00000 0.00000 1.00000 0.26316

7 0.54286 0.11111 0.63636 0.29167 0.30827

8 0.50000 0.55556 0.57576 0.39583 0.40602

9 0.00000 0.75556 0.39394 0.72917 0.24812

10 0.50000 0.33333 0.63636 0.43333 0.56391

11 0.01429 0.77778 0.36364 0.82500 0.42105

12 0.53571 0.33333 0.78788 0.30833 0.72180

13 0.64286 0.44444 0.63636 0.44583 0.62406

14 0.62857 0.44444 0.81818 0.32917 0.57895

15 0.54286 0.22222 0.72727 0.32917 0.60902

16 0.78571 0.44444 0.96970 0.00000 0.82707

17 0.46429 0.22222 0.84848 0.47917 0.87218

18 0.77857 0.35556 0.63636 0.40000 0.72180

19 0.42143 0.12222 0.75758 0.25000 0.32331

20 0.71429 0.22222 1.00000 0.02500 0.64662

21 0.15714 0.22222 0.48485 0.45833 0.36842

22 0.64286 0.66667 0.96970 0.17500 0.81955

23 0.42857 0.00000 0.00000 0.74583 0.00000

24 0.58571 0.44444 0.63636 0.45833 0.70677

25 1.00000 0.50000 0.84848 0.32083 1.00000

26 0.64286 0.55556 0.63636 0.50833 0.76692

27 0.71429 0.55556 0.81818 0.40000 0.86466

28 0.92857 0.33333 0.60606 0.42917 0.71429

29 0.80000 0.61111 0.54545 0.56250 0.79699

30 0.85714 0.55556 0.69697 0.47083 0.95489

31 0.85714 0.33333 0.72727 0.35000 0.63910
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Other important aspect in the statistical model-building 
process is associated with the amount of explicability of the 
dependent variables y by the predictors x. In the Table  9, 
the adjusted R-squared is shown. This expression is of the 
larger-is-better type. A larger adjusted R2 indicates a high 
degree of explanation of the interest response. The adjusted 
R2 [R-Sq(adj)] takes into account the fact that R2 tends to 
overestimate the actual amount of variation accounted for 
in the sample analysis, i.e., if one applies the regression 
equation derived from a sample to another independent 
sample, it will almost always get a smaller R2 in the new 
sample than in the original. It can be noted that the models 
found in the present work are adequate, once all of them 
exhibit a large adjusted R2.

Table 5   Efficiency of 
individuals DMU’s

DMU Efficiency (Ekk) V1 U1 V2 U2 V3

1 0.837145 0.000000 7.894737 1.625045 1.064731 0.000000

2 0.332584 1.164045 3.640449 0.000000 0.898876 0.000000

3 1.000000 2.800000 8.756757 0.000000 2.162162 0.000000

4 0.317143 0.662687 2.072495 0.000000 0.511727 0.000000

5 0.470924 0.000000 3.077024 0.000000 0.579329 1.079877

6 0.084257 0.256436 0.801980 0.000000 0.198020 0.000000

7 0.947865 1.746067 5.460674 0.000000 1.348315 0.000000

8 0.244724 0.489449 1.530709 0.000000 0.377953 0.000000

9 0.102067 0.000000 1.151203 0.214305 0.178563 0.071112

10 0.476968 0.000000 2.410107 0.000000 0.453764 0.845823

11 0.158361 0.000000 1.071691 0.000000 0.201773 0.376108

12 0.647230 0.000000 2.555029 0.000000 0.481050 0.896684

13 0.414496 0.000000 1.892563 0.000000 0.356323 0.664192

14 0.401211 0.000000 1.974651 0.000000 0.371779 0.693001

15 0.752070 0.000000 3.518695 0.000000 0.662484 1.234881

16 1.000000 0.000000 2.250000 0.000000 11.272727 1.209091

17 0.979685 0.000000 3.200639 0.000000 0.602602 1.123260

18 0.587924 0.000000 2.320908 0.000000 0.436970 0.814519

19 1.000000 0.000000 5.809524 1.320000 1.159788 0.000000

20 1.000000 0.000000 4.401154 1.000000 0.878628 0.000000

21 0.419094 0.000000 3.241331 0.000000 0.610264 1.137540

22 0.411111 0.000000 1.429358 0.000000 0.269113 0.501631

23 0.744134 1.736313 5.430168 0.000000 1.340782 0.000000

24 0.467347 0.000000 1.884171 0.000000 0.354743 0.661247

25 0.626241 0.000000 1.784424 0.000000 0.335963 0.626241

26 0.413272 0.000000 1.535480 0.000000 0.289093 0.538874

27 0.481008 0.000000 1.585123 0.000000 0.298440 0.556297

28 0.675878 0.727869 2.276347 0.000000 0.562061 0.000000

29 0.390093 0.000000 1.394669 0.000000 0.262582 0.489457

30 0.520204 0.000000 1.552308 0.000000 0.292262 0.544780

31 0.652941 0.761765 2.382353 0.000000 0.588235 0.000000

Fig. 1   Significative Eigen values
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Another necessary decision in the association of PCA 
and RSM is related with the type of optimization that the 
objective functions written in terms of PC1 and MGI must 
to follow. It can be noted that is the main reason why PCA 
is more widely used with Taguchi than with response sur-
face designs. The analysis in Taguchi designs is done 
employing the concept of loss function. Specifically, each 
kind of optimization (maximization, minimization or nor-
malization) can be represented by a proper signal-to-noise 
relation. Due to the mathematical nature of this relation, 
the signal-to-noise must be always maximized. In RSM, 
the approach is totally different. To surpass this barrier we 
propose in this article to find out the kind of optimization 
through analyzing the correlation among PC1, PC2 and 
MGI with each original response. If there is a positive cor-
relation between a principal component score and a specific 
original response, then they will have the same direction of 
optimization. If the correlation between the two variables 
is negative, the maximization of one variable implies in the 
minimization of the other and vice versa.

Therefore, observing the eigenvectors and the facto-
rial analysis shown in the Table 6 is possible to note that 
there is a high positive correlation between PC1 and the 
responses P, W and A. There is also a high negative correla-
tion between PC1 and CI and a high negative correlation 
between PC2 and R. The inspection of the factor loadings 
of the first and second principal components on the Table 6 
also reveals that the first principal component is strongly 

and positively correlated with P, W and A, and negatively 
correlated with CI, while the second principal component 
is strongly and negatively correlated with R. For the pro-
cess improvement, the responses penetration, width and 
area must be maximized while reinforcement and convex-
ity index must be minimized. Analyzing the correlation 
between the principal components and the responses one 
can find out that when maximizing PC1, the responses P, 
W and A will be maximized while CI will be minimized. 
When maximizing PC2, R will be minimized. In this way, 
two strategies can be proposed: (a) to maximize PC1, 
according to Eq. (11) and (b) to maximize MGI, the index 
calculated using the sum of PC1 and PC2 weighted by their 
respective eigenvalues, obtained according to Eq.  (12). In 
both cases, using the GRG method, some spherical con-
straints will be imposed to the factor levels, i.e., the values 
that optimizes the responses of interest must belong to an 
experimental interval −r ≤ xi ≤ +r. On this case, where 
a central composite design for four factors was used, the 
natural choice for the radius is 2.

Table 10 exhibits the results obtained with the DEA and 
multivariate multiresponse optimization approaches.

The optimal response values obtained with DEA, PC1 
and MGI were analyzed by a Tukey’s test what shows that 
the difference of the results obtained with the methods used 
are statistically significant at 1 % level.

Comparing the PC1 and MGI methods one can find 
that the complete model of PC1 violates the reinforcement 
(R) constraint. Therefore, it is expected this component is 
not able to represent all the responses. The reinforcement 
response is well represented by PC2 and does not have sig-
nificant correlation with PC1. In a worst case, the individual 
optimization of PC2 is just able to optimize the reinforce-
ment response not considering all the others responses.

When the MGI was applied, taking into account the 
respective eigenvalues as weights, according to Eq. (12), a 
better solution that considers all the constraints was found. 
Comparing the two methods the MGI is better and it is 

Table 6   PCA for the 
correlation matrix of the 
responses

Bold values indicate statistical significance at the α = 0.05 level

Principal components Factorial design (rotation method)

PC1 PC2 PC3 PC4 PC5

Eigen values 2.9775 1.2957 0.5165 0.1856 0.0246 Varimax rotation

Proportion 0.5960 0.2590 0.1030 0.0370 0.0050

Accumulated 0.5960 0.8550 0.9580 0.9950 1.0000

Responses Eigen vectors Factor 1 Factor 2

P 0.4680 −0.0730 0.7900 −0.3190 −0.2250 0.809 −0.062

R 0.0140 −0.8440 −0.2630 −0.4650 0.0400 0.049 −0.960

W 0.5420 0.0450 −0.4590 0.1340 −0.6900 0.933 0.076

CI −0.4800 −0.4040 0.3060 0.5030 −0.5090 −0.816 −0.482

A 0.5070 −0.3410 0.0590 0.6400 0.4610 0.885 −0.366

Table 7   Tests and indexes for determination of non-trivial axes in 
PCA

Test type Critical value Test value D.F. P value

Isotropy 11.075 25.619 5 0.0001

Bartlett 18.307 134.210 10 0.0000

Index GCI DI KI

0.007 25.756 2.440
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closer to the reality, because this method considered all the 
responses involved in the problem.

The correlation among the data variables is the core of 
PCA. However, in DEA models the influence of this kind of 
dependency is irrelevant. As suggested by [10], if output vari-
ables are highly correlated, only one of those variables should 
be kept in the model as they serve adequately as proxies for 
others. While in MRSM the principal component scores are 
used instead the original observations in building regression 
for data, the DEA does not break down even multicollinearity 
exists in the input or output data. Another difference between 
the two approaches, according to [28], is the fact that DEA 
does not reduce the dimensionality of the data as in the PCA 
case. When we compare the three methods employed, the 
optimization method using DEA showed to be the best. The 
optimal response values for the larger-the-better parameters 

penetration (P), area (A) and bead width (W) reached larger 
values using DEA method than the others. Besides, when 
analyzing the smaller-the-better parameters reinforcement 
(R) and the convexity index (CI) the optimal values using the 
DEA are the smallest. In order to compare the adequacy of 
the models, the global percentage error (GPE) was calculated 
for the results of each method, using the Eq. (15):

where: y∗i—value of the optimal responses, Ti—targets 
defined, m—number of objectives.

The GPE, as its name declares, is an error index. In this 
case, we want to evaluate the distance of the determined 
optimal response from its ideal value. The values of GPE 

(15)GPE =
m
∑

i=1

∣

∣

∣

∣

y∗i
Ti

− 1

∣

∣

∣

∣

Table 8   Results for DEA, PCA 
and MGI

Factors Responses DEA PCA MGI

N Ip Ib Ca Va P R W CI A Efficiency PC1 PC2

1 280 70 40 5 1.60 2.87 7.70 37.20 20.70 0.837145 −1.031 1.677 −0.897

2 350 70 40 5 1.60 2.90 6.60 44.40 19.00 0.332584 −2.627 1.085 −6.417

3 280 100 40 5 1.70 2.80 7.00 39.60 20.70 1.000000 −1.556 1.703 −2.427

4 350 100 40 5 1.87 3.10 6.30 43.00 18.70 0.317143 −2.339 0.366 −6.492

5 280 70 50 5 1.90 3.00 7.30 41.60 23.20 0.470924 −0.927 0.491 −2.125

6 350 70 50 5 1.66 3.70 6.00 52.50 20.90 0.084257 −3.366 −2.941 −13.832

7 280 100 50 5 1.96 2.90 8.10 35.50 21.50 0.947865 −0.021 1.564 1.965

8 350 100 50 5 1.90 3.30 7.90 38.00 22.80 0.244724 −0.254 −0.333 −1.188

9 280 70 40 6 1.20 3.48 7.30 46.00 20.70 0.102067 −2.619 −1.369 −9.572

10 350 70 40 6 1.90 3.10 8.10 38.90 24.90 0.476968 0.064 0.194 0.444

11 280 100 40 6 1.22 3.50 7.20 48.30 23.00 0.158361 −2.547 −1.859 −9.995

12 350 100 40 6 1.95 3.10 8.60 35.90 27.00 0.647230 1.019 0.252 3.362

13 280 70 50 6 2.10 3.20 8.10 39.20 25.70 0.414496 0.427 −0.342 0.828

14 350 70 50 6 2.08 3.20 8.70 36.40 25.10 0.401211 0.949 −0.025 2.793

15 280 100 50 6 1.96 3.00 8.40 36.40 25.50 0.752070 0.646 0.735 2.875

16 350 100 50 6 2.30 3.20 9.20 28.50 28.40 1.000000 2.772 0.276 8.610

17 245 85 45 5.5 1.85 3.00 8.80 40.00 29.00 0.979685 0.889 0.158 2.854

18 385 85 45 5.5 2.29 3.12 8.10 38.10 27.00 0.587924 0.967 −0.101 2.750

19 315 55 45 5.5 1.79 2.91 8.50 34.50 21.70 1.000000 0.117 1.643 2.476

20 315 115 45 5.5 2.20 3.00 9.30 29.10 26.00 1.000000 2.288 1.269 8.459

21 315 85 35 5.5 1.42 3.00 7.60 39.50 22.30 0.419094 −1.323 0.862 −2.821

22 315 85 55 5.5 2.10 3.40 9.20 32.70 28.30 0.411111 2.098 −0.797 5.213

23 315 85 45 4.5 1.80 2.80 6.00 46.40 17.40 0.744134 −3.144 1.397 −7.553

24 315 85 45 6.5 2.02 3.20 8.10 39.50 26.80 0.467347 0.444 −0.453 0.735

25 315 85 45 5.5 2.60 3.25 8.80 36.20 30.70 0.626241 2.526 −0.84 6.434

26 315 85 45 5.5 2.10 3.30 8.10 40.70 27.60 0.413272 0.557 −1.036 0.317

27 315 85 45 5.5 2.20 3.30 8.70 38.10 28.90 0.481008 1.491 −0.94 3.220

28 315 85 45 5.5 2.50 3.10 8.00 38.80 26.90 0.675878 1.109 −0.118 3.150

29 315 85 45 5.5 2.32 3.35 7.80 42.00 28.00 0.390093 0.608 −1.437 −0.050

30 315 85 45 5.5 2.40 3.30 8.30 39.80 30.10 0.520204 1.525 −1.253 2.916

31 315 85 45 5.5 2.40 3.10 8.40 36.90 25.90 0.652941 1.258 0.170 3.968
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are shown in Table 11. The results of GPE prove that DEA 
method was the best in the analyzed case because this 
method showed the smallest GPE.

In spite of DEA be better than MGI, the results are so 
close to the each other, as we can see in Fig. 2.

6 � Conclusions

This research showed that a multiresponse manufacturing 
process with a moderate to high correlation structure is well 
represented using both a DEA and multivariate approach. 
The results showed that DEA is robust to the multicolline-
arity generated by the input and output responses while it is 
not necessary to reduce the dimensionality of data. A quad-
ratic function built with the efficiencies allowed the appli-
cation of a nonlinear optimization algorithm like GRG. 

Table 9   Ordinary least squares 
coefficients

Model term Regression coefficients (full quadratic model)

P R W CI A Ekk (DEA) PC1 MGI

Constant 2.36000 3.24286 8.30000 38.9286 28.3000 0.53709 1.29657 2.84546

IP 0.10417 0.04542 −0.04583 −0.4167 0.0750 −0.0818 0.16678 0.26714

IB 0.06833 −0.01542 0.18750 −1.7417 0.6667 0.08116 0.46636 1.55636

CA 0.17417 0.06042 0.33750 −1.6167 1.2667 0.01784 0.7792 1.99496

VA 0.04000 0.08375 0.53750 −1.5000 2.1500 −0.0348 0.83376 1.96822

IP * IP −0.09375 −0.03019 −0.05312 0.4658 −0.3792 0.0301 −0.25958 −0.59745

IB * IB −0.11250 −0.05644 0.05937 −1.3467 −1.4167 0.08415 −0.19106 0.06648

CA * CA −0.17125 0.00481 −0.06563 −0.2717 −1.0542 −0.0621 −0.39484 −0.99799

VA * VA −0.13375 −0.04519 −0.40313 1.4408 −1.8542 −0.0144 −0.82927 −2.14643

IP * IB 0.04625 0.00938 0.14375 −1.4125 0.4125 −0.0075 0.34407 1.06718

IP * CA −0.09875 0.10937 −0.03125 0.7250 −0.2000 −0.0332 −0.24347 −1.30495

IP * VA 0.11750 −0.12562 0.43125 −3.3875 0.9500 0.21098 0.87181 3.45943

IB * CA −0.00375 −0.05313 0.25625 −1.9750 −0.0500 0.07499 0.32941 1.47711

IB * VA −0.03250 0.01188 −0.03125 0.5125 0.4750 0.02363 −0.04455 −0.29698

CA * VA 0.09500 −0.11313 0.09375 −2.0000 −0.0125 0.12014 0.36806 1.85729

R2 (adj) 83.2 % 71.0 % 72.2 % 80.7 % 75.5 % 61.70 % 78.70 % 73.7 %

Table 10   Comparative results 
among DEA and PCA methods

LSL lower specification limit, T target value (nominal), USL upper specification limit

Independent variables Constraints Optimal value

DEA PC1 MGI

IP −2 ≤ x1 ≤ +2 0.928 1.033 0.856

IB −2 ≤ x1 ≤ +2 1.291 1.135 1.299

CA −2 ≤ x1 ≤ +2 0.805 0.908 0.907

VA −2 ≤ x1 ≤ +2 0.907 0.906 0.870

Dependent variables LSL T USL Optimal response value

P 2.1 2.6 – 2.34 2.20 2.31

R – 3 3.5 3.09 2.69 3.10

W 7 9 – 9.75 9.72 9.62

CI – 20 30 25.87 23.89 27.19

A 25 31 – 28.94 27.98 28.33

Table 11   GPE for DEA, PC1 and MGI

Dependent variables DEA’s PE PC1’s PE MGI’s PE

P 0.100 0.154 0.112

R 0.030 0.103 0.033

W 0.083 0.080 0.069

CI 0.294 0.195 0.360

A 0.066 0.097 0.086

GPE 0.573 0.629 0.659
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Otherwise, with multivariate approach, with only two prin-
cipal components it was possible to represent 85.5 % of the 
total variation in the original data set.

As the tests have indicated the correlation between 
the responses was significant to support the multivariate 
approach, the correlation between the responses and the 
principal components was also favorable to the optimiza-
tion. It was found that the MGI function was efficient in this 
case once the two principal components are associated. The 
weight of the principal components on the MGI using eigen-
values was considered also satisfactory. Comparing DEA 
and PCA methods it is possible to conclude that the results 
are almost the same, indicating in this case that the two 
approaches are quite similar in the role of correlated multire-
sponse optimization, once the constraints are not violated.

However, even considering so close responses for both 
methods, DEA was considered better because its results 
are larger in parameters that we wanted maximize and are 
smaller in parameters we wanted minimize.
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