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1  Introduction

The upward movement of air in the form of bubble plumes 
through large pools of liquid describes a flow of wide inter-
est for the modern engineering. Bubble plumes are func-
tional mechanisms to provide, for instance, artificial aera-
tion of tanks and reservoirs [1, 2], management of water 
quality [3, 4], destratification of lakes and rivers [5, 6], mit-
igation of oil spills [7, 8], whilst also promoting enhanced 
mass transfer mixing in sundry chemical-related processes 
[9]. Despite of the dominance of turbulent regimes in most 
of the applications in which flows stirred by bubble plumes 
are expected, papers devoted to studying the characteristics 
of buoyant plumes rising in stagnant medium have mostly 
focused on ranges of low to moderate Reynolds numbers. 
Regarding the pursued goals in such investigations, the 
knowledge of the local interactions among neighboring 
bubbles, as well as the estimation of buoyancy, drag and 
inertial forces is of principal importance, especially when 
viscous liquids surround the bubbles.

A general model for unconfined bubble plumes in which 
the plume was considered to have a virtual origin, regard-
less of its initial development or injection geometry, is 
discussed in [10], where experimental results of tests at 
low velocities were included. Synoptic comments on bub-
bles rising in line organized as one-dimensional arrays are 
stated in [11], stressing the minor contribution of knowl-
edge about the hydrodynamic effects at intermediate Reyn-
olds ranges. Therein, equal-sized spherical gas bubbles are 
studied by considering configurations of two kinds: free-
end and fixed-end.
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Computationally, bubble plumes were tackled by dif-
ferent models [12–15]. As explained in [16] and refer-
ences therein, single-phase simulations deal with bubbles 
rising in an axisymmetrically bounded domain so as to 
form a confined plume whose surrounding fluid is excited 
by application of a buoyant force. On the other hand, two-
phase simulations do not impose such constraint, but com-
bine methodologies that rely on Eulerian and/or Lagran-
gian approaches to track the bubbles.

This paper introduces a hybrid approach based on the arbi-
trary Lagrangian–Eulerian/finite element (ALE/FE, in short) 
[17, 18] to simulate the hydrodynamic effects of an unconfined 
air bubble plume immersed into a liquid solution inside a peri-
odic domain. Periodic boundary conditions (PBCs, henceforth) 
are imposed at the computational mesh to mimic the ascent 
motion of the plume as well as to minimize computational 
efforts by considering the analysis of the hydrodynamic field 
in the surroundings of a unique bubble placed in a periodic cell. 
An additional transformation of the pressure field is included 
into the model by means of a linear decomposition [19]. Allied 
to the highly adaptive ALE/FE technique presented, the main 
features emphasized are the capability of employing fair cost-
effective simulations along with the ability of reproducing a 
zero-thickness interface with accuracy, thus providing a pow-
erful method for two-phase flow simulations. Furthermore, 
an analysis of bubble shape, as well as of its oscillatory path, 
is performed for different physical properties to compare the 
numerical data to known experimental results.

The paper is organized as follows: Sect. 2 brings forth the 
mathematical formulation and model’s hypotheses; Sect. 3 
describes the technical aspects, singling out details of compu-
tational implementation and meshing design; Sect. 5 presents 
the numerical results extracted from the full three-dimen-
sional simulations; and finally the conclusions are presented.

2 � Mathematical formulation

2.1 � Periodic array of in‑line rising bubbles

Let � ⊂ R
3 be the domain depicted in Fig.  1 and Ŵ its 

boundary defined as � = �1 ∪�2 and Ŵ = Ŵ1 ∪ Ŵ2, with 
Ŵ2 = Ŵ∞ ∪ ŴP, where the subscripts 1, 2 indicate, respec-
tively, the dispersed phase and continuous phase of the flow, 
Ŵ∞ the Dirichlet portion of Ŵ2, and ŴP its supplementary 
periodic portion. Here, Ŵ∞ is placed far from the bubble 
plume to account for the bulk liquid region where the local 
interactions are mitigated. This boundary receives a moving 
wall condition to ensure the well-known technique of mov-
ing-frame reference (MFR), while periodic boundary condi-
tions are assigned to ŴP = ŴT ∪ ŴB. The surfaces ŴT and ŴB 
satisfy ŴT ≡ x + Le, ∀x ∈ ŴB for a unit vector e as depicted 
by the element patches in light gray, i.e. the upper boundary 

ŴT is topologically equivalent to ŴB by a displacement L. The 
extended plume model consists of an arrangement containing 
spherical bubbles of diameter Db equally spaced from above 
and below (relative to the poles) by a gap length s = Db and 
immersed into a cylinder of diameter D ≫ Db, whereas the 
periodic cell considers a slice of this configuration. To take 
into account the effect of the periodic boundaries on the bub-
ble wake region as well as minimize the effects of the lateral 
wall, we set L = s+ Db and D = 10Db for the cell’s period 
and diameter, respectively.

2.2 � ALE governing equations

2.2.1 � Dimensionless variables

To obtain dimensionless equations for the presented formu-
lation, let us introduce the following set of dimensionless 
variables by means of reference quantities (with subscript 0)

(a)

(b)

Fig. 1   Arrangement of the unconfined in-line bubble plume: a 
extended plume model; b detail of the periodic cell
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which, in the order from top-left to bottom-right, are: 
velocity, pressure, viscosity, density, gravity, curvature, sur-
face tension, position and time. The two-phase flow under 
investigation is governed by the incompressible Navier–
Stokes equations written according to the ALE frame of 
reference evolving within the time interval t∗ = [0, t∗max]. 
Because of the so-called one-fluid formulation, which uses 
a unique set of equations to model both the continuous and 
dispersed phases, the imposition of interface boundary con-
ditions is hereupon replaced with an equivalent formulation 
by adding a force term associated with the surface tension. 
Thereby, the equations are solved over a sole domain [20] 
and their dimensionless version, valid for both phases sepa-
rately, are written in the differential form as 

The dimensionless parameters Ar and Eo are the Archi-
medes and Eötvös numbers, respectively, defined by

To follow a consistent notation for the material deriva-
tive, we briefly recall the following representations for any 
physical quantity φ in different movement configurations:

(For details of the theory describing the ALE kinematics, 
see, e.g., [21, 22]). For convenience of notation, we define

with c∗ = u∗ − û∗ the ALE convective velocity. This rela-
tion engenders the arbitrary nature of the ALE formula-
tion concerning the flow motion. Such flexibility compen-
sates drawbacks yielded either by a purely Lagrangian or 
completely Eulerian description [23]. Since c∗ relates the 

u∗ = u

u0
, p∗ = p

ρ0u
2
0

, µ∗ = µ

µ0
,

ρ∗ = ρ

ρ0
, g∗ = g

g0
, κ∗ = L0κ0,

σ ∗ = σ

σ0
, x∗ = x

L0
, t∗ = u0

L0
t0,

(1a)

ρ∗
(
D̂u

Dt

)∗

= −∇p∗ + 1

Ar1/2
∇ ·

[
µ∗

(
∇u∗ + ∇u∗T

)]

+ ρg∗ + 1

Eo
f∗σ

(1b)∇ · u∗ = 0, in �× t∗,

(2)Ar = g0D
3
bρ

2
0

µ0
2

Eo = ρ0g0D
2
b

σ0
.

φ(x∗, t∗) (spatial configuration)

φ(χ∗, t∗) (referential configuration)

φ(X∗, t∗) (material configuration),

(3)

(
D̂u

Dt

)∗

=
(
∂u

∂t

∣∣∣∣
χ

)∗

+ c
∗ · ∇u

∗ =
(
∂u

∂t

∣∣∣∣
χ

)∗

+ (u∗ − û
∗) · ∇u

∗
,

material velocity of the fluid u∗ and the mesh velocity û∗, 
the first description aforementioned is obtained if û∗ = u∗, 
whereas the second is achieved if û∗ = 0.

The force term localized at the interface, also discussed 
forth in Sect. 2.2.3, is given by

where σ ∗ is assumed constant, κ∗ locally evaluated at the 
interface, and (∇H)∗ defined for discrete purposes in Sect. 
2.3.1 as the gradient of the Heaviside function.

2.2.2 � Periodic decomposition of pressure

By virtue of the periodic array, the pressure field should be 
treated differently than the velocity field. For instance, inas-
much as the formulation presented proposes to evaluate the 
flow hydrodynamics in a fully developed stage, it turns out 
that, while the velocity experiences a pure periodicity, the 
pressure gradient exhibits a periodic behavior, but the pres-
sure itself is not periodic. Hence, following a transformed 
variable approach [19], the dimensional original pressure is 
replaced with

where β0 ≈ �p0/L0 is the value of a reference constant 
pressure gradient toward the streamwise direction of the 
flow determined by the unit vector e and p̃ is a periodic 
pressure field satisfying 

∫
�
p̃ d� = 0. This decomposi-

tion segregates the pressure field into a part related to the 
global mass flow and a periodic parcel related to the local 
motion of the fluid. To keep the dimensionless setup of the 
equations, the term β0 should also assume a dimensionless 
format which may vary according to the problem (see, e.g. 
[24]). For this study, it is convenient to divide Eq. (5) by 
ρ0g0Db—whose expression stems from the dynamic pres-
sure and the scaling of the reference velocity by 

√
g0Db. 

Thenceforth, using the periodic cell’s length L as reference 
for the direction given by e, Eq. (5) takes the dimensionless 
form

The first term inside parentheses on the r.h.s. of Eq. 
(6) is a modified Euler number associated with the pressure 
gradient and the second is the aspect ratio relating the influ-
ence of the periodic length over the bubble’s surroundings 
and wake effects. Therefore, Eq. (6) is finally written as

with

(4)f∗σ = σ ∗κ∗(∇H)∗,

(5)p = −β0(x · e)+ p̃,

(6)p∗ = −
(

β0

ρ0g0

)(
L

Db

)
(x∗ · e∗)+ p̃∗.

(7)p∗ = −�Euβ∗(x∗ · e∗)+ p̃∗,

(8)Euβ∗ = β0

ρ0g0
, � = L

Db

.
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Since ρ0 is taken to be the liquid density ρ2, Euβ∗ can be 
interpreted as the ratio of the upward body force to the 
gravitational force, which acts to balance the liquid mass 
contained in the periodic cell.

2.2.3 � Final form of the governing equations

By inserting Eq. (7) into Eq. (1a), and dropping out the 
asterisk signs for clarity, the new governing equations of 
the problem are given by 

 being now (u, p̃) the pair of unknowns to be determined. 
Taking this modified version of the one-fluid formulation 
into account, it can be observed that according to [25], 
fσ is interpreted as a volume reformulation of the surface 
tension. That is to say, for a small volume �S crossing 
the interface, the integration of Eq. (1a) over this volume 
reduces to

Taking the scalar product with the unit normal vector n to 
the interface, defining d�S = dIdn and using Eqs. (4), (10) 
is rewritten as

where n− ∈ �1 and n+ ∈ �2 are normal coordinates to the 
interface as depicted in Fig. 2. Since

the pressure gradient along the normal direction leads to the 
pressure jump across the interface �p = p+ − p−. Hence,

which is a dimensionless form of the Young–Laplace 
equation.

(9a)
ρ
D̂u

Dt
= �Euβe− ∇p̃+ 1

Ar1/2
∇ ·

[
µ

(
∇u+∇uT

)]

+ ρg + 1

Eo
fσ

(9b)∇ · u = 0, in �× t,

(10)

∫

�S

∇p d�S = 1

Eo

∫

�S

fσ d�S .

(11)

∫

I

∫ n+

n−
∇p · n dŴ1 dn = 1

Eo

∫

I

∫ n+

n−
σκ∇H · n dŴ1 dn,

(12)

∫ n+

n−
∇H · n dn = 1,

(13)�p = 1

Eo
κσ ,

2.3 � Finite element procedures

This section describes concisely the fundamental steps 
behind the finite element method used here by exposing the 
procedures of discretization, variational formulation and 
solution of the resulting system of equations.

2.3.1 � Domain discretization

Given a tessellation   Th of �, each simplex T ∈ Th here 
either is a triangle (in 2D), or a tetrahedron (in 3D) with 
vertices xj, 2 ≤ j ≤ 3, 4, obeying the classical requirements 
for a finite element space [26]. Rich definitions as to dis-
cretization of interfaces through finite elements for two-
phase flows were brought out by [27] regarding a level-set 
approach. Similarly, we introduce some concepts suitable 
to the process explained here. By separating h-families of 
discrete regions as mesh subsets, we define

and the Heaviside function

For computational purposes, the mesh is stored into two 
data structures: the area/volume mesh T �

h , which accounts 
for an interior discretization and the line/surface mesh T Ŵ

hŴ
, 

which discretizes the convex hull and the interface. Differ-
ent levels of adaptive refinement (element sizes) h1, h2, hc 
can be chosen separately for the mesh regions as desired. 
Since the bubble’s interface is traced by faces of their own 
mesh elements, desirable sharp interfaces are obtained. 
Therefore, this construction produces a kind of front-track-
ing method, with the function H(x) playing a particular role 
over the elements belonging to the discrete interfaces.

2.3.2 � Variational formulation

The strong form of the Eq. (9a–9b) seeks the solution of the 
problem 

T Ŵ1

h1
:= {T ∈ Th; T ∈ interface},

T Ŵ2

h2
:= {T ∈ Th; T ∈ convex hull},

Thc := {T ∈ Th; T ∈ cylindrical wrap},

T Ŵ
hŴ

:= T Ŵ1

h1
∪ T Ŵ2

h2
,

T �1

h :=
{
T ∈ Th; int(T) ⊂ �1

}
,

T �2

h :=
{
T ∈ Th; int(T) ⊂ �2

}
and

T �
h := T �1

h ∪ T �2

h ,

(14)H(x) :=






0, if x ∈ T �2

h ∪ T Ŵ2

h2

0.5, if x ∈ T Ŵ1

h1

1, if x ∈ �1,

(15a)B(u, p̃, fσ ; û, ρ,µ, g) = 0

Fig. 2   Small volume �S crossing the interface surface
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 (where B is a compact notation for Eq. (9a)) subject to 
specified initial and boundary conditions, among which the 
following are required in the discussed formulation:

Above, Eqs. (16–19) enforce the PBC for the velocity and 
pressure fields, imposed in the FE formulation by means of 
a variationally consistent form, as explained below.

To set forth the variational formulation of Eq. (15a–15b),  
the following function spaces are defined:

where H1
0(�) is a solenoidal standard Sobolev space and 

L2(�) the Lebesgue space of square-integrable functions. 
Both VP and QP are vector spaces gathering periodic func-
tions used to comply with the PBC [28]. Thenceforward, 
the derivation of the weak form for two-phase flows is fol-
lowed by weighting 

 When assigning usual bilinear forms as inner products, the 
terms in B and the divergence constraint can be written, 
term by term, as 

(15b)
∇ · u = 0

(15c)fσ = σκ∇H

(16)u|ŴB = u|ŴT in (0, tmax]

(17)n · ∇u|ŴB = −n · ∇u|ŴT in (0, tmax]

(18)p̃|ŴB = p̃|ŴT in (0, tmax]

(19)n · ∇p̃|ŴB = −n · ∇p̃|ŴT in (0, tmax].

VP = {v ∈ H1
0(�); v(x) = v(x + Le), x ∈ ŴB}

QP = {q ∈ L2(�); q(x) = q(x + Le), x ∈ ŴB},

(20a)

∫

�

{
B(u, p̃, fσ ; v̂, ρ,µ, g)

}
· v d� = 0, ∀v ∈ VP

(20b)

∫

�

{∇ · u}q d� = 0, ∀q ∈ QP

(21a)mρ

(
ρ; D̂u

Dt
, v

)
=

∫

�

ρ
D̂u

Dt
· v d�

(21b)m(ψue, v) =
∫

�

ψue · v d�, u = 1, 2, . . . , NV

(21c)g(p̃; ∇ · v) =
∫

�

p̃(∇ · v) d�

(21d)k(µ; ∇u,∇v) =
∫

�

µ(∇u+∇uT ) : ∇vT d�

 where ψu are shape functions associated with the veloc-
ity field and NV is the number of degrees of freedom at 
which they are evaluated. Following the chosen notation, 
ψue ∈ VP.

Then, the bilinear forms lead us to the equations 

which declares the weak form of the original problem. The 
term mρ(ρ; D̂u

Dt
, v) deals with the contribution given by the 

material derivative within a unique integral, to be justified 
ahead; Eq. (21b) resulting from the decomposition of the 
pressure field does not require integration by parts since its 
contribution is nonzero only for the streamwise direction 
and the mass matrix associated with the x-direction is read-
ily computed from the functions ψu; notably, integrations 
by parts are implicitly embedded in Eqs. (21c) and (21d). 
Lastly, note that the integrals related to Neumann (periodic) 
boundaries vanish due to the natural condition expressed by 
Eqs. (17) and (19) through opposite signs of the unit nor-
mal vectors.

On the grounds of the mixed nature of the problem, the 
finite element space used herein is developed in accordance 
with the stability requirements satisfied by the element of 
the Taylor–Hood class known as “MINI” [29, 30]. All the 
terms in Eq.  (22a) are approximated by a semi-discrete 
Galerkin method, except the material derivative. The lat-
ter undergoes a semi-lagrangian first-order approximation, 
which employs the departure points xd of the fluid particle 
trajectories obtained by performing a displacement as

Alternatively, Eq. (23) refers to the known method of char-
acteristics, in which a backward-in-time integration is 
used. Next, uh,d = u(xd) is found by interpolation [31].

(21e)mρ(ρ; g, v) =
∫

�

ρg · v d�

(21f)m(fσ , v) =
∫

�

fσ · v d�

(21g)d(∇ · u, q) =
∫

�

(∇ · u)q d�

(22a)

mρ

(
ρ; D̂u

Dt
, v

)
+ �Euβm(ψûi, v)+ g(p̃,∇ · v)

− 1

Ar1/2
k(µ; ∇u,∇v)− mρ(ρ; g, v)

− 1

Eo
m(fσ , v) = 0

(22b)d(∇ · u, q) = 0,

(23)xd ≈ xa − ch(xa)�t, xa of T ∈ Th.
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By introducing spaces of approximation Vh
P ⊂ VP 

and Qh
P ⊂ QP, the problem (22a–22b) is now fully dis-

cretized semi-implicitly in space and time, for time steps 
n�t, n = 0, 1, 2, . . . η, as 

 which can be recast into 

for ψn
u,h î, vh ∈ Vh

P, qh ∈ Qh
P. In turn, through assembling pro-

cess, Eqs. (25a–25b) generate the set of matricial equations 

 with bn = �Euβ î. Concisely, we can write 

B = Mρ + �t

Ar1/2
K and arrange the equations to give

where bc1, bc2 are vectors accounting for Dirichlet bound-
ary conditions of velocity and pressure, respectively. 
Recalling that the interfacial force is given by Eq. (4), to 
obtain its discrete version to accompany the Eo number, the 
following identity is written as

where � = σκ(x)I, with I being the identity matrix, is a 
diagonal matrix storing contributions of surface tension 

(24a)

mρ

(
ρ;

un+1

h − unh,d

�t
, vh

)
− �Euβm(ψ

n
u,h î, vh)

− g(p̃n+1

h ,∇ · vh)

+ 1

Ar1/2
k(µ; ∇un+1

h ,∇vh)− mρ(ρ; gnh, vh)

− 1

Eo
m(fσ

n
h, vh) = 0

(24b)d(un+1
h ,∇ · qh) = 0,

(25a)
mρ(ρ; un+1

h , vh)+
�t

Ar1/2
k(µ; ∇un+1

h ,∇vh)

+�tg(p̃n+1
h ,∇ · vh) = �trnh

(25b)d(un+1
h ,∇ · qh) = 0

with rnh = mρ(ρ; unh,d , vh)+ mρ(ρ; gnh, vh)

+ �Euβm(ψ
n
u,h î, vh)+

1

Eo
(fσ

n
h, vh)

(26a)

Mρu
n+1 + �t

Ar1/2
Kun+1 +�tGp̃n+1

= �t

[
Mρu

n
d +Mbn +Mρg

n + 1

Eo
Mfnσ

]

(26b)Dun+1 = 0

(27)

[
B �tG

D 0

][
un+1

p̃n+1

]
=

[
rn

0

]
+

[
bc1
bc2

]

with rn = �t

[
Mρu

n
d +Mbn +Mρg

n + 1

Eo
Mfnσ

]
,

(28)Mfnσ = �Ghn,

and curvature effects and hn is the discrete vector of the 
Heaviside function. Consequently, the vector rn in Eq. (27) 
takes the form

now containing the inverse lumped matrix M−1
L . Even more 

compactly, the l.h.s. and r.h.s. of Eq. (27) can be stated in 
an iterative manner as

2.3.3 � Solution through the projection method

Methods whose fundamental ideas rely on the projection 
method by Chorin–Temam [32] have been undertaken 
to solve the discretized system of Eq. (29) through frac-
tional steps, such as those discussed in [33]. In the most 
of them, the momentum equation in the primitive variables 
is split into substeps to bypass the difficulties created by 
the incompressibility constraint (Eq. (1b)). Essentially, 
every procedure is based on the calculation of a provisional 
velocity, an ensuing projection, and an additional update of 
the pressure field. In this section, the application of a pro-
jection method for the solution of the base equations is dis-
cussed briefly (a detailed scrutiny about projection methods 
can be found in Guermond et al. [34]).

In the present paper, the canonical splitting method 
based on exact LU factorization in two blocks recognized 
as “type D” after [35] was selected. Thenceforward, from 
Eq. (29) we write

where M−1
ρ,L indicates a lumping process employed to allevi-

ate the computational cost of inverting the mass matrix Mρ

. Besides, the error due to the splitting process affecting this 
classic fractional step method is reduced if a unique matrix—
in this case, M−1

ρ,L—interspersed in the LU scheme (see [36]). 
After performing the LU factorization, the procedure of solu-
tion of Eq. (30) is partitionated as follows: firstly, the system

for the intermediary velocity u# and the periodic pressure p̃ 
is solved (with b̃c1 = rn + bc1); next, the system

is solved to find the actual values of the fields. From Eqs. (31) 
and (32), the following routine of calculations can be set:

rn = �t

[
Mρu

n
d +Mbn +Mρg

n + 1

Eo
M−1

L �Ghn
]
,

(29)Nqn+1 = zn, n = 0, 1, 2, . . . , η.

(30)N =
[
B 0

D �tDM−1
ρ,LG

][
I −�tM−1

ρ,LG

0 I

]
,

(31)

[
B 0

D �tDM−1
ρ,LG

][
u#

p̃n+1

]
=

[ ˜bc1
˜bc2

]
,

(32)
[
I −�tM−1

ρ,LG

0 I

] [
un+1

p̃n+1

]
=

[
u#

p̃n+1

]
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3 � Methodology

3.1 � Periodic boundary conditions

Periodic meshes guarantee a correct spatial correspondence 
between the nodes belonging to each periodic boundary 
chosen a priori. In this manner, since the mesh is consid-
ered conforming, a requirement to be respected to avoid 
discontinuity of the solution is to enforce a superposition of 
the degrees of freedom (DOFs) stored at nodes of elements 
in ŴP. Different approaches are known to identify the indi-
ces of the nodes that should be periodic, either during the 
assembling process or by direct elimination in the global 
matrix of the system. Nevertheless, alternative methodolo-
gies to set PBC over nonperiodic meshes are also available 
[37, 38].

As discussed in [39], the construction of periodic ele-
mentary shape functions that share the periodic nodes is 
a requisite to be satisfied. The process employed in this 
study, i.e. combining and eliminating DOFs on the asso-
ciated problem obtained by replacing the PBC nodes with 
Neumann (natural) boundary conditions, is described in 
detail in Sect. 3.3. We will call master, slave, and inter-
nal as referring to the nodes belonging to ŴB, ŴT, and to 
the complementary of them, respectively, as employed by 
some authors (e.g., [40, 41]). The two element patches in 
light gray in Fig.  1, for instance, schematize that corre-
spondence [42].

3.2 � Mesh generation and adaptive refinement

For this study, the periodic mesh was constructed by using 
built-in tools provided by the software Gmsh [43], thus ful-
filling the requisite of having nodes satisfying the PBC con-
straints. Furthermore, the ability to control the refinement 
at specified regions of the domain enables an improvement 
of the analysis of the flow, since local interactions occur-
ring near the bubble plume can be captured.

Adaptive refinement strategies for the array of Fig.  1 
were developed to operate on the bubble’s surface, as well 
as over the fluid portion wrapped by a cylindrical “enve-
lope” of radius Rc surrounding the bubble, as illustrated in 
Fig.   3. Such strategies afford not only the generation of 
finer surface meshes that distribute nodes circumferentially 
on the spherical shells, but also the achievement of smaller 

(33)Solve Bu# = b̃c1;

(34)Solve Ep̃n+1 = b2;

(35)

Correct un+1 = u# +�tM−1
ρ,LGp̃n+1;

(with E = �tDM−1
ρ,LG; b̃2 = ˜bc2 − Du#).

elements in the neighbourhood of the plume that produce 
good aspect ratios. A view in perspective, as well as a top 
view of the unstructured mesh used for the simulations 
are displayed, respectively, in Figs. 4 and 5 at a particular 
time instant so as to highlight the higher density of points 
around the center produced by the adaptive refinement. 

Fig. 3   Augmented view of mesh displaying adaptive refinement 
strategies: circumferential, at the bubble’s surface; azimuthal, at the 
cylindrical wrap region of radius Rc surrounding it

Fig. 4   Computational mesh highlighting the bubble region: cut plane 
parallel to the axis of rising of the plume

Fig. 5   Computational mesh highlighting the adaptive refinement pro-
vided by the cylindrical wrap: top view
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3.3 � Elimination of degrees of freedom

Several algorithms to impose PBC within a finite element 
context are described by various authors, and were used for 
different purposes, most of which presenting either restriction 
equations or row suppression [44, 45, 47]. Herein, the neces-
sary steps to eliminate the slave DOFs for velocity and pres-
sure are dealt with separately and follow the sequential order 
defined by the projection method explained in Sect. 2.3.3 
through Eqs. (33–35). The task can be summarized as:

1.	 Eliminate the DOFs of B and update ˜bc1;
2.	 Eliminate the DOFs of G and D;
3.	 Eliminate the DOFs of Ẽ and update b̃2;
4.	 Impose periodicity on p̃n+1;
5.	 Correct and impose periodicity on un+1;

Steps 1 and 2 establish the PBC imposition on the veloc-
ity field, whereas steps 4 and 5 on the pressure field. 
In addition, as declared at the step 3, D and G undergo 
elimination as well. The last step is tied to the update 
of u in the closing of the splitting process. The perio-
dicity is achieved by updating the entries of the vector-
sthat store  the velocity and pressure fields at the slave 
nodes employing the values at the master nodes.

When implementing the elimination process, consider the 
following: (i, j) an arbitrary pair of indices that identifies the 
nodes for velocity or pressure over the periodic boundaries 
ŴB and ŴT, respectively; ibL a particular index for each node 
over ŴB; ibR a particular index for each node over ŴT, and γ 
the number of periodic nodes per boundary. Let

for sP = a(i+kς ,i+kς) + a(i+kς ,j+kς) + a(j+kς ,i+kς), be 
a model for the elementary submatrices of contribution 
obtained with natural boundary conditions. For each pair 
(i, j) with either i = ibL, ibR, or j = ibL, ibR found after 
algorithmic search, A will be replaced with the matri-
ces B, D, G, or Ẽ, respecting their dimensions, which are 
defined setting ς = NV  for the number of DOFs of veloc-
ity by component, or ς = NP for the number of DOFs of 
pressure. The dependency of k ranges the partial contribu-
tions of the spatial coordinates of R3. When following this 
strategy, the pair (i, j) searches for the rows and columns 
of each matrix, which should undergo copy processes, and, 
after summing them, all the contributions coming from the 
connection nodes are overloaded into the row (column) to 
be bypassed. Accordingly, let

(36)AP
(i,j;k) =





| |
− 1 −0 −

| |
− 0 −sP −

| |




, k = 0, 1, 2,

for sP = ui+kς + uj+kς, be a model for the elementary vec-
tors of contribution. U will be replaced with the vectors 
b̃c1, b̃1, u

#, u and p̃ in the algorithm.
Some keypoints to consider about the algorithm used 

here are: efficiency is earned when eliminating rows and 
columns directly in each matrix by searching only for the 
nonzero entries, thus taking into account matrix sparsity; 
cost-effectiveness is achieved by taking advantage of the 
matrix symmetry, since a considerable amount of values 
already computed can be reused; matrix indetermination is 
avoided simply by filling the suppressed entries with 1’s, 
whereby it is also justified by the overloading of equations 
from the slave to the master nodes per each DOF; gener-
alization is achieved by applying it to as many periodic 
boundaries as desirable in the setups of simulation, since 
it is based on node indexing. Consequently, a wide set of 
geometries is favored, even those endowed with more com-
plex surfaces.

3.4 � PBC correction of the semi‑lagrangian advection

When implementing the PBC, the subsequent process 
stemming from the semi-lagrangian approximation already 
declared in Eq. (23) may render “dependent” on the CFL 
number chosen as input parameter for some simulations. 
This dependence arises because of the evaluation of the 
velocity field over the elements’ neighbor to upstream 
periodic boundaries only and does not taint the nature of 
the method itself, which, in fact, was developed to allow 
numerical simulations with larger time steps and CFL num-
bers [48].

Keeping up with the notation used in [31], we write 
similarly X(x, t) for a continuous trajectory in R3, as well 
as Xh(x, t) for an approximation (X is not to be confused 
herein with a point of the material configuration of Sect. 
2.2).

Conceptually, the semi-lagrangian method used in this 
paper searches for the departure point xd = X(x, t; τ), i.e. 
the “foot” of the trajectory, for each node xj, whose particle 
ξ occupied at a time instant τ, whereas xj = X(x, t) is the 
arrival point to where the particle walks crossing a patch 
of elements T ξ. Figure 6 depicts, in turn, how the numeri-
cal pathline of ξ is interpreted over a domain of triangular 
elements, with filled and dashed lines in white represent-
ing X(x, t) and Xh(x, t), respectively, and elements in gray 
highlighting T ξ. In addition, the two extrema elements 
Td , Tj in light gray are such that xd ∈ Td and xj ∈ Tj.

(37)
UP
(i,j;k) =





|
0

|
sP

|




, k = 0, 1, 2,
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As a consequence of these calculations applied to the 
nodes near and over the master periodic boundary, the 
departure points are prone to “leak” outward of the compu-
tational cell. To correct the departure point, it is necessary 
to recast its position by adding or subtracting a multiple of 
the distance between two corresponding periodic nodes. In 
the case of simpler geometries with parallel boundaries, 
such as channels and tubes that are employed here, this is 
done simply by adding once the length of the domain to 
the points whose streamwise coordinate value falls outside 
the domain’s limits (to the left). Through this mechanism, 
the escaped departure points along the periodic boundary 
at every time step are recast into the domain as illustrated 
by the shifted starred point (departure point) and the arrival 
point xa at the periodic patch in Fig. 1.

4 � Code validation

Full three-dimensional simulations were performed to ver-
ify the technique presented in this paper. A detailed test for 
the case of an air bubble rising in an aqueous sugar solu-
tion considering PBC and the upward force caused by the 
pressure gradient (see Sect. 2.2.2) was used to check the 
mathematical model and compared to results published 
recently. [18]. Figure 7 is a plot of the bubble’s center of 
mass velocity ubc(t) versus time for three different simula-
tions regarding physics and boundary conditions described 
as follows: test R1—rising bubble with no-slip wall condi-
tions everywhere under gravity only (closed boundaries); 
test R2—rising bubble with lateral no-slip wall conditions, 
open boundary conditions at the top/bottom walls under 
gravity and upward body force; test R3—rising bubble with 
lateral moving wall conditions, PBC at the top/bottom walls 
under gravity and upward body force. Test R1 is discussed 
in [18] for a parallelepipedal domain and good accordance 
is attained here for a long cylindrical mesh; test R2 was 
performed to evaluate the balance between the gravity and 

pressure gradient forces inside the artificial array; test R3, in 
turn, was carried out to validate the complete PBC formula-
tion coupled with the balance of forces. All of the three tests 
were carried out over the same computational mesh, whose 
radius (height) is 4Db(10Db), and the physical property val-
ues for them are listed in SI units in Table 1. The time step 
computation depends on the mesh parameters as well as the 
other variables related to the ALE model, being updated 
each iteration (cf. Sect. 5.1 of [18]). For the current tests, an 
average time step �t ≈ 0.003 was determined.

The behavior observed in Fig. 7 may, at first, appear 
similar to the one obtained by considering the flotation of 
a small spherical bubble with practically no deformation at 
all. However, the terminal velocity obtained in these simu-
lations corresponds to about 60 % of the terminal velocity 
of a spherical bubble of equivalent volume due to its large 
deformations. As can be seen, the tests are in mutual agree-
ment, except for a slight profile discordance over the pla-
teau of terminal velocity for the cases R2 and R3. To meas-
ure these deviations in relation to R1, the mean percentage 
difference within the time of simulation [0, tmax] given by

(38)

ERj,R1 =
100 %

tmax

(
υbc,j(t)− υbc,1(t)

υbc,1(t)

)
, j = 2, 3, with

υbc,i(t) =
∫ tmax

0

ubc,i(t) dt, i = 1, 2, 3,

Fig. 6   Elements patch spanning the numerical path T ξ of a fluid par-
ticle ξ for CFL > 1 and linear approximation of its trajectory through 
the semi-lagrangian method

Table 1   Physical property values for the numerical simulations: tests 
R1–R3

µ1,µ2 ρ1, ρ2 σ Db Ar Eo

1.78 x 10-5, 0.54 1.22, 1350 7.8 x 10-2 2.61 x 10-2 1092 116
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Fig. 7   Dimensionless rising velocities ubc(t) for three different con-
figurations of an air bubble rising immersed into a aqueous sugar 
solution
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was computed to be ER2,R1 = 3.97 % and ER3,R1 = 3.51 %, 
thus reporting acceptable difference ranges for both the 
cases, being the smallest one reported for the PBC/MFR 
formulation proposed.

The deviations of R2 and R3 in relation to R1 are due 
to differences in the problem setups, including effects com-
ing from the boundary conditions and the splitting process 
used to calculate the velocity field, as explained in Sect. 
2.3.3. The tests were sensitive to the time step size chosen, 
since the addition of the pressure gradient Eu� introduced a 
numerical error of O(�t) caused by the imbalance between 
gravity forces and pressure forces produced by the splitting 
process.

5 � Numerical results: bubble shape and oscillation 
analysis

While singling out the current formulation based on PBC, 
the previous section has evinced the capabilities of the code 
to simulate rising bubble flows through different boundary 
conditions. In this section, on the other hand, aspects of the 
unsteady hydrodynamics of specific cases of bubble plumes 
concerning changes of their shape and oscillatory motions 
will be analyzed. Besides, disturbance energy spectra asso-
ciated with their shape factor profiles will be  presented.

5.1 � Rising velocity, aspect ratios, trajectories and spectra

The next subsections describe rising velocities, bubble 
shape and oscillation analyses for two cases of bubble 
plumes inside the periodic domain of Fig.  1 (L = 2Db), 
whose physical property and parameter values are listed in 
Table 2. For clarity, the cases are labeled as B1 and B2 and 
their underlying difference is related to the bubble diameter 
in the periodic cell, namely, 4.0 and 5.2 mm, respectively. 

Curves of the two bubble shape factors were calculated 
and plotted in Fig. 8, viz. the elongation and flatness ratios 
defined, respectively, as:

where a, b, c are the maximum length of the bubble’s 
principal axes in the streamwise (chosen to be the x axis) 
and transverse directions (y and z axes). As seen, the 

(39)φ = b

c
; ψ = c

a
,

initial condition (that is to say φ = ψ = 1) of both the cases 
vouch for the perfectly spheroidal shape of the bubbles. 
With the time and the ascent motion of the bubbles, the flat-
tening process dominates over the elongation up to t ≈ 2.5,  
thus portraying an oblate shape with a dimple underneath 
the bubble comparable to experimental observations [50]. 
From this threshold, shape irregularities become more vis-
ible as oscillations are felt by the bubbles, without follow-
ing, however, a defined periodicity. In turn, the shape varia-
tions occur freely as far as the end of the simulations, with 
the elongation profiles less protruded.

Bubble deformation and oscillation are intimately linked 
to flow properties, such as surface tension, bubble size, and 
inertia effects. Path instabilities, zigzag and spiral motions 
for gas bubbles rising both in clean water and other liquids 
are effects recognized in the literature and the mechanisms 
responsible for their appearing have been debated through 
different points of view (cf. [49, 51–54]). It is known, how-
ever, that the bubble’s mobility is deeply affected when 
impurities are dispersed in the flow. To compare with these 
results, qualitative behaviors were observed for the cases 
B1 and B2 in the periodic domain regarding the bubbles’ 
trajectories and its projections as depicted in Fig. 9. While 
in the first test the bubble underwent an off-center wob-
bling motion marked by acute spots, the second test pre-
sented, furthermore, a twist motion around the directrix line 
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0.8
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Fig. 8   Elongation (φ) and flatness (ψ) ratios of the rising bubbles

Table 2   Physical property values for the numerical simulations: cases B1 and B2, respectively

Case µ1,µ2 ρ1, ρ2 σ Db Ar
1/2 Eo

B1 18.2 x 10-6, 958.08 x 10-6 [24] 1.205, 998 0.0728 4 x 10-3 824.96 2.15

B2 idem idem idem 5.2 x 10-3 1222.8 3.63



1657J Braz. Soc. Mech. Sci. Eng. (2015) 37:1647–1664	

1 3

erected from the point (yt , zt) = (0.09,−0.045), approxi-
mately between t = 2 and t = 4, before its full unfolding. 
Given the millimetric difference of diameters for the two 
cases, these curves suggest that the effect of the bubbles’ 
wake brought onto themselves—in the sense of a plume 
made up by equally spaced bubbles—amounts to a path 
instability which depends on the bubble size and, there-
fore, on the Eötvös number, in accordance with arguments 
expressed in the previous citations. Besides, the trajectories 
tend to develop a seemingly chaotic path.

In attempting to quantify the harmonic modes involved 
in the oscillatory motion of the bubbles, a spectra analy-
sis based on the fast Fourier transform (FFT) of the signals 
φj(t),ψj(t), j = 1, 2 was performed. The spectra analysis 
considered only data on the range given by tS = [2.5, tmax]

, thus disregarding the initial evolution stage. FFT-based 
spectra of magnitude of disturbance energy computed 
through the expression

with the overbar meaning complex conjugate, for the ten 
first harmonic modes, 1.0 ≤ ftS

2π
≤ 10.0, are depicted for the 

cases B1 and B2 in Fig. 10. The analysis took into account 
a considerably large quantity of sampling data over the 
reduced temporal interval tS, but it showed that the energies 
of higher magnitude are noticeable only at the low frequen-
cies of the spectra.

This FFT-based analysis shows that both the cases have 
their energy peak concentrated in the second harmonic. 
This value is close to the frequencies associated with the 
(2,0) and the (2,2) modes reported in [49]. For the case 
B1, the energy peak associated with the flatness profile is 
only slightly more intense than the elongation’s, while for 
the case B2 the elongation energy is much larger than the 
flatness energy.  Furthermore, the energy of the case B1 is 
very concentrated on ftS

2π
= 2.0, whereas that of the case B2 

is spread over the frequencies in the range 1.0 ≤ ftS
2π

≤ 3.0.  
On the other hand, a slight interchange of intensities 
between even and odd harmonics can be observed along the 
range, though the case B1 has a higher overall energy than 
the case B2. Considering that the spectra are nondimen-
sional, the increased spreading in the frequencies in case 
B2 is indicative of a more complex behavior.

Filtered rising velocity profiles for the cases B1and B2 
are depicted in Fig. 11. The need of filtering is firstly justi-
fied by the jump of density at the air–water interface, which 
implies small pressure variations inside the bubble, thus 
generating higher velocity therein; secondly, to remesh-
ing operations inherent to the numerical method, such as 
insertion and deletion of nodes, that cause instantaneous 
variations in the center of mass’s position.  Consequently, a 
special treatment of box filtering is required to smooth the 
influence of short-time spurious oscillations experienced 
by the bubble while ascending. As seen, the fluctuations of 
velocity are intensified from t ≈ 2.5, in accordance with the 
analysis previously reported.

5.2 � Wake effects and near‑field velocity

Analyses of the flow in the bubble’s surroundings are lim-
ited here to a near-field distance, defined to be the peri-
odic cell region below 2Db from the nondisplaced bub-
ble’s center of mass, and are conducted for each test in 
this subsection. Due to the complex imaging of the three-
dimensional hydrodynamic field evolving around the bub-
ble, two stacks of pictures gathering the velocity field as 

(40)
|FFTBj[F(t)]| = FFT[F(t)]FFT[F(t)];

F(t) = φj(t),ψj(t), j = 1, 2,
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Fig. 9   Bubbles’ spatial motion relative to the reference frame mov-
ing upwards along with the center of mass (xref coordinate): a 
path and directrix line of the twist emerged in case B2 (in red); b 
projection of the paths over the yz-and the directrix’s base point 
(yt , zt) = (0.09,−0.045) (in red)
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well as the bubble shape information at four time instants, 
namely {3.00, 4.50, 5.50, 6.50}, are arranged from Figs. 12, 
13, 14, 15 relative to an axis whose center is fixed in the 
initial position of the bubble’s center of mass. In the back-
ground, the magnitude of the velocity field is plotted over 
the transverse planes yx and zx; in the foreground, the bub-
ble shape highlighting the zero-thickness finite element 
surface meshing is overlaid.

The downward flow reflects the imposition of the 
MFR technique by which the degrees of freedom of the 
streamwise velocity are subtracted by the center of mass 

velocity—Ubc which is updated each time step. By compar-
ing the flow evolution vis-a-vis for each pair B1–B2 of pro-
jection planes, some inferences about the overall flow can 
be drawn from the simulation snapshots. Firstly, the oblate 
shape persists for a considerable time along the path and 
it is a common trait in both the cases; so is the wobbling 
motion, which is boosted up by higher velocity gradients in 
the bubble’s skirt region around t = 5.50. Off-center motion 
is seen by contrasting the bubble shape at t = 3.00, a few 
instants after the oscillation outset, against t = 6.50; for 
instance, when the drift from the reference center is played 
by the bubbles. Consecutive inclinations of the bubbles 
concerning the azimuthal angle formed between their cen-
tral axis and the streamwise axis are also exhibited on both 
projection planes concomitantly, thereby confirming the 
presence of wobbles in the spatial trajectories observed as 
much in the previous subsection as in the cited references. It 
is seen, moreover, that the dimple evolution underneath the 
bubble of the case B1 differs from that arising in B2, which 
is more restrained during this stage—however unclear from 
the pictures. Despite of that, the dimple existence can be 
verified from the smooth reentrant portions of counterflow 
underneath the bubbles and around their fringes.

6 � Conclusions

This paper studied numerically the idealized flow of an 
in-line bubble plume rising in still water and separated 
by a uniform gap length utilizing a finite element model 
coupled with periodic conditions. Among the conclusive 
remarks that can be drawn up, the following are of particu-
lar attention:
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Fig. 10   FFT-based spectrum of disturbance energy for the ten 
first harmonic modes relative to the signals representative of the 
aspect ratios profiles φj(t),ψj(t), j = 1, 2 evaluated in the interval 
tS = [2.5, tmax]: a case B1; b case B2
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ence frame for the cases B1 and B2
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Fig. 12   Velocity field and bub-
ble shape for the case B1: plane 
yx; a t = 3.00, b t = 4.50, c 
t = 5.50, d t = 6.50
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Fig. 13   Velocity field and bub-
ble shape for the case B1: plane 
zx; a t = 3.00, b t = 4.50, c 
t = 5.50, d t = 6.50
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Fig. 14   Velocity field and bub-
ble shape for the case B2: plane 
zx; a t = 3.00, b t = 4.50, c 
t = 5.50, d t = 6.50
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Fig. 15   Velocity field and bub-
ble shape for the case B2: plane 
zx; a t = 3.00, b t = 4.50, c 
t = 5.50, d t = 6.50
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–– Under qualitative comparisons with experimental data, 
the ALE/FEM/PBC formulation here presented supports 
its ability to get closer to the real hydrodynamics occur-
ring in bubble rising motions, mainly as to the shape 
variations associated with them.

–– The combination of PBC and the small gap length s set-
tled in the periodic cell contribute to disturb the bubble’s 
path so affecting the overall zigzag or spiral motion that 
is widely observed in experiments with bubbles whose 
diameters are equivalent to those presented here.

–– Reasons for the very low amplitudes observed in the 
spectra analysis are tied to the temporal range covered 
by the simulations, which required small time steps to 
favor the physical balance between the gravity and pres-
sure forces introduced in the numerical model.

–– Although there is an wake effect at the bubble’s nose 
due to the “bubble-over-bubble” stacking of the plume 
model, it did not alter the lasting oblate shape observed 
for both the cases studied because of the low inertial 
cumulation coming from below.

–– Different configurations of numerical tests for valida-
tion and analyses purposes advocate the good robust-
ness of the numerical tools used here.

To conclude, future directions and implementations 
comprise: analyses of the flow for larger time scales and 
smaller separation distances s; investigation of clustered 
bubbles; coupling with scalar fields, such as contaminants, 
chemicals and temperature, besides looking at diabatic 
dynamics, and problems with multidirectional periodicity.
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