
1 3

J Braz. Soc. Mech. Sci. Eng. (2016) 38:977–988
DOI 10.1007/s40430-015-0325-5

TECHNICAL PAPER

Analysis of MHD flow characteristics of an UCM viscoelastic flow 
in a permeable channel under slip conditions

M. Abbasi · M. Khaki · A. Rahbari · D. D. Ganji · 
I. Rahimipetroudi 

Received: 8 October 2014 / Accepted: 10 February 2015 / Published online: 1 March 2015 
© The Brazilian Society of Mechanical Sciences and Engineering 2015

Keywords  Homotopy analysis method · Slip condition · 
Magneto-hydrodynamic · Permeable channel ·  
Upper-convected Maxwell fluid

List of symbols
Rew	� Reynolds number
M	� Hartman number
k	� Slip parameter
De	� Deborah number
HAM	� Homotopy analysis method
NUM	� Numerical method
ħ	� Auxiliary parameter
H	� Auxiliary function
L	� Linear operator of HAM
N 	� Non-linear operator
v*	� Velocity component in y-direction
u*	� Velocity component in x-direction
x	� Dimensionless horizontal coordinate
y	� Dimensionless vertical coordinate
x*	� Distance in x-direction parallel to the plates
y*	� Distance in y-direction parallel to the plates

Greek symbols
ρ	� Density of the fluid
λ	� Relaxation time
υ	� Kinematic viscosity
β	� Of sliding friction

1  Introduction

The flow problem in porous tubes or channels received 
much attention in recent years because of its various appli-
cations in biomedical engineering, for example in the dialy-
sis of blood in artificial kidney, in the flow of blood in the 

Abstract  In the present study, the problem of two-dimen-
sional magneto-hydrodynamic (MHD) flow of an upper-
convected Maxwell (UCM) fluid has been investigated in a 
permeable channel with slip at the boundaries. Employing 
the similarity variables, the basic partial differential equa-
tions are reduced to ordinary differential equations with 
Dirichlet and Neumann boundary conditions which are 
solved analytically and numerically using the Homotopy 
Analysis Method and fourth-order Runge–Kutta–Fehlberg 
method, respectively. The influences of the some physical 
parameters such as Reynolds number, slip condition, Hart-
man number and Deborah number on non-dimensional 
velocity profiles are considered. As an important outcome, 
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that HAM is an exact and high-efficient method for solv-
ing these kinds of problems. Moreover, it can be found that 
the velocity profiles are a decreasing function of Hartmann 
number and Deborah number.
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capillaries, in the flow in blood oxygenators, as well as in 
many other engineering areas such as the design of filters, 
in transpiration cooling boundary layer control and gaseous 
diffusion. Because of its relevance to a wide variety of situ-
ations, convection in porous media is a well-developed field 
of investigation. Over recent decades, it has generally been 
recognized that some rheological complex fluids such as pol-
ymer solutions, blood, paints, butter, synovial fluid, salvia, 
soups, jams, ice-creams and certain oils cannot be adequately 
described by the Navier–Stokes theory. Because of this, sev-
eral constitutive equations and flows for non-Newtonian flu-
ids have been developed [1]. Undoubtedly, the equations of 
motion of these fluids are highly nonlinear and with higher 
order than the Navier–Stokes equations. One important and 
simple model that has been used to describe the rheological 
characteristics exhibited by certain fluids is the second-grade 
fluid. However, the second-grade fluid model [2] does not 
give reasonable results for flows of highly elastic fluids (pol-
ymer melts) that occur at high Deborah number [3]. For such 
situations the upper-convected Maxwell (UCM) model is 
quite appropriate. The suction flow in a channel for a UCM 
fluid was examined by Choi et al. [4]. More recently, Sad-
eghy et al. [5] examined the hydrodynamic flow of the UCM 
model over a steadily moving plate. Recently, the subject of 
hydromagnetics has attracted the attention of many authors, 
due not only to its inherent interest, but also to its many 
applications to problems of geophysical and astrophysi-
cal significance. The solution of the problem of magneto-
hydrodynamic (MHD) flow of a Newtonian fluid through a 
flat channel is known and is usually given in textbooks on 
fluid dynamics. For large values of the Hartman number, 
the flow exhibits the characters of boundary layer, namely 
the Hartman layers. These also manifest themselves in ducts 
with other shapes. A particularly large literature exists on the 
solution of MHD flows through rectangular ducts [6–13]. 
These scientific problems and phenomena are modeled by 

ordinary or partial differential equations. In most cases, these 
problems do not admit analytical solution, so these equations 
should be solved using special techniques. In recent years, 
much attention has been devoted to the newly developed 
methods to construct an analytic solution of equation; such 
methods include the Adomian decomposition method [14] 
and Perturbation techniques. Perturbation techniques are too 
strongly dependent upon the so-called ‘‘small parameters’’ 
[15]. Thus, it is worthwhile to develop some new analytic 
techniques independent of small parameters. One of these 
techniques is Homotopy Analysis Method (HAM), which 
was introduced by Liao [16–21]. This method has been suc-
cessfully applied to solve many types of nonlinear problems 
[22–26].

In this Letter, the equations of the two-dimensional 
MHD of an upper-convected Maxwell fluid in a perme-
able channel with slip at the boundaries are solved through 
HAM. The effects of Reynolds number Rew, slip condition 
k, Hartman number M and Deborah number De on veloc-
ity distributions are examined in detail. The convergence of 
the series solution is also explicitly discussed. The auxil-
iary parameter validity is different for each Reynolds num-
ber Rew, slip condition k, Hartman number M and Debo-
rah number De. The afore-mentioned method gives rapidly 
convergent series with specific significant features for each 
scheme. Most authors studied permeable channel at vari-
ous situations with no-slip boundary condition. The main 
objective of the present paper is to study a steady incom-
pressible laminar UCM fluid flow through a porous channel 
with slip condition on walls.

2 � Problem statement and mathematical formulation

Let us consider the steady laminar flow of an incompress-
ible and electrically conducting fluid in a channel with slip 

Fig. 1   Schematic diagram of 
the permeable channel
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at the permeable walls as shown in Fig. 1. The slip bound-
ary conditions are exerted on walls. The uniform magnetic 
field B0 is imposed along the y-axis. It is assumed that the 
magnetic Reynolds Number is small and the induced mag-
netic field due to the motion of the electrically conducting 
fluid is negligible. It is also assumed that the electrical con-
ductivity of fluid σ is constant and the external electric field 
is zero.

The constitutive equation for a Maxwell fluid is [27].

where T is the Cauchy stress tensor and the extra-stress ten-
sor S satisfies.

In which μ is the viscosity, λ is the relaxation time and 
the Rivlin-Ericksen tensor A1 is defined through

For the steady two-dimensional flow, the equations of 
continuity and momentum for the magneto-hydrodynamic 
flow are [28, 29].

where ρ is the fluid density and Sxx, Sxy,  Syx and Syy are the 
components of the extra-stress tensor. After some modifica-
tion, the governing continuity and momentum equations for 
the motion can be written as follows [30, 31]

where (u*, v*) are the fluid velocity components along x*- 
and y*-directions, respectively. The flow is symmetric about 
the center line of the channel, y* = 0 and we only focus our 
attention on the flow in the region 0 < y* < H. The boundary 
conditions for this problem can be written as follows [32]:

(1)T = −pI + S,

(2)S + �

(

dS

dt
− LS − SLT

)

= µA1

(3)A1 = ∇V + (∇V)T

(4)
∂u

∂x
+

∂v

∂y
= 0,

(5)ρ

(

u
∂u

∂x
+ v

∂u

∂y

)

= −
∂p

∂x
+

∂Sxx

∂x
+

∂Sxy

∂y
− σ B2

0 u,

(6)ρ

(

u
∂v

∂x
+ v

∂v

∂y

)

= −
∂p

∂x
+

∂Syx

∂x
+

∂Syy

∂y
,

(7)
∂u∗

∂x∗
+

∂ν∗

∂y∗
= 0

(8)

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
+ �

[

u∗2
∂2u∗

∂x∗2
+ v∗2

∂2u∗

∂y∗2
+ 2 u∗ v∗

∂2u∗

∂x∗∂y∗

]

= υ
∂2u∗

∂y∗2
−

σB2
0

ρ
u∗,

(9)y∗ = 0 :
∂u∗

∂y∗
= 0, v∗ = 0,
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where β and Vw are the coefficients of sliding friction and 
characteristic wall suction velocity, respectively. The fol-
lowing dimensionless variables are introduced.

(10)y∗ = H: −βu∗ =
∂u∗

∂y∗
, v∗ = Vw,

(11)
x =

x∗

H
; y =

y∗

H
; u∗ = −Vw x f ′(y);

v∗ = Vw f (y); k =
µ

H β
.

Equation (1) is automatically satisfied. And Eqs. (2)–(4) 
may be written as:

The boundary conditions become

(12)

f ′′′ −M2f ′ + Rew

(

f ′2 − f f ′′
)

+ De

(

2f f ′ f ′′ − f 2 f ′′′
)

= 0

(13)
y = 0 : f ′′ = 0; f = 0.

y = 1 : f ′ = − k f ′′; f = 1.

Fig. 2   The ħ-validity for M =  2,  De =  0.1,  Rew =  1 and different 
value of k

Fig. 3   The ħ-validity for M =  2,  K =  0.2,  Rew =  1 and different 
value of De

Fig. 4   The comparison between the numerical, HAM solution for f(y) and f′(y) when Rew = 4, K = 0.9, M = 4, ħ = −0.8 and different values of 
De
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Against the differential equation of the model which is 
in third order, there are four boundary conditions for this 
problem. Some authors satisfy boundary conditions in the 
initial guess function. In the present study, creatively with 
derivation of Eq. (12) and introduce fourth-order differen-
tial equation we can satisfy all of boundary conditions in 
main equation. Then we have,

Here, Rew =
Vw H
υ

 is the Reynolds number, De = �V2
w

υ
 

is the Deborah number, and M2 =
σ B20 H

µ
 is the Hartman 

(14)
f ′′′ −M2f ′′ + Rew

(

f ′ f ′′ − f f ′′′
)

+ De

(

2 f ′2f ′′ − 2 f f ′′2 + f 2 f ′′′
)

= 0

number, where Rew > 0 corresponds to suction and Rew < 0 
is for injection.

3 � Application of homotopy analysis method

For HAM solutions, we choose the initial guess and auxil-
iary linear operator in the following form:

(15)f0(y) = −
1

2(3 k + 1)
y3 +

3(2k + 1)

2(3 k + 1)
y,

(16)L(f ) = f ′′ ′′,

Fig. 5   The comparison between the numerical, HAM solution for f(y) and f′(y) when Rew = 8, K = 0.1, De = 0.1, ħ = −0.8 and different values 
of M

Fig. 6   The comparison between the numerical, HAM solution for f(y) and f′(y) when Rew = 8, De = 0.1, M = 2, ħ = −0.8 and different values 
of K
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where ci (i  =  1,  2,  3,  4) are constants. Let P ∈ [0, 1] 
denotes the embedding parameter and ħ indicates non-
zero auxiliary parameters. We then construct the following 
equations:

(17)L

(

1

6
c1 y

3 +
1

2
c2 y

2 + c3 y+ c4

)

= 0,

3.1 � Zeroth‑order deformation equations

(18)(1− P)L
[

F(y; p)− f0(y)
]

= p�H(y)N
[

F(y; p)
]

(19)
F(0; p) = 0; F ′′(0; p) = 0, F(1; p) = 1,

kF ′′(1; p)+ F ′(1; p) = 0

Fig. 7   The comparison between the numerical, HAM solution for f(y) and f′(y) when De = 0.1, K = 0.1, M = 2, ħ = −0.8 and different values 
of Rew

Table 2   The results of HAM 
and numerical methods for f(y) 
and f′(y) for De = 0.1, k = 0.1, 
M = 0 and Rew = 4

y f(y) f′(y)

HAM NUM Error HAM NUM Error

0.00 0.0000000000 0.000000000 0.000000000 1.40413030 1.40412452 0.00000578

0.05 0.0701545723 0.070154283 0.000000289 1.40101384 1.40100814 0.00000570

0.10 0.139997550 0.139996981 0.000000569 1.39166755 1.39166207 0.00000548

0.15 0.209217650 0.209216817 0.000000833 1.37610088 1.37609577 0.00000511

0.20 0.209217650 0.209216817 0.000001080 1.35433002 1.37609577 0.00000459

0.25 0.344547639 0.344546348 0.000001290 1.32637866 1.32637470 0.00000396

0.30 0.410039617 0.410038147 0.000001470 1.29227887 1.29227567 0.00000320

0.35 0.473673743 0.473672132 0.000001610 1.25207237 1.25207001 0.00000236

0.40 0.535145948 0.473672132 0.000001710 1.20581184 1.20581039 0.00000145

0.45 0.594155105 0.594153351 0.000001750 1.20581184 1.15356206 0.00000049

0.50 0.650403705 0.650401951 0.000001750 1.09540402 1.09540452 0.00000050

0.55 0.703598603 0.650401951 0.000001700 1.09540402 1.03143337 0.00000150

0.60 0.753451885 0.753450277 0.000001610 0.961759843 0.961762230 0.00000240

0.65 0.799681804 0.799680337 0.000001470 0.886521503 0.886524729 0.00000320

0.70 0.842013847 0.842012558 0.000001290 0.805872580 0.805876515 0.00000390

0.75 0.880181868 0.880180791 0.000001080 0.719992837 0.719997311 0.00000450

0.80 0.913929366 0.913928521 0.000000845 0.629088180 0.629092973 0.00000480

0.85 0.913929366 0.943010220 0.000000605 0.533392682 0.533397521 0.00000480

0.90 0.967193183 0.967192807 0.000000376 0.433170588 0.433175149 0.00000460

0.95 0.986257359 0.986257206 0.000000153 0.328718280 0.328722174 0.00000390

1.00 1.000000000 1.000000000 0.000000000 0.220366140 0.220368909 0.00000280
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Fig. 8   Effects of Rew on the velocity components u* and v* contours and vector V, when a Rew = 1 and b Rew = 10 at (k = 0.1, M = 2, De =  
0.1, ħ = −0.8)

For p = 0 and p = 1 we have

When p increases from 0 to 1 then F(y; p) varies from 
f0(y) to f(y). By Taylor’s theorem and using Eq. (20), F(y; p) 
can be expanded in a power series of p as follows:

In which ħ is chosen in such a way that this series is con-
vergent at p = 1; therefore, we have through Eq. (21) that

(21)F(y; 0) = f0(y) F(y; 1) = f (y)

(22)F(y; p) = f0(y)+
∞
∑

m−1

fm(y)p
m, fm(y) =

1
m!

∂m(F(y;p))
∂pm

∣

∣

∣

p=0

(20)

N[F(y ; p)] =
d
4F(y ; p)

dy4
+ Re

�

dF(y ; p)

dy

d
2F(y ; p)

dy2
− F(y ; p)

d
3F(y ; p)

dy3

�

−M2
d
2F(y ; p)

dy2

+ De



2

�

dF(y ; p)

dy

�2
d
2F(y ; p)

dy2
− 2F(y ; p)

�

d
2F(y ; p)

dy2

�2

+ (F(y ; p))2
d
4F(y ; p)

dy4



.

3.2 � mth‑order deformation equations

(23)
f (y) = f0(y)+

∞
∑

m−1

fm(y),

(24)L
[

fm(y)− χmfm−1(y)
]

= �H(y)Rm(y)

(25)
Fm(0; p) = 0; F ′′

m(0; p) = 0, Fm(1; p) = 0,

kF ′′
m(1; p)+ F ′

m(1; p) = 0
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Fig. 9   Effects of De on the 
velocity components u* and v* 
contours and vector V, when a 
De = 0.0 and b De = 0.9 at k 
= 0.9, M = 4, Rew = 4, ħ = 
−0.8

(26)

Rm(y) = f ′′ ′′m−1 +

m−1
∑

k=0

[

Re
(

f ′m−1−k f
′′
k − fm−1−k f

′′′
k

)

+ De f ′m−1−k

(

k
∑

l=0

(

2 f ′k−l f
′′
l

)

)

− Defm−1−k

(

k
∑

l=0

(

2 f ′′k−l f
′′
l − fk−l f

′′′′
l

)

)]

−M2 f ′′m−1

Now we determine the convergency of the result, the dif-
ferential equation and the auxiliary function according to 
the solution expression. So let us assume:

(27)H(y) = 1

We have found the answer by maple analytic solution 
device. The first deformation of the solution is presented 
below

(28)

f1(y) = −
5�

672

De y9

(3k + 1)3
−

3�

2

(−0.0071429Rewk − 0.042857De− 0.0023810Rew − 0.085714De k)y7

27k3 + 27k2 + 9k + 1

−
3�

2

�

−0.15000M2k2 − 0.10000M2k − 0.016667M2 + 0.30000De k2 + 0.30000De k + 0.075000De

�

y
5

27k3 + 27k2 + 9k + 1

+
�

840





�

3780De k3 − 1890M2k3 − 189Rewk
2 + 2268De k2 − 1638M2k2 − 90Rewk − 462M2k + 468De k

�

y
3

1+ 54k2 + 12k + 108k3 + 81k4

+

�

−9Rew + 52De− 42M2

�

y
3

1+ 54k2 + 12k + 108k3 + 81k4



−
�

1120





�

−8Rew − 96Rewk − 1764M2k31440De k2 + 77De k − 364M2k
�

y

1+ 54k2 + 12k + 108k3 + 81k4

+

�

−1428M2k2 + 3528De k3 − 216Rewk
2 − 28M2 + 7De

�

y

1+ 54k2 + 12k + 108k3 + 81k4




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The solutions f(y) were too long to be mentioned here; 
therefore, they are shown graphically

4 � Convergence of the HAM solution

As pointed out by Liao [12], the convergence and rate 
of approximation for the HAM solution strongly depend 
on the value of auxiliary parameter ħ. The appropriate 
region for ħ is a horizontal line segment, which indi-
cates a numerical range for having a convergent series 
solution. As mentioned we can adjust ħ to get most 
accurate solution, but in this problem we have a wide 
acceptable range values of ħ; therefore, we can take ħ 
from this region, as you can see in Table  1. In the fol-
lowing, to investigate the range of admissible values 
of the auxiliary parameter ħ, take the case of f ′′′ (0) at 
M =  2,  De =  0.1,  Rew =  1 and different value of slip 
number as shown in Fig.  2. As can be seen, the range 
of admissible values of the auxiliary parameter ħ equals 
−1.5 < ħ < 0.0. In the same manner, the admissible val-
ues of ħ at k = 0.2, Rew = 1, M = 2 and different values 
of Deborah number are shown in Fig. 3.

5 � Results and discussion

In the present study, HAM method is applied to obtain an 
explicit analytic solution of an upper-convected maxwell 
fluid in a permeable channel with slip at the boundaries in 
the presence of uniform magnetic field (Fig.  1). HAM is 
used for this aim due to many advantages which some of 
them are described by Liao [12, 34] as follows,

a.	 Unlike all other analytic techniques, HAM provides 
us with great freedom to express solutions of a given 
nonlinear problem by means of different base func-
tions.

b.	 HAM always provides us with a family of solution 
expressions in the auxiliary parameter ħ, even if a non-
linear problem has a unique solution, so the auxiliary 
parameter ħ provides us with an additional way to con-
veniently adjust and control the convergence region 
and rate of solution series.

c.	 Unlike perturbation techniques, the Homotopy Analy-
sis Method is independent of any small or large quanti-
ties. So, the Homotopy Analysis Method can be applied 
no matter if governing equations and boundary/initial 

Fig. 10   Effects of M on the 
velocity components u* and v* 
contours and vector V, when a 
M = 0 and b M = 5 at k = 0.1, 
De = 0.1, Rew = 8, ħ = −0.8
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conditions of a given nonlinear problem contain small 
or large quantities or not.

First, the present code is validated by comparing the 
obtained results with the numerical method for different 
values of active parameters. shown in Figs. 4, 5, 6, 7 and 
Table  2. The numerical solution is performed using the 
algebra package Maple 16.0, to solve the present problem. 
The package uses a second-order difference scheme com-
bined with an order bootstrap technique with mesh-refine-
ment strategies: the difference scheme is based on either the 
trapezoid or midpoint rules; the order improvement/accu-
racy enhancement is either Richardson extrapolation or a 
method of deferred corrections. The midpoint method, also 
known as the fourth-order Runge–Kutta–Fehlberg method, 
improves the Euler method by adding a midpoint in the 
step which increases the accuracy by one order. Thus, the 
midpoint method is used as a suitable numerical technique 
[35, 36]. By observing the overall pattern, it is noticed that 
this comparison shows an excellent agreement, so that we 
are confident that the present results are accurate.

This investigation is completed by depicting the effects 
of some important parameters Reynolds number Rew, Deb-
orah number De, Hartman number M and slip condition k 

to determine how these parameters affect the velocity com-
ponents. Effect of Reynolds number (Rew) on velocities 
contours at k = 0.1, M = 2, De = 0.1 is shown in Fig. 8. As 
can been seen, increasing the Re number makes a decrease 
in velocity profiles also it is worth to mention that the 
Reynolds number indicates the relative significance of the 
inertia effect compared to the viscous effect.

On the other hand, Fig. 9 shows the effect of viscoelas-
tic material parameter, i.e. Deborah number on the velocity 
components when M = 4, Rew = 4, k = 0.9. The Deborah 
number (De) represents the ratio of a relaxation time, and 
the characteristic time scale of an experiment or a com-
puter simulation probing the response of the material [31, 
33]. As can be seen, an increase in the elastic parameter 
is noticed to decrease both u- and v-velocity components 
at any given point. It means that the smaller the Deborah 
number, the more fluid the material appears. Higher Deval-
ues imply a strongly elastic behavior. Figure 10 shows the 
effect of Hartman number M on the velocity components 
for k = 0.1, De = 0.1, Rew = 8. Increase in the magnetic 
parameter leads to decrease in the velocity components and 
contours at given point. This is due to the fact that applied 
transverse magnetic field produces a damping in the form 
of Lorentz force thereby decreasing the magnitude of 

Fig. 11   Effects of k on the 
velocity components u* and v* 
contours and vector V, when  
a k = 0.0 and b k = 0.9 at De 
= 0.1, M = 2, Rew = 8, ħ = 
−0.8
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velocity. The drop in velocity as a consequence of increase 
in the strength of magnetic field is observed.

Finally, Fig. 11 shows the effect of slip condition on the 
velocity contours when De = 0.1, M = 2, Rew = 8. As seen 
in these figures, by decreasing slip condition, the slip coef-
ficient β increases and the flow over the border desires to 
no-slip condition.

6 � Conclusion

In the present paper, the problem of a MHD flow of an 
upper-convected Maxwell viscoelastic fluid in a perme-
able channel with slip at the boundaries has been studied 
for the analytical solution using homotopy analysis method 
(HAM). The effects of physical flow parameters such as the 
Reynolds number, Deborah number, Hartman number and 
slip condition on the flow characteristics have been exam-
ined. As a main outcome from the present study:

•	 It is observed that the results of HAM are in excellent 
agreement with numerical ones, so HAM can be used 
for finding analytical solutions of equations in science 
and engineering problems simplicity. Also, in HAM, we 
can choose ħ in such a way that we get most accurate 
solution and this is the most important feature of this 
technique.

•	 The results show that increase in the M Hartman num-
ber associates with the reduction in velocity profile. 
Moreover, it is worth to mention that the velocity pat-
terns are minimally influenced by the changes in De 
Deborah number parameter.

•	 In addition, the flow over the border desires to no-slip 
condition by increasing in the values of slip parameter k.
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